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Foreword

This book focuses on exactly treatable many'-body problems. This class

does not include most physical problems. We are therefore reminded "of

the story of the man who, returning home late at night after an alcoholic

evening, was scanning the ground for his key under a lamppost; he knew,
to be sure, that he had dropped it somewhere else, but only under the

lamppost was there enough light to conduct a proper searcW' <C71>. Yet

we feel the interest for such models is nowadays sufficiently widespread
- because of their beauty, their mathematical relevance and their multi-

farious applicative potential - that no apologies need be made for our

choice. In any case, whoever undertakes to read this book will know from

its title what she is in for!

Yet this title may require some explanations: a gloss of it (including
its extended version, see inside front cover) follows.

By "Classical" we mean nonquantal and nonrelativistic (although
some consider the Ruijsenaars-Schneider models, which are indeed

treated in this book, as relativistic versions of, previously known, nonre-

lativistic models; see below): our presentation is mainly focussed on

many-body systems of point particles whose time evolution is determined

by Newtonian equations of motion (acceleration proportional to force).
The fact that we treat problems not only in one, but also in two, and even

in three (and occasionally in an arbitrary number of), dimensions, is of

course somewhat of a novelty: indeed the treatment of two-dimensional,
and especially three-dimensional, (rotation-invariant!) models, is based

on recent (sometimes very recent) findings. By "amenable to exact treat-

ments" we mean that, to investigate the behavior of the many-body mod-

els identified and studied in this book, significant progress can be made

by "exacf' (i. e., not approximate) techniques. The extent to which one

can thereby master the detailed behavior of these many-body systems
varies from case to case: this is emphasized by the parenthetical part of

our title, which perhaps requires some additional elaboration, to explain
what we mean by our distinction - which is, to be sure, a heuristic one:

quite useful, but not quite precise - among solvable, integrable and line-

arizable models.

Solvable models are characterized by the availability of a technique of

solution which requires purely algebraic operations (such as inverting or

diagonalizing finite matrices, or finding the zeros of known polynomials),
and/or possibly solving known (generally linear, possibly nonautono-
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mous) ODEs in terms of known special functions (say, of hypergeometric

type), and/or perhaps the inversion of known functions (as in the standard

solution by quadratures).
Integrable models are those for which some approach (for instance, a

"Lax-pair", see below) is. available, which yields an adequate supply of

constants of motion. As a rule these models are also solvable, but gener-

ally this requires more labor. In the Hamiltonian cases, these models are

generally Liouville integrable.
Thirdly, we refer to linearizable problems: their treatment generally

requires, in addition to the operations mentioned above in the context of

solvable models, the solution of linear, generally nonautonomous, ODEs,

which, in spite of their being generally rather simple, might indeed give
rise to quite complicated (chaotic?) motions. In the Hamiltonian cases

these many-body models need not be integrable in the Liouville sense,

although the linearity of the equations to be finally solved entails the pos-

sibility to introduce constants of the motion via the superposition princi-

ple, which guarantees that the general solution of a linear ODE can be

represented as a linear combination with constant coefficients of an ap-

propriate set of specific solutions. In any case a linearizable many-body

problem is certainly much easier to treat than the generic (nonlinear!)
many-body problem, inasmuch as its solution can be reduced to solving a

linear first-order matrix ODE (indeed, in most cases, a single linear sec-

ond-order scalar ODE - albeit a nonautonomous one - see below).
Clearly these three categories of problems - solvable, integrable,

linearizable - are ordered in terms of increasing difficulty, so that (as in-

deed the title of this book indicates with its andlor's), problems belonging
to a lower category generally also belong to the following one(s).

But let us reemphasize that the distinction among solvable, integrable
and linearizable models is imprecise: the boundaries among these catego-
ries are somewhat blurred, moreover we have been vague about what

gasolving" a problem really means: Finding the general solution? Solving
the initial-value problem? For which class of initial data? And what about

boundary conditions (which in some cases are essential to define the

problem)? The final dots in the title underline the heuristic, and incom-

plete, character of this distinction among solvable, integrable and lineari-

zable models (for instance, we shall also introduce below the notion of

partially solvable models, whose initial-value problem can be solved only
for a restricted subclass of initial data). Yet this distinction is convenient

to convey synthetically the status of the various many-body problems
treated in this book.

Two additional remarks.

(i). The genesis of exactly treatable models comes seldom from the

discovery of a technique to solve a given problem; generally the actual

development is the other way round, a suitable technique is exploited to
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discover all the models which can be treated (possibly solved) by it.

Some disapprove of such an approach to research, in which, rather than

trying to find the solution of a problem, one tries to find problems that fit

a known (technique of) solution. Some, indeed, go as far as decrying "ba-

sic research," presumably because, in contrast to applied research, it does

not solve specific problems: "Basic research is like shooting an arrow

into the air and, where it lands, painting a targef' (attributed to Homer

Adkins (1984) <APS99>). This author, on the contrary, does not see

anything wrong with this approach; it seems to me it is a normal way of

making progress in science. For instance: occasionally an experimental
device (say, a particle accelerator) is built for the specific purpose to dis-

cover something (say, a new elementary particle); but more often an ex-

perimental device is available (say, a particle accelerator), and the ex-

perimental activity is concentrated on whatever that particular device al-

lows experimenters to do. And nobody sees anything wrong in this. In-

deed there is a quotation from Carl Jacobi (which I am lifting from a clas-

sical treatise by Vladimir Arnold <A74>), that expresses this point of

view in a context quite close to that of this book (although it refers spe-

cifically to an approach -- separation of variables -- we do not explicitly
treat): "Ihe main difficulty to integrate these differential equations is to

find the appropriate change of variables. There is no rule to discover it.

Hence we need to follow the inverse path, namely to introduce some con-

venient change of variables and investigate to which problems it can be

successfully applied." And another quotation which expresses a point of

view I sympathize with comes from Vladimir E. Zakharov: "A mathema-

tician, using the dressing method to find a new integrable system, could

be compared with a fisherman, plunging his net into the sea. He does not

know what a fish he will pull out. He hopes to catch a goldfish, of course.

But too often his catch is something that could not be used for any known

to him purpose. He invents more and more sophisticated nets and equip-
ments and plunges all that deeper and deeper. As a result he pulls on the

shore after a hard work more and more strange creatures. He should not

despair, nevertheless. The strange creatures may be interesting enough if

you are not too pragmatic. And who knows how deep in the sea do gold-
fishes live? ". <Z90>

(ii). Models amenable to exact treatments are, of course, special. Why
focus on them, rather than look at general cases, which capture many

more problems, including the more "physical" ones? But again, this is to

a large extent the essence of normal science. Pythagora' s theorem does

not hold for all triangles, but only for rectangular ones. Should this be

considered a shortcoming of this mathematical result, or instead its very
essence? The answer is plain.
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Finally, a few remarks on the presentation and the selection of the

material.

The presentation is meant to facilitate the self-education of a reader

who wishes to enter this research area. For instance, special cases are of-

ten presented in place or in advance of more general treatments, in order

to introduce ideas and techniques in a simpler context. The division into a

main text and a secondary part, separated by horizontal lines and distin-

guished by a slight difference in the size of the fonts, should also be help-
ful: in the secondary part we generally segregate remarks and arguments

(often including proofs) which deviate from the main flow of the presen-

tation (but the reader is well advised to read sequentially through these

parts as well, which often contain material that is essential -- or at least

helpful -- for the understanding of what follows; and this advise also ap-

plies to all exercises, which should all be read, even when there is no in-

tention/possibility to invest immediately time in their solution). Almost

all mentions of related references, historical remarks, due credits, etc., are

also relegated elsewhere, to special sections ("Notes") located at the end

of the chapters and of some appendices. Of course this book might also

be used as background material for teaching a course (it actually emerged
from such a context - indeed, it profited from such a test) .

The selection of the material presented in this book is unashamedly
skewed towards research topics to which the author has personally con-

tributed, or which he finds particularly congenial (such as the Rui-

jsenaars-Schneider model). The enormous amount of research on the

topics treated in this book and/or on closely related areas that emerged in

the last quarter century would have anyway doomed to failure any effort

at providing a "complete" coverage; likewise any attempt to present a

"complete" bibliographic record of the contributions on the topics treated

would have been impossible, indeed perhaps futile given the great ease

nowadays to retrieve relevant references via computer-assisted searches.

These are admittedly lame excuses for the shortcomings of this book,
whose worth (be it somewhat positive or largely negative) will in any

case be best assessed by those who will use it as a (personal or didactic)
teaching tool; but I like to express here my apologies to all those col-

leagues who contributed importantly to the development of this area of

research and who will not find in this book any reference to their contri-

bution.

The organization of the book into a rather detailed net of telescoped
sections is meant to help the reader, both the first time he navigates
through the book as well as when she might wish to retrieve some notion.

Moreover, the table of contents provides a synthetic overview of the ma-

terial covered in this book which might help the perplexed browser in de-

ciding whether he wishes to become an engaged, or even a diligent,
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reader. Equations are numbered progressively within each section and

appendix: equation (16) of Section 2.1.1 is referred to as (16) within that

section, as (2.1.1.46) elsewhere; and likewise (C.-10b) is equation (10b)
of Appendix C (but within Appendix C it is referred to simply as (10b)).

Let me end this Foreword on a personal note. My father, Guido Calo-

gero, was a philosopher who wrote many books (without formulas!), and

he also had a great interest for, and much scholarship in, philology and

archaeology (especially texts from ancient Greece). Hence, he always
paid a keen attention to the appearance of any text; and he much disliked

misprints. I inherited this attitude, but not his keen eye to weed out imper-
fections. Hence I must apologize for the many misprints and other defects

this book certainly contains, and beg the reader to take the same benevo-

lent attitude displayed by Hermann Weyl in his 1938 review <W38> of

the second volume of the classic mathematical physics treatise by Richard

Courant and David Hilbert <CH37>, when he wrote: "The author apolo-
gizes that lack of time prevented him from fitting out this book with a fall

sized index of literature and such paraphernalia. The same reason may be

responsible for quite a few misprints on which the reader will occasion-

ally stumble. But perhaps even these minor faults deserve praise rather

than blame. Although I know that a craftsman's pride should be in having
his work as perfect and shipshape as possible, even in the most minute

and inessential details, I sometimes wonder whether we do not lavish on

the dressing-up of a book too much time that would better go into more

important things."

Yet I will be most grateful to whoever will take the trouble to bring to

my attention shortcomings of this book (including misprints!), via an e-mail'

message sent to (both) these addresses: francesco.calojzero(c .uniromal.i

francesco.caloaero(-a romal.infn.it.
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Preface

This book, as well as its title, are long, perhaps too long; and it took quite
a long time to complete this project, well over three years of intense hard

work. Throughout this period I sought and got advise from several col-

leagues and friends, and also from students to whom preliminary drafts

were distributed and who helped me by spotting misprints and mistakes

(letting them search for these turned indeed out to be a very efficient

teaching technique!). For a special word of thanks I like to mention Mario

Bruschi, Jean-Pierre Franqoise, David Gomez Ullarte, Misha Olshanet-

sky, Orlando Ragnisco, Simon Ruijsenaars. But it is of course understood

that I am solely responsible for all shortcomings of this book.

I also wish to thank: Alessandra Grussu and Matteo Sommacal for

transforming my scribbled first draft into WORD files for me to work on;

my Physics Department at the University of Rome I "La Sapienza" for

supporting financially this typing job, and in particular the Administrator

of my Department, Maria Vittoria Marchet, for organizing this arrange-

ment, and the Director of my Department, Francesco Guerra, for encour-

aging me to undertake this project; and the staff at Springer, in particular
Mrs. Brigitte Reichel-Mayer respectively Prof. Wolf Beiglboeck, for their

cooperative attitude on the technical respectively substantive aspects of

the production of this book.

This book is dedicated to the memory of Juergen Moser, whose semi-

nal work was instrumental in opening up this field of research. Most re-

grettably, I never managed to meet him: I only spoke by telephone with

him one time, more than twenty years ago, from JFK airport in New

York, while he was in his office at the Courant Institute; then, through the

years, various last minutes glitches postponed more than once our getting
together. Alas, now it is too late to remedy this mistake.

September 2000 Francesco Calogero
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I CLASSICAL (NONQUANTAL9

NONRELATIVISTIC) MANY-BODY

PROBLEMS

In this introductory Chap. 1 we tersely review the basic notion of, and

notation for, classical many-body problems in one-, two- and three-

dimensional space, mainly by exhibiting the corresponding Newtonian

equations of motion. We also tersely review the Hamiltonian formu-

lation of such problems and we outline the notion of integrability
associated with such Hamiltonian systems.

1.1 Newton's equation in one, two and three dimensions

The fundamental ("Newton's") equations characterizing a classical (i.e.,
nonquantal and nonrelativistic) N-body problem state that the

acceleration of the n-th particle equals a force acting on it which

depends, in an assumedly known manner, on the positions and velocities

of all N particles:

? (t) = i, IF. (t), r:,. (t); ti - (1a)

Here and generally below indices such as n, in label the different particles

(they take the values 1,... A, unless otherwise specified), t is the time and

superimposed dots denote differentiation with respect to this

("independent") variable.  (t) identifies the position of the n-th particle

at time t; in the following we often omit to indicate explicitly the time

dependence. Likewise, (F., F.; t) is the force acting on the n-th particle; as

a rule it depends on the positions and velocities of the N particles. The

force depends on the time via the positions and velocities; as we have

indicated, it may also depend explicitly on the time variable, although
hereafter we will almost exclusively focus on the autonomous case,

characterized by the absence of such an explicit time-dependence. (Note
that here we include the mass in the definition of the force: strictly

speaking j,, is the force acting on the n-th particle divided by the mass of

the n-th particle).



It is often notationally convenient to introduce an N -vector whose N

components are labeled by an index, say n or m, that takes the N values

1,...,N; hereafter such N -vectors are denoted by underlined lower-case

symbols (upper-case underlined symbols are reserved for matrices, see

below). Hence equivalent versions of (1a) read as follows:

.
W = LEr(t), E(t); t] (1b)F

L(t) = AEW,k(t); ti - (1c)

When the Newtonian equations (1) are invariant under translations,

namely under the transformations

- z - -

r. __ ' rn = rn + rO (2)

where j;O is arbitrary (but constant, 0), they can conveniently be

reformulated as follows:

rn L (F, - F. I r.; 0 (3)

So far we have not specified the dimensionality d of space. Let us

now do so by considering separately the 3 cases (S =1,2,3) on which we

will hereafter focus, to introduce an appropriate notation as well as the

important notion of rotation invariance (when applicable, namely for

s =2,3).

In the one-dimensional case (S =1) we generally write, say, xn in

place of  , so that Newton's equations read, say,

'n = fn (Xm 5 'm; 0 * (4)

(In the Hamiltonian cases, on which we will largely focus, we often use

the "canonical coordinates" qjt) in place of xjt)). In this one-

dimensional case we generally consider motions taking place on an

(infinite, straight) line; although the case of motions on a circle will also

be occasionally considered, see below.

In the two-dimensional case (S =2) the motion takes place in a plane,
which we, for notational convenience, envisage to be embedded in

ordinary (three-dimensional) space. Hence we introduce Cartesian and

polar coordinates by setting

2



r,
= (X"' Y"'O) =- (P" Cos 0", P" sin 0",0). (5)

We moreover introduce the unit vector k orthogonal to the plane,

k = (0,0,1), (6)

and use the notation

7C Ir
k A F = (- Y,,, X,,,O) = P,, COS(O,, + ),& Sin(O,, + --),0(-p,, sin 0, p,, cos 0,,,0) .

2 2

(7)

The (symmetrical) scalar product is then defined in the standard

manner:

F" - F. = X"X. + Y"Y.
=

P"P. COS(O' - 0.) = F. - F, (8)

while the (antisymmetrical) pseudoscalarProduct is defined as follows:

k-F,, A T= xj. - x.y,,
= &p. sin(O. - Oj = -k -

.
A

.
F F" (9)

Note that this latter quantity coincides, up to its sign, with twice the area

of the plane triangle having as its 3 vertices the origin and the 2 vectors F.

and  .

A rotation in the plane is defined as follows:

(10)';n ---"n -= (Pn COS(On + 00), Pn Sn(On + 0010))

where 0,, is the angle of rotation. Clearly both the scalar and the

pseudoscalar products are invariant under rotations, see (8) and (9);
indeed, they are the only quantities having this property. Moreover, the

scalar product (8) is invariant under the inversion transformations

-4; '  (-Xn YJI (11a)

(11b)->  (Xn,-Yn),

while the pseudoscalar product (9) changes sign under such

transformations. Since generally, in the following, we shall not consider

the behavior under inversions, we will for simplicity often denote as

scalars all quantities that are invariant under rotations, independently of

3



their behavior under inversions (namely, independently of whether they
are scalars, pseudoscalars or a combination of scalars and pseudoscalars).
The requirement that the Newtonian equations of motion (1) be, in the two-

dimensional case, invariant under (plane) rotations (by an arbitrary, but

time-independent, angle 0, ) entails that they have the "covariant''form

Ar

(2) P(3) (4)1rn  0(1) + r. (0. + k A +kAr (12)nm nm M (Onm
M=1

where the 4N2rotation-invariant (scalar) quantities p(s) are functions of
nm

the
I
N(N + 1) scalar products F. - F, of the N2 scalar product F, -of the

2
rk

N(N + 1) scalar products
4.

of the 1N(N - 1) pseudoscalar products
2

rj rk
2

k - FjAFk ,
of the N2pseudoscalar products k - FjA and of the

I
N(N - 1)rk

2

pseudoscalar products k - rA ri '
.
The quantities V(s) may depend moreover

j k nm

on the time t (in the "nonautonomous" case), and on a number of scalar

("coupling") constants.

In the three-dimensional case (S =3) Cartesian and spherical
coordinates are introduced in the standard manner:

j;n (Xn 5 Yn 2 Zn) = (Pn COS (on COS On  Pn COS Pn sin On, pn sin Vn) (13)

The (symm ical) scalarproduct reads

'= j;:Fn*Fm XnXm+YnYm+ZnZ.' 'in7 (14)

the (antisymmetrical) vectorproduct reads.

F A i. =-(YnZm_YmZn ZnXm_ZmXn XnYm_XmYn )=-F.A;nl (15)

and the (completely antisymmetrical) triple pseudoscalarproduct reads

Xi Y1 Zi

F, - F2 A F3 -= X2 Y2 Z2 = F2 - F3 A F, = F3 - F, A F2

X3 Y3 Z3

F1 ' F3 A ';2 =2 *F1 A j;=3 2
A;; (16)3 1*

This quantity, up to a sign, is 6 times the volume of the tetrahedron

characterized by the 4 vertices (01 ':11 721 j;3 ) *

The scalar product (14) is invariant under the space inversion

transformation which changes the sign of all vectors,

4



;Z1

(17)r --* r :-- -r

while the pseudoscalar product (16) changes sign under the space

inversion (17). (Note that in the 3-dimensional case, in contrast to the 2-

dimensional case, the transformation (17) -- which is of course supposed
to hold for all vectors F,, -- is not a rotation). In the following, for

simplicity of language, we occasionally neglect the difference between

scalars and pseudoscalars, namely we term scalar any quantity that is

in,variant under rotations, irrespective of its behavior under space

inversion. Note that the only scalar quantities that can be manufactured

using 3-vectors are the (quadratic) scalar product (14) and the (cubic)
pseudoscalar triple product (16).

The requirement that the Newtonian equations of motion (1) be, in the

three-dimensional case, invariant under rotations (by an arbitrary, but

time-independent, angle around an arbitrary, but time-independent,
direction) entails that they have the "covariant" form

N

;9
2

+r. j;.  9nm rm n.

M=1

N

(3) (4) (5) (18)+ fFM, A FM,  O + rM, A rM2  9 + r
2
 9

M2
- nmm, nm,% mi

A rM
nm, f 7

MI,MZ=l

where the 2N2 scalar (i.e., rotation invariant) quantities (O(s),s=l,2, as
nm

well as the N2(2N-1) quantities (o(s) s=3,4,5, are functions of the
nm,M2

scalars of the !N(N+l) scalars
1
N(N + i) scalars Fj - 7, of the N2

2 2

of the
1
N(N -1XN - 2) pseudoscalars Tj , A. A Af of the

1
N2 (N - 1)

k 7

6 2

pseudoscalars 7k A of the
1
N2 (N - 1) pseudoscalars F, A r

,
and of

2
rk

the 1N(N-lXN-2) pseudoscalars r:'j-r kA;*--,; the quantities  O may
6

moreover depend on the time t (in the "nonautonomous" case), and on a

number of scalar ("coupling") constants.

For instance, the classical problem of N gravitating (point, or spherical) bodies

moving in 3-dimensional space corresponds to (18) with

(3) (4)
=

(5) (19a) O
(2)

(PnmM, = 0Onm1m, = (PnM,M2

and

5



Ar

 o(') G M,
-3
+ (1 - 5,,. )GM. (19b)rd

where M, is the mass of the n-th particle and G is the gravitational constant. Here,

and often as well below, we use the short-hand notation

(20a)

entailing of course

r,,2. =- Fn. - F,,r = r
2
+ r.2 - 2 Fn - F. . (20b)

1.2 Hamiltonian systems - Integrable systems

In Sect. 1.2 we tersely review the basic notions of Hamiltonian dynamics.
We restrict attention to the one-dimensional case, leaving as an

elementary exercise for the diligent reader the reformulation of the

following results in covariant form, in the two- and three-dimensional

cases.

A Hamiltonian system is characterized by a Hamiltonian function

H q,p), whose dependence on the N "canonical" coordinates q,, and

momenta & determines the time-evolution of these quantities according
to the Hamiltonian equations of motion

aH  q,f)1ap,, , (1a)

-aH  q, p)laq,, (1b)

Let us repeat that, here and throughout, an underlined lower-case letter

denotes an N -vector: thus q = q(t) is the N -vector of components

q,, = q,, (t), and so on. Note that, for simplicity, we assume that the

Hamiltonian H q, p) does not depend explicitly on the time t. We also

restrict attention only to this standard Hamiltonian formulation.

The corresponding Lagrangian reads

LCq,4 =-HCq,:E)+j (2)P.,

6



where the quantities pin the right hand side must be expressed in terms

of q and 4 by solving (for p.) the (nondifferential) equations (1a)

(assuming this can be done, namely that the Jacobian ja2H / ap,"'ag, I does

not vanish). It is then easily seen that the Hamiltonian equations (1) entail

the Lagrangian evolution equation

d [a L  q,#a 4, jIdt = a L  q,#a q, - (3)

The antisymmetrical Poisson bracket of 2 quantities F qf) and

G q,p) that depend on the canonical coordinates and momenta is defined

as follows:

[F, G]
'v [ aF aG W t9G

-[G, F]. (4) Jaq, ap, ap, aq,M=1

This definition, together with the Hamiltonian equations of motion

(1), entail that the time evolution of any quantity FCq, p), that depends on

the time t only via the canonical coordinates and momenta, evolves

according to the equation

.1 = [F, H]. (5)

Proof.

N aF
.

 F N [ aF aH aF aH
[F,H].I +-P,

aq,
' jt aq ap, aq,c9p, q, aI

M=1 PM

Hence, any quantity C q, p) that "Poisson-commutes" with the

Hamiltonian,

[C,H] = 0, (7)

is a constant of the motion,

( =O (8)

7



(and, of course, viceversa: (7) implies (8), and (8) implies (7), see (5)). In

particular, the Hamiltonian is itself a constant of the motion

("conservation of energy"):

H=O. (9)
A transformation (namely, a change of variables), from the "old"

canonical variables q.,p,, to "new" canonical variables iLcqP n q, p),I j5 C
is canonical if the Poisson brackets of the new variables with respect to

the old ones satisfy the rules

rq,, j5,,, ] =,5,,n, rq,,; , ] = P,, ] = 0 (10)

Remark 1.2-1. The identical tTansformatiorl, ;L = q,,, Pn = Pn 2
is canonical, It is

a special case of the canonical ("'point") transformations

 n (qn ), j5n = Pn Aa n (qn )Iaqn I

or

;L q,, 1[ap-n (Pn VoPn I Pn = j5n (Pn (12)

Exercise 1.2-2. Verify that the transformations (11) and (12) are canonical.

The main property of canonical transformations is to leave invariant

Hamilton's equations. Namely if a new Hamiltonian FIC , j5) is defined by

setting

HCq, p) = TfC , P), (13)

and the transformation from the old variables q,p to the new variables

 , P is canonical, then to the Hamiltonian equations (1) satisfied by qnW 7

p (t) there correspond the following standard Hamiltonian equations
satisfied by the new variables qnW  j5n 0:

q,, aff C Alap", (14a)

P., /'0 qn (14b)

8



Proofof (14a): from (5)

9t
H]

a4 aH a , t9H
(15)m=, Fq. ap. ap. aqmj'

aH N aFf a ,
+-

W ap-,
(16a)-

a P 'P. a-, ap.Fp,

aH aFf aw,
+ aH ap-
__ (16b)

 q-, aq.aq ap-, aq.

V aFf aH aFf
(17)q,,  -

[q ,, j5, 11 ap-e=1 q apq,

The proof of (14b) is analogous.

Action-angle variables. If the Hamiltonian F1 is independent of one

of the canonical coordinate, say W,

a F11 L9 Wn = 0
 

(18)

then the corresponding canonical momentum  n is a constant of motion

(see (14b)):

1:1

P, = 0. (19)

If the Hamiltonian Ff = Tf( ) is independent of all canonical coordinates,

then all canonical momenta are constants of the motion hence the

quantities

V. =aFfo)lap. J20)

are obviously constant as well, hence the canonical coordinate  jt)

evolve linearly (see (14a)):

Mt)= MO)+Vn t (21)

Such variables Pn, 4n are called "action-angle variables" (indeed, if the

motion is confined, the "angle variables" ;L (t) only vary on a finite range,

9



which by appropriate rescaling can be reduced to the interval, say, (0,21r),

thereby fully justifying their characterization as "angles"). Clearly in

terms of these variables the time evolution is trivially simple. Hence the

identification of a canonical transformation from the original "physical"
variables q(t), p(t) to action-angle variables  (t),  (t) provides a route to

solve the Hamiltonian equations of motion (1). Whenever such a route to

evince the time evolution of the Hamiltonian system is available, with the

corresponding canonical transformation being global and univalent, the

time evolution of the system cannot be too complicated ("chaotic"). Such

Hamiltonian systems, whose time evolution does not exhibit chaotic

features, are called integrable. They are exceptional (namely the chaotic

behavior is in some sense generic for Hamiltonian systems with confined

motions), yet they are of great importance from a mathematical/

theoretical, and also from an applicative, point of view.

Integrable systems. Assume that a Hamiltonian system possesses N

constants of the motion, C,, q,p), globally defined by N univalent

independent functions:

[C.,H]=O, ( n = 0
- (22)

Assume moreover that these constants are "in involution", namely that

they Poisson-commu

[Cn9CM I = 0
* (23)

Then the Hamiltonian system is called "Liouville integrable".
Indeed, under such conditions, it is generally possible to identify the

N quantities C,,  q, p) as new canonical momenta  ,, (note that the validity

of (23) is essential for this to be possible, see (10)), and then to identify
corresponding canonical coordinates 4  q, p). Since the new canonical

momenta are constants of the motion, one has thereby succeeded to

reformulate the Hamiltonian problem in terms of action-angle variables.

Remark 1.2-3. It is of course essential that the constants of motion in involution

C,, q,f) depend nontrivially on the canonical variables q.,p. (for instance, they

cannot be numerical constants independent of these variables!) and moreover that

different C,,'s be functionally independent of each other. The fact that their numberN

coincide with the number of degrees of freedom of the Hamiltonian system is also

essential.

While it can be proven that, if these conditions prevail, together with (22) and

(23), then the assigmnent position j5,, = C,,  q, p) to identify new (constant) canonical

10



momenta can indeed be supplemented by the introduction of appropriate canonical

coordinates  ,  q, p), the explicit implementation of this program cannot be generally

carried out (the proof that quantities 4  q, p) do exist is not constructive).

Hence, after the integrability of a Hamiltonian system has been demonstrated by

exhibiting N constants of the motion C,, qp) with all the required properties, the

job to obtain an explicit expression of the action-angle variables - or, equivalently, to

actually get the solution of the Hamiltonian equations of motion - remains as a

nontrivial task. We generally call solvable the systems for which this additional step

can be performed in explicit form, or at least reduced to purely algebraic operations
(see the Foreword).

A Hamiltonian system describing a (one-dimensional) many-body
problem is called normal if the Hamiltonian function H qf) is separated

into kinetic and potential energy parts as follows:

H q, p) T p)+ V q), (24a)

Ar

T(p)=-J PI/IU.- (24b)
2

Note the special form of the kinetic energy, T(p), as well as the

independence of the potential energy V(q) from the canonical momenta.

The corresponding Hamiltonian equations read

4 Pn 11'n I (25a)

Pn _8V (qm)laqn (25b)

entailing Newton's equations of motion

9 4 =fn(qm) (26a)

fn (qm) = -aVC#aq (26b)

These Newtonian equations of motion ("mass times acceleration

equal force") can also be obtained directly, see (3), from the Lagrangian

(see (2), (24) and (25a))

IV

Un42 _VL q, 4) Cq) (27)



Of special interest is the case with only one- and two-body
interactions:

1V

C1)= I V
2 (28)VCq  )(q.)+- V )(q,,qj

M=1
2

n,m=,;m#n

entailing

I JV(2V )(qj+ 2) (qn, q.) + V 2,) (q,,, qJUn4n - - I ;n n
(29)

nm

aqn [ 2
m=,,m#n

The requirement that the Newtonian equations of motion be invariant

under translations (q. (t) -> 4 (t) = q, (t) + q0, 40 = 0) implies the following

restrictions on the one-body and two-body potentials:

Vn(l) (q
n n II -aq, +b (30a)

V 2 2)2)(qn, qn) V (qn - qm), (30b)

entailing

lin 4 = a

N

2

(31)
n --I fV 2)'(qn - q,,) - V ,,)'(q. - qn)

2.,

2 2Here and below of course V )'(q) a a V,(n) (q) q

Remark 1.2-4. The requirement that not only the Newtonian equations of motion

(31), but the Hamiltonian itself, see (24) with (28), be invariant under translations

entails the additional condition an = 0, see (30a).

Remark 1.2-5. The equations of motion (31) are as well invariant under the

Galileian transformation

qn (t) -> ;L (t) = q, (t) + v, t
,  0 = 0. (32)

The two-body potential is generally even, in the following sense:

V .2) (q) = V,, 2) (- q) , (33a.)

entailing

2
a V ) (q)l a q = -a v z) (x)l a xlx=-q (33b)

12



This corresponds to the action-reaction principle: "the force exerted by
the n-th particle on the in-th particle is equal (in modulus) and opposite
(in direction) to that exerted by the m-th particle on the n-th particle" (see
(26) and (33b)). In this case the Newtonian equations of motion (31)
become

2)'(qn-qj,,u,, 4,, =a. - V 2 (34)

and the center-of-mass coordinate ; (t),

IV

47(t) = M Ed unqn (t), (35a)
n=1

Ar

M Pn (35b)

satisfies the simple evolution equation (see (34) and(33b))

Mq- = A, A= an, (36)
n=1

entailing

47(t) = 47(o) + t2.q (0) t +-(AIM (37)
2

When the Hamiltonian is itself invariant under translations (namely,
when a. == 0; see (24) and (M)) the center-of-mass moves freely, q-* = 0

(see (36)), and the total momentum P,

IV

P = J:X (38)
n=1

is a constant of motion,

P = 0. (39)

Proof Use (25a), X =Yn4n, and sum (34) over n from 1 to N.- the right hand

side then vanishes due to the antisymmetry of the summand, see (33b).

13



Exercise 1.2-6. Verify that the (not normal!) Hamiltonian

IV 1 Ar

(40a.)H(q, p)  o,, (pj exp - W,,, (qn-q.)
n=1 2m=l,m#n

with

W'. (-q) W,,,, (q) (40b)

yields the Newtonian equations of motion

iv

I

(Pn) (PA IfI(Pn)(Om(PJ1[(Pn PMqn = -q, wnm (q, - q.) [ 4m 4 + (on
2

"(Pn) (PA2 I I I-4n tl-qon On(Pn)l[(Pn (41a)

with

w,,, (q) = a Wnm (q) / a q (41b)

entailing of course (see (40b))

wn. (-q) = -wm,, (q) (41c)

Exercise 1.2-7. Verify that the Hamiltonian

AT I N

H(q, p) exp(s,, & ) exp Wn,, (q
n

- q (42)m

n=I
2

m=l,m#n

with (40b) and where the N constants s,, are arbitrary, yields the

Newtonian equations of motion

IV

+ s,, / sm) 4,, 4. w,,m (qn - q.) (43)
2

with (41b). Hint: use (41a).

Exercise 1.2-8. Verify that the Hamiltonian

iv N

COSh(Sn Pn) exp nm(q -qm) (44)H(q, p) 1] W
n

2

14



with (40b) and where the N constants s,, are arbitrary, yields the

Newtonian equations of motion

=

i Ar

4, 4. +S2 U24n - w,,, (q, - qn) f
n n n

2
.=,.,nn

+S
2
U
2 )2

1/2

U2 + (4'IS.)2
1/2

(45a)n
[

n
+(4 ISn

M M

with (41b) and

N

Un (q) = exp W -qj (45b)Un (qn[ 2

Hint: use (41a).

Exercise 1.2-9. Verify that the (one-body) Hamiltonian

R(q, p) = 2
112

(i / s) sinh(sp) [V(q)T /2

(46)

with s an -arbitrary constant, yields the same Newtonian equation of

motion,

4 = -P(q) , (47)

as the (normal) Hamiltonian

H(q, p) =P2 /'2'+ V(q) - (48)

In conclusion, we have seen that the essential condition in order that a

Hamiltonian system be integrable is that it Possess N constants of

motion. Hence all Hamiltonian systems (of the type considered herein)
are integrable if N = 1 (because the Hamiltonian H is itself a constant of

the motion), and those for which the total momentum P is a constant of

motion, see (39), are also all integrable for N = 2.

Finally let us note that, in the special case of equal particles, all

masses are equal, y,, =,u (= 1 for notational simplicity), and the potentials
do not depend on the

 

Particle indices, for instance in (28)
2V ') (q.) = 00(q.) and V ) (qn, q.) = 02) (qn, q.) -

The diligent reader win note

the simplified form that the various equations written above take in this

special case, on which our attention will be mainly focussed.
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I.N. Notes to Chapter I

The material surveyed in Chapter 1. is standard and can be retrieved from

any textbook, see for instance <A74>, <AM78>, <G83>. The diligent
reader will thereby realize that the presentation given in this Chapter 1 is

sketchy and will be able to complement it with the many details,

generalizations and proofs that have been omitted herein.
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2 ONE-DIMENSIONAL SYSTEMS -

MOTIONS ON THE LINE

AND ON THE CIRCLE

In Chap. 2 we discuss integrable many-body problems in one-dimen-

sional space (on a straight line or on a circle). We begin by introducing
the idea of a Lax pair, and we show how it can be used to identify inte-

grable Hamiltonian systems and in some cases to solve them. Several in-

stances of such integrable many-body problems are studied; their treat-

ment involves the discussion of various functional equations. We then

introduce another technique to identify solvable many-body problems, we
demonstrate its effectiveness by exhibiting several examples, and we out-

line the connections of this technique with the classical problem of La-

grangian interpolation for functions of one variable.

2.1 The Lax pair technique

Let L  q, p) and MCq, p) be two (N x iv) -matrices, which depend in some

conveniently assigned manner (see below) on the N canonical coordinates

q. and on theN canonical momenta P..

Notation. We hereafter denote (IV x N) -matrices by upper case underlined Latin

letters, N-vectors by lower case underlined Latin letters, and use the standard notation

and rules for matrix-vector algebra. Hence, for instance,

IV

(AE)j = 1: AjkVk -1 (1a)
k=1

(U-A)j UkAki (1b)
k=1

Ar

(AA)jk tk (1c)1: AfB
e=1

17



N

V =u V u V (1d)(

Such a pair of matrices L  q, MCq, p) is called a "Lax pair" when-

ever it can be exploited according to the following ("Lax" [L68]) tech-

nique.
Let the two matrices L and M satisfy the (matrix) "Lax"' evolution

equation

LLIMI (2)

Notation. The commutator [A, RI of the two square matrices A, 9 is defined in the

standard manner:

LA,AJ_=AB-BA=-[B,Aj, (3a)

entailing

Ajj , {AjjBk- Bji Alk I* (3b)

Beware: do not confuse the commutator of 2 (square) matrices with the Poisson

bracket of 2 functions of the canonical variables (see (1.2-4)).

The time-dependence of the matrices L  q, f) , mCq, p) (see for instance

the left hand side of (2), where the superimposed dot denote of course

the time-derivative) obtains from their dependence on the canonical vari-

ables q. (t), p. (t). Hence,. for any specific ansatz for the matrices L  q,
ff q,f), the Lax evolution equation (2),entails evolution equations for the

canonical variables qjt),pjt) -- provided of course such an ansatz is

compatible with the time evolution. This last condition is far from trivial,

since the matrix evolution equation (2) corresponds a priori to N' scalar

evolution equations, for the 2N quantities qp.; hence for N > 2 there

are more equations than variables ("overdetermined7 problem). In the

following subsections we show that there exist nevertheless certain an-

saetze for the Lax pair L Cq, E) , ff q,E) which are compatible with the Lax

time-evolution (2). But firstly, in the remaining part of Sect. 2.1, we de-

rive an important consequenioe of the Lax evolution equation (2), namely
the existence ofN constants of the motion.
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To this end let us assume the matrix L to be diqgonalizable, and de-

note by A(m) its N eigenvalues and by y'), u(m) its"right-: and le.ft-
eigenvectors:

_A(n)]V(n) =0, (4a)

(M) kU
:
_,t(M)1=0. (4b)

Let us also assume, for convenience (see below), that these eigenvectors
are orthonormal,

(,,(m)
.
V(n) ynm (5a)

Here and throughout the symbol 6n. denotes the Kronecker delta, Jn. =I if

n = m, Sn. = 0 if n :;,-, in
.

(m), VW) = 0 if (,n) (n)The fact that Cy A A is a consequence of (4). (Proof. multiply

(4a) from the left by u('), (4b) from the right by L(n), and subtract). Note that, in

writing (5a), we are implicitly assuming that the eigenvalues A(n) of L are all differ-

ent, I(n) :, A(m) if n # m. This will generally be the case in the following. But of

course one can define the eigenvectors v
(n)

and U(?n) so that (5a) hold even if the ma-

trix L is degenerate, namely if some of its eigenvalues coincide.

The fact that (! (n), Vn)) = 1 corresponds to the (standard, convenient) choice of

normalization for the eigenvectors, which are a priori defined, by (4), up to an arbi-

trary (nonvanishing) multiplicative (scalar) constant.

The "orthonormality relation" (5a) entails the following "completeness relation":

1V

U(MYM) (5b)Y
, j k

-

jk
M=1

(Proof call the left-land-side of (5b) vjk, multiply it by v,("), sum over j from I to N,

IV

and use (5a) to get v(')rjk = v('"), which clearly entails vjk = Sj,i k

Note that we are not assuming the matrix L to be symmetrical (in which case the

eigenvectors v(") and u n) would coincide) nor Hermitian (in which case y(n) and u(n)
would be complex-conjugate of each other), but merely that it be diagonalizable.
However in most of the following applications all the eigenvalues AH of L'shall be

real -- as it would automatically be the case ifL were Hermitian.

19



It is easy to prove that, as a consequence of the Lax equation (2), the

eigenvalues A(-) are time-independent,

X-) = 0. (6)

Proof From (4) and (5) we infer

,Z(.) = CU(-),LvW). (7)

Hence

CU(n), j V(n) )+ Czi(),Lv(n) )+ (8a)

CU(n),LL M]V(n))+, (n) [ Cl (n),V(-))+CU(n), (n)) (8b)

n) I(n) (n) (n)
U (n), M V(n)11(n) V)+,Z(n) (d / dt) CU (8c)u

7

A(n) = 0. (8d)

(To go from (8a) to (8b) we used (2) and (4); to go from (8b) to (8c), we used (4); and

to go from (8c) to (8d), we used (5a)).

We have therefore seen that, whenever the evolution of the canonical

coordinates q,,, (t), p. (t) is of Lax type, see (2), one gets as a bonus N con-

stants of the motion, in the guise of the N eigenvalues A(") of the Lax ma-

trix L(q., p.), which are of course functions of the canonical variables

q., p,,, -

A way is thereby open to invent/discover integrable Hamiltonian

systems. This can be done (see below) by choosing appropriate ansaetze

for the Lax pair (as functions of the canonical variables), which are com-

patible with the Lax time evolution (2), and are moreover identifiable

with a Hamiltonian evolution of the canonical variables qn WIPnW .
indeed

one that is interpretable as describing an N-body problem.
This part of the program requires imagination and luck (the main

components of original research). One must then check that the N con-

stants of motion obtained in this manner are nontrivial (namely that the

Lax pair is not a "fake" one, see Sect. 2.1.9.1), that they are functionally

independent of each other, and that they Poisson-commute (see (1.2-23)).
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It is sometimes convenient to focus attention, rather than on the N ei-

genvalues P) of the Lax matrix L Cq, f), on some other equivalent set ofN

constants of the motion. Two such sets which are often used are the traces

T,, of the (first) Npowers of the Lax matrix L Cq,f),

N

T =- traceV] Z n (9)
M=1

or the symmetric invariants in of the matrix L,

IV

det[Al -:L] _= A' + AN-nj (10)
n=1

The trace of a matrix is of course defined as the sum of its diagonal elements, and

the expression (10) of course vanishes whenever A coincides with one of theN zeros

of the polynomial of degree N appearing in the right hand side of (10), namely with an

eigenvalue P) of L.

Exercise 1.2-1: prove (9). Hint: use (4), (5b) and (5a).

It is indeed well known that the sets, fA(n) n N T,,; n NJ
and I J,,; n NJ are in bi-univocal correspondence (namely, each one

of these sets determines uniquely the other two), and of course the prop-
erties to be constant (time-independent), to depend nontrivially on the ca-

nonical variables q., p., to be functionally independent among them-

selves, and to Poisson-commute, if valid for (all) the elements of any. one
of these three sets, are also automatically valid for the elements of the

other two sets.

The transitivity of these properties is too obvious to reqTre a proof, except per-

haps for the last one. Hence let us prove that, if F(P)), G(AM) are functions ofN

quantities A(') (q., pm) which Poisson-commute among themselves,

[ 11(n)
.
'&) ] = 0

 (11)

then F and G also Poisson-commute among themselves,

[F, G] = 0. (12)

Indeed (see (1.2-4))
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r-
'v f aF aG aF aG

GI= 
M=1 ap. apm aq,

aF aG fakl) aA(") d") aim)

(MI) (M'-) aqmME, EY") pz" Fj aq. 'apm ap
m1'.2

IV W aG _[A(,) A(M2) (13)
M

ai-2)

Hence (11) entails (12).

Exercise 2.1-2. Prove directly from the definition

T -=trace[ L (14)

(namely, without using the equality in (9)) that, if L satisfies the Lax equation (2),

tn=0 *

'

(15)

Hint: use the identity

trace LAA = trace[M -
(16)

Let us end Sect. 2.1 by emphasizing that different Lax pairs may cor-

respond to the same equations of motion: we will see instances of this

phenomenon in the following. It is moreover clear that, if L and M con-

stitute a Lax pair, namely they satisfy the Lax evolution equation (2), then

the new pair T k

.T=ULU-'+cl, (17)

k = U(g+ f(t):L)L-1 -&U
-1

+g(t)l ,
(18)

also satisfies the Lax evolution equation. Here U is an arbitrary (inverti-

ble) matrix, c is an arbitrary constant, and f(t),g(t) are two arbitrary

functions.

Exercise _2.1-3. Verify!
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2.1.1 A convenient representation. The functional equation (*)

We now make a convenient ansatz for a Lax pair L Cq, f) , LICq, f), and we

then ascertain under which conditions it is compatible with the Lax (ma-
trix) evolution equation (2.1-2). The main one of these conditions is the

functional equation (*) (see (16) below). When these conditions are satis-

fied the resulting dynamical system can be identified with a Hamiltonian

system of normal type (see (1.2-25)), describing a one-dimensional

many-body problem whose Newtonian equations of motion feature (ve-
locity-independent) forces whose functional -form is determined by the

solution of the functional equation (*).
Our starting ansatz for the Lax pair:

L,,. :_ Pn if m = n, (1a)

L. = a(qn- qn) if m -;-- n, (1b)

Ar

Mnm B(q,, - q,) if m = n, (2a)

Mnm r(qn- qn) if m# n, (2b)

where a(q),,6(q) and ,(q) are 3 functions to be determined, see below.

Let us now insert this ansatz in the Lax evolution equation (2.1-2),
namely into

Ar

fL,,, Min Lt, Mn, I if m = n, (3a)

n
(L,,, -L,.)M n+Lnm

(M
mm
Mnn) + Vne MIM Lt. Mn, if m n.

(3b)

The diagonal terms (m = n) then yield

IV

Pn = Y_ a(qn_qJ r(ql - qn) - a(q, - qn) r(qn _qI) (4)
1=1,1#n

while the off-diagonal (m:;-- n) terms yield

a'(qn - qm) [4n - 4m I= (Pn - Pm) iV(qn - qm)
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Ar

,,8(q, - qj)- -qj+ a(q,, - q,.) 1]

(5)+ ja(q,, - qjY(qj - q,,,)- a(q, - q,

This latter equation is clearly satisfied if the following equations hold:

A, = 4n 1
(6)

r(q) = a(q), (7)

,8(q) =,8(- q), (8)

a(q., -qn)[fl(qn -qe)-,8(q,, -qj]

+ a(q,, - q,)y(qe - q.)- a(q, - q.)r(q,, -qj 0 (9)

The insertion of (7) into (4) yields

(10)vr(qn -qn)

with

v(q) = a(q)a(- q) (11)

It is now clear that (6) and (10) are precisely the Hamiltonian equa-

tions of motion produced by a Hamiltonian of normal type (see (1.2-25))
with pair interactions,

1 N

2

N

H Pn + V(2)(qn - q.), (12)
2

n=1 n,m=l;.<n

with

V(2) (q) = v(q) (13)

given by (11). Note that this definition, see (11), entails that V()(q) is

even,

V(2) (- q) = 02) (q), (14)

24



a fact of which we already took advantage in writing the right hand side

of (12). Let us also recall that this fact entails the validity of the action-

reactionprinciple (see Sect. 1.2).
The corresponding equations of motion take of course the Newtonian

form

IV

v(q,, - q (15)
m=l,m#n

characteristic of the one-dimensional N-body problem describing N iden-

tical particles (whose mass, without loss of generality, is set to unity)
which interact pairwise via the (even) potential energy v(q) entailing the

interparticle force f(q) = -V(q), where q is of course the interparticle dis-

tance.

There remains to take account of (8) and (9). 'fhe main condition is

encoded in the latter equation, which using (8) and via the positions
x = qn - qj, y = qj - q., can be reformulated as the following functional

equation

(*) [ a(x) a'(y) - a(y) a'(x) a(x+ y) =,8(x) -,8(y), (16)

(complemented, for our purposes, with the condition that 6(x) be even,

,6(- x) =,8(x), see (8)).
Solutions of this functional equation are discussed in the following

sections. They correspond to the Hamiltonian many-body problem (12),
via (13) with (11). Such a many-body problem is then generally inte-

grable, since the N eigenvalues of the Lax matrix, see (1), provide N con-

stants of motion, which generally turn out to be functionally independent
and in involution.

Let us recall that equivalent sets ofN constants of motion, which are sometimes

more convenient to handle, are provided by the N traces Tn, see (2.1-9), or by the N

symmetric invariants J,,, see (2.1-10). It is rather obvious that these sets generally

satisfy the additional conditions (required to guarantee integrability) to depend non-

trivially on the canonical variables q,,, p,,, and to be functionally independent: for in-

stance the trace T,, is clearly a polynomial of degree n in the canonical momenta p.,

see (1) and (2.1-9). It is less trivial to show that these constants of the motion Poisson-

commute among themselves (they of course all Poisson-commute with the Hamilto-

nian (12), since they are constants of the motion; see (1.2-5,7,8)). In specific cases,

see below, this can be easily proven. General proofs based on the functional equation
(*), see (16), are also available. The diligent reader may try to construct such a proof,
or look it up in the literature (see Sect. 2.N below for references).
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Note that the ansatz (1) entails

,V

T (17)P" =P,
n=1

T, = 2H, (18)

where P is clearly the total momentum and H is of course the Hamilto-

nian (12). Hence the constancy in time of the first 2 traces, T, and T2, cor-

responds to the conservation of the (total) momentum P and the (total)

energy H.

The formula (17) follows immediately from (1) via (2.1-9), and (18) also obtains

easily from (1) using (2.1-9), (12), (13) and (11).
It is also easily seen that the Poisson-commutativity of all the traces T,,,

.

see (2.1-

9), with the total momentum P, see (17), is an immediate consequence. of the transla-

tion-invariant character of these quantities (indeed, the Lax matrix itself, see (1), is

invariant under the translation q,, -> q,, + q, ,
with q, an arbitrary constant).

2.1.2 A simple solution of the functional equation

The functional equation (*) (see (2.1.1,16)) admits the solution

a(x) = blx, (1)

2,8(x) = blx (2)

where b is an arbitrary constant.

Proof.

[a(x)a'(y)- a(y)a(x)]/ a (x + y) = -b(xy)-2 (x - yXx+ y) =

-b(Xy)-2 (X2 _Y2) = b(x-2 - y-2) =,8(x) -fl(y). (3)

It is convenient to set

b = ig, (4)
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so that the Hamiltonian (2.1.1-12) become

1 IV

2 +g2
N

2

H=-E P" E -q.)-,
..d .,

(q,, (5)
2,, n,m=l;m<n

and the corresponding Newtonian equations of motion (2.1.1-15) read

Ar

4n =2g2 (q, - qm)-3

(6)
M=I'M#n

These equations describe the motion on the line of N equal particles of

unit mass interacting pairwise via a two-body repulsive force inversely
proportional to the cube of the interparticle distance.

We postpone to the following sections. an investigation of this

Hamiltonian system, that has played a seminal role in the study of inte-

grable dynamical systems over the last quarter century. Here we report
the expressions of the corresponding Lax pair:

L,,,, =8npn +(1-9,,m) ig(q,, -q,,)-', (7)

IV

M", =,5,. i g E, (q,, - q, Y2 _(I _5
nm
)ig (q qj-2

(8)
1=1,f#n

2.1.3 N particles on the fine, interacting pairwise via repulsive
forces inversely proportional to the cube of their mutual

distance

In this Section, which is conveniently subdivided into 3 subsections, we

investigate the many-body problem described in the title, which, as dem-

onstrated in the preceding Sect, 2.1.2, is an integrable Hamiltonian sys-
tem (see (2.1.2-5)) whose time evolution (see (2.1.2-6)) coincides, via the

ansatz (2.1.2-7), with the Lax (matrix) evolution equation (2.1-2).

2.1.3.1 Qualitative behavior

In Sect. 2.1.3.1 we discuss the qualitative behavior of the system on the

'line characterized by the Hamiltonian (2.1.2-5) and by the Newtonian

equations of motion (2.1.2-6).
The force acting among every pair of particles is repulsive, singular at

zero separation and vanishing as the separation diverges (see (2.1.2-6)).

27



Hence this N-body system cannot be bound nor contain any bound sub-

system (due to the repulsive nature of the forces): asymptotically, i.e. in

the remote past and future, the particles necessarily separate from each

other and eventually move freely,

q,, (t) = p(- )t + q(:) + o(i) as t --> oo.
n n

Moreover, the ordering of the particles on the line cannot change
throughout the motion, due to the singular (and repulsive) character of the

forces at zero separation. It is therefore convenient to label the particles
according to their ordering on the line, say from left to right:

q,, (t) < q,,, (t), n = 1,2,...,N - 1
. (2)

Note that, via (1), this entails

'W >'L4' n = 1,2,...,N - 1, (3a)

'44 <'L ' n = 1,2,...,N -1
, (3b)

corresponding to the intuitive picture that sees in the remote past the par-

ticles coming in from far away and in the remote future the particles

moving out far away from each other. Of course the center-of-mass,

Ar

N-'2] (4a),q,,
n=1

moves uniformly,

;A0 = 47(o) + Pt' (4b)

where P is the total momentum,

Ar N

P= '_ Y W (4c)E Pn W: , Pn
n=1 n=1

which is of course a constant of the motion (see (2.1.1-17)).

Exercise 2.1.3.1-1. Verify!

The classical scattering problem has the following formulation: given
the quantities p(-),q(-), which characterize the behavior of the system in
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the remote past, find the quantities Pn q(+y which characterize its behav-
n

ior in the remote future (see (1)). In this formulation the quantities
H H

pn qn ,
can be arbitrarily assigned, except for the restriction (3a); they

determine the subsequent evolution of the system for all time, and in par-

ticular the values of the quantities p(+) and q(+) that characterize the be-
n n

havior of the system in the remote future, see (1) (of course the quantities
p(+) shall automatically satisfy the inequalities (3b)).

Note that the "scattering problem", as formulated above, is different from the

"initial-value problem", where the quantities qn (0) and & (0) are assigned (arbitrar-

ily, except for the restriction (2)) and the subsequent (or previous) evolution of the

n
and p() characterizing thesystem is then computed, including the parameters q()

n

behavior of the system in the remote future and past, see (1). Of course in the "initial-

value" case, as a consequence of the initial data q,, (0) satisfying the restriction (2),

the asymptotic momenta p(-) and p(') turn out to satisfy the inequalities (3a) and
n n

(3b).

For the particular system under consideration the outcome of the

scattering process is exceedingly simple, being specified by the following
simple rules:

H H
Pn PIV+I, (5)

W H
qn q,+,,. (6)

The rule (5), which is clearly compatible with the simultaneous valid-

ity of (3a) and (3b), is a simple consequence of the Lax pair formulation.

Proof In the remote past and future the Lax matrix (2.1.2-7) becomes diagonal,

since the off-diagonal terms vanish asymptotically proportionally to Itl-', see (1):

WLnm(t)
,+__

)=L.(-o)=9,,.pn . (7)

Hence at t = +oo the set of the N eigenvalues 11(n) (which are time-independent!) co-

incides with the set fp(-);n=l,...,Nj of eigenvalues of the (diagonal!) matrix
n

:L(+ oc), and likewise at t = -oo jk); n NJ coincides with f p(-); n NJ.
n

This entails that the two sets tp (+); n NJ and tp(-); n NJ coincide; via
n n

the ordering rules (3a) and (3b) this immediately entails (5), namely p(+) H
I

= PAI
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P2 p" and so on (note the difference among the two cases with N odd and N

even: only in the former case the central particle re-acquires in the remote future.the

same momentum it had in the remote past).
'

Let us also note that the argument given above entails the Poisson-commutativity
of the N constants of the motion yielded by the Lax pair approach: since these con-

stants of the motion are time-independent, they can be evaluated at the asymptotic
times, when the Lax matrix becomes diagonal, see (7), hence its,eigenvalues coincide

with the canonical momenta, which of course Poisson-commute among themselves.

A proof of the rule (6) is given below (see Sect. 2.1.12).

2.1.3.2 The technique of solution

of 01shanetsky and Perelomov (OP)

In Sect. 2.1.3.2 we show how the explicit solution of the initial-value

problem for the one-dimensional many-body system characterized by the

Newtonian equations of motion (2.1.2-6),

'V

=2g2 (q,, - q. )-3
M=1,M#n

can be reduced to the purely algebraic task of finding the eigenvalues,of a

(time-dependent) (N x N) -matrix explicitly given in terms of the initial

data q,, (0) and p,, (0) = 4,, (0).
Let us introduce the diagonal (N x N) -matrix Q(t),

Q(t) = diag [q,, (t); n = N], Q,,,,, (t) =: 9, . q,, (t), (2)

as well as the matrix  (t) obtained from Q(t) via a similarity transforma-

tion,

0) =0) QWMT- (3)

'fhe properties required of the matrix 1 (t) will be specified below;

although in the end we shall, remarkably, find out that this matrix plays
no explicit role in determining the solution.

It is clear from the definitions (2) and (3) that the canonical coordi-

nates qjt) are the N eigenvalues of the matrix  (t), which is, by con-

struction, diagonalizable, see (3). The strategy of solution that we now

pursue is to obtain an evolution equation for &), to solve it (yes, it turns

out that this equation will be explicitly solvable!) and to thereby obtain an
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explicit expression for  (t): the computation of the canonical coordinates

q, (t), namely of the solutions of the Newtonian equations of motion (1),
is then reduced to evaluating the N eigenvalues of the known matrix

 W -

Let us now introduce a matrix M(t) related to YO I
see (3), as fol-

lows:

M=U-16. (4)

Then, from (3),

 = U;L _U' (5)

with

L=04 Q'M 1, (6)

and from (5)

Q =0_L-LLm11u-'. (7)

Proofof (5) with (6), and of (7). Indeed, quite generally, if

A= U B U_', (8)

then

. =UJLB- LBM]IU-' (9)

with M related to U by (4). This can be verified as follows: from (8)

Uh U_' + &B U_' -UBU-'&U-l, (10a)

U LB+ U-1QB -B U-1 U_ (10b)

The last equation, via (4), reproduces (9). And clearly the rule (9), applied to (3) re-

spectively to (5),. yields (5) with (6) respectively (7).
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We now make, consistently with (6), for L and M the choices (2.1.2-

7,8), namely

+ g (q,, - q,,,)-',

M,,, (q,, - q,,,)-' L.. (12)

The diligent reader wilI check that (11) and (12) coincide with (2.1.2-7,8). Of

course to get (11) from (2.1.2-7) we also used (2.1.1-6). As for (12), we wrote it in the

most convenient manner to check that (11) and (12) are consistent with (6). To this

end the explicit expression of the diagonal part of M is irrelevant: since Q is diago-

nal, see (2), the diagonal part of M commutes with Q hence does not contribute to

the right hand side of (6). Moreover, since Q is diagonal, the commutator in the right

hand side of (6) has no diagonal component. The consistency of the diagonal part of

(6) with (2) and (11) is therefore clear. As for the off-diagonal part of (6), it reads (see
(2))

L,,.=-(q,,-q.)M,,., m#n, (13)

so that its consistency with (12) is obvious.

We now use the fact that L and M satisfy the Lax evolution equation

(2.1-2), to infer from (7) that  (t) satisfies the (amazingly simple) evolu-

tion equation

Q=O . (14)

The general (matrix) solution of this equation reads

 W =N)+N) t
- (15)

To get explicit expressions of &) and Q '(O) we now make the con-

venient assumption

  (O) = 1 - (16)

The matrix   (t), which characterizes the similarity transformation (3), is defined

by (4), namely by the evolution equation

U=UMI (17)
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which can be supplemented by an arbitrary initial condition assigning L(O) (with the

only restriction that this matrix be invertible, namely that det[ L(O) 0). Different

choices for   (O) would yield different matrices Q(t), all of them however having the

same eigenvalues, namely yielding the same canonical coordinates qjt). The choice

(16) is the most convenient one to get explicit results.

Let us re-emphasize that, to obtain our final result, namely the quantities qjt),

we need not evaluate the matrix L(t) by integrating (17), nor indeed do we need to

evaluate the matrix M(t).

From (16) and (3) we get

&) = Q(O) =diag [q,, (0 , n = N], (18)

and likewise from (16) and (5) we get

QP =RO) (19)

where (see (11))

L. (0) = '5,. 4n (0) + (1 - gnm ) '9 [qn (0) -q.(O) '. (20)

Hence, from (15), we get

 w = Q(O) +:L(O) t' (21a)

namely (see (20))

 n. Q) = dn. [q,, (0) + 4,, (0) t] + (1 - o5n. ) i g [q,, (0) - qm (0)]-'t , (21b)

a completely explicit expression of the matrix  (t) in terms of the initial

data, q,, (0) and4n (0) of the many-body problem (1).
In conclusion, as promised, the solution of the initial-value problem

for (1) has now being reduced to the purely algebraic task of finding the

N eigenvalueS qn (t) of the (N x N) -matrix (21).

Let us now outline how to recover the results (2.1.3.1-5,6). It is clear from (21a)
and (2.1.3.1-1) that, in the asymptotic t -> oo limits, the N quantities p, ,

as well

H
as the N quantities Pn ,

are the N eigenvalues of the (same!) matrix :L(O). Besides
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providing the connection among the asymptotic momenta p
() and the data q,, (0)n

and & (0) of the initial-value problem (which define the matrix L(O), see (20)), this

fact entails the coincidence of the two sets fp (+); n NJ and Ip (-); n NJ,
n n

and this together with (2.1.3.1-3a,b) entails (2.1.3.1-5). (This proof is of course

closely analogous to that given in the preceding Sect. 2.1.3.1 (after (2.1-3.1-6)).

Let us then indicate with v(")(: ) and u()(:  the right- and left-eigenvectors of the

matrix :L(O) corresponding to the eigenvalues p,()

P() (n)()
:L

I
V (22a)

H P
() (n)()

(22b)
n
U

orthonormalized so that

(.)(),V(M)())=s
. (23)U

- 1 -nm-
C

(Beware: we use here an abbreviated notation. Do not be misled to think that, say,

v(')(') is the eigenvector of :L(t) as t -> oo ).
It is then clear from standard (first-order) perturbation theory (for the evaluation

of the eigenvalues of a matrix) that, in the asymptotic limit (t -> oo), (2.1.3.1-1) and

(21a) entail

()
= L(n)(), ) V(n)()).qn U Q(O (24)

In all these equations, of course, whenever a double sign is featured one should sys-

tematically take either the upper or the lower choice. But from (2.1.3.1-5) (which was

proven in Sect. 2.1.3.1 and has again been proven just above), and from (22), we infer

V V(N+I-n)(-)I (25a.)

U U
.1 (25b)

and, via (24), this entails (2.1.3.1-6).

Let us compute (from (21)) the solution in the IV = 2 case:

q, (0) + 4, (0) t - q,,2W ig [q, (0) - q, (0)]-'t
,

= 0, (26a)
- i g [q, (0) - q2 (OWt q2 (0) + 41 (0) t - q,,, (t) I
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2[ql,2 (01-q,,2W fql (0) + q2 (0) + 141(o) + 42 (0)] t1

+ [ql (0) + 41 (0) tj [q2 (0) + 42 (0) t]- g2 [q, (0) - q, (O)p t, = 0, (26b)

iT(t) ![q,(t)+q2(t)], q(t)-=q2(t)-q,(t), 27 )2

q, (t) -=; (t) q(t) , q2W -= 'T(t) +Iq(t), (27b)
2 2

47(t) =;T(O) +M) t
, (28)

4 0) + t2 (0)]2 + 4 2 [ O)r )r2q(t) q(O) + 2 t q(O) ( g q( (29)

A comparison with (2.1.3.1-1) entails

V
P [41(0) _42 (0)] 2

+4g
2 [qj (0) 2

, I
= P2

2 ([41(o) + 42(0)1 q2 (0)] -2

(30)

q() =q(T-) !( [q, (0) + q2 (0)]1 2
2

_42 )
2
+4 2[ 1 0) - q2 (0)] -2 YU2 ).:F 1q1 (0) - q2 (0141(o) - 42 (O)Jt4l (0)-(0 ] g M (31)

Exercise 2.1.3.2-1. Verify!

Let us recall that, in the two-body case (N = 2), the fact that p,(+)
2

H H
I =P2

P2 =P1 is a general result (valid for a large class of two-body problems), being a

consequence of momentum and energy conservation,

PH +P(+) = P
H
+
H

(32)1 2 1 P2

2 + (+) 2

= [P(-) 2

+ (-)]2.[PI 2 j I ] [P2 (33)

Indeed the latter equation (energy conservation) holds in this form for any two-body
problem (with velocity-independent forces) in which the particles separate asymptoti-
cally and the forces vanish at large separation, with the quantities p,(') defined by

(2.1.3. 1-1), or equivalently by the identification pp,,(oo)
n
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This solution, see (27b) with (28) and (29), could have been easily
obtained by solving directly the equations of motion (1) via the position

(27), corresponding to the separation of the motions of the center-of-mass

coordinate ;T(t) and of the relative coordinate q(t). But already for N = 3 a

direct solution of (1) is difficult, and for N > 3 only the technique de-

scribed above solves the problem (in the sense of reducing it to a purely

algebraic task).
The results we have just obtained for the N = 2 case entail an impor-

tant observation: the outcome of the scattering process in the general case

(namely, for arbitrary N), as given by the simple rules (2.1.3.1-5,6), is the

same that would be produced if the scattering were the results of a se-

quence of two-body encounters. This phenomenon is often referred to as

the property of "factorization7.

Exercise 2.1.3.2-2. Investigate the relevance of this remark by drawing schemati-

cally, for instance for N = 3 and N = 4, the trajectories of the particles as functions

of time (say, in the (q, t) plane,), for a few cases characterized by the same asymptotic

parameters but by different values of the coupling constant g2, including the limiting

case of almost vanishing g2 (when the particles move freely except when they col-

lide).

The property of factorization has a deeper significance and import
than is for the moment apparent. Let us in any case emphasize that it only

applies to the integrable model (1); indeed the remarkable properties

(2.1.3.1-5,6) of the scattering process do not hold, for N > 2, if the equa-

tions of motion (1) were generalized by allowing different coupling con-

stants, so as to read

N

=2 g2 (q,, - q,,, )-3 (34)
nm

g2with generic values of the (positive) coupling constants
i7m.

Exercise 2.1.3.2-3. Prove this statement, for N = 3. Hint: see <KL72>.

Note that, provided g' = g' ,
the equations of motion (34) obtain

nm mn

from the Hamiltonian

IV N

2 g2
2

H =-! Pn + (qn- qJ_ (35)
2
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2.1.3.3 Motion in the presence of an additional harmonic

interaction. Extension of the OP technique of solution

In Sect. 2.1.3.3 we modify the model considered in the preceding Sect.

2.1.3,2, by adding to the Newtonian equations of motion (2.1.3.2-1) or

(2.1.2-6) a harmonic interaction, so that they read

,V

_C02qz + 2g2 1: (qn -qm)-3

m=I,m_-n

These equations of motion are of course obtained from the Hamilto-

nian

1 A,

2 2 2)+g2
N

H = + co q 1](Pn
n ,

(qn -qm)
-2

(2)
n,m=l;m<n

Of course both the equations of motion (1) and the Hamiltonian (2) re-

duce to those of Sect. 2.1.2 and 2.1.3.2 (see (2.1.2-6) or (2.1.3.2-1), and

(2.1.2-5)) if the "circular frequency" co vanishes.

The Hamiltonian (2) (in contrast to the Hamiltonian (2.1.2-5)), as well as the

equations of motion (1) (in contrast to (2.1.3.2-1), (2.1.2-6)), are not invariant under

translations (qn _>  n = qn + qO 140 = 0) -
It is however well-known that the non-

translation-invariant model (1), (2) is closely related to the translation-invariant

model characterized by a harmonic interaction that, rather than acting as an external

potential (pulling every particle towards the origin, see (1)), acts between every pair
of particles. Such a model is characterized by the equations of motion

g V

i,, =-a
21 (xn -x.)+2g2 Ya (Xn _Xm)-32 (3)
M=1 M=1,M_-n

which obtain from the Hamiltonian

'VAr

2
+ f02 _Xm)2 +g2 _,Xm)-2H=-E Pn

- (Xn (X (4)
2,,, n,m=l;m<n

where x,, are of course now the canonical coordinates and Pn the corresponding ca-

nonical momenta. As can be easily verified, the connection between these two mod-

els, (1), (2) respectively (3), (4), is given by the relations

n2 = C021N, (5)

q,, = x. - Y, (6)

37



Ar

Y=N-'l x.. (7)
n=1

Note that the equations of motion (3) entail that the center-of-mass Y(t) of the trans-

lation-invariant model (3, 4) moves freely,

X =0, (8)

while (6) and (7) entail that the center-of-mass iT(t),

g

N
-' Y, q,, (t) (9)

n=1

of the non-translation-invariant model (1, 2) is fixed at the origin,

; Q) = 0
- (10)

This is of course compatible with the equations4motion (1), which clearly yield

;T + CO2; = 0, (11)

entailing

;T(t) =;T(O) cos(a) t) + 4(0) co-' sin(co t). (12)

We focus hereafter on the non-transtation-invariant model characterized by the

equations of motion (1) and the Hamiltonian (2); the above formulas indicate how to

translate any result valid for this model, into a.corresponding result for the transla-

tion-invariant model characterized by (3) and (4).

We now proceed exactly as in the  preceding Sect. 2.1.3.2, see

(2.1.3.2-2,3,4,5,6,7) as well as (2.1.3.2-11,12) or equivalently (2.1.2-7,8).
The only novelty is that, while previously the ansatz (2.1.2-7,8) corre-

sponded via the equations of motion (2.1.3.2-1) to the Lax evolution

equation (2.1.-2), now the equations of motion (1) yield instead the modi-

fied Lax equation

L-LLM 1=-o)2Q, (13)

of course with Q defined by (2.1.3.2-2).

Exercise 2.1.3.3-1. Verify!

Hence now (2.1.3.2-7) gives, instead of (2.1.3.2-14), the evolution

equation
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 + Co2 =O, (14)

the general solution of which can again be exhibited explicitly:

 (t) cog(co t) + Q(O) co-'sin(co t). (15)

Of course (14), (15) reduce to ( .1.3-14,15) for 0 = 0.

Now we can again proceed in close-analogy to the treatment of the

preceding Sect. 2.1.3.2, see (2.1.3.2-16,19,20), getting (in place of

(2.1.3.2-21))

 (t) = Q(O) cos(co t) + L(0) co-'sin(co t), (16a)

namely

J,,,, [ q,, (0) cos(co t) + 4,, (0) co-' sin(co t)

i 9 [q,,(0)-q,,(0)]_'co-'sin(c9t), (16b)

which is again a completely explicit expression of the matrix  (t) in

terms of the initial data, q,(O) and 4jo), of the many-body problem (1).
And of course, as implied by the above treatment, the solution q,,(t) Of

the initial-value problem for the system (1) is now given by the N eigen-
values of this matrix  (t).

For co = 0 this matrix reduces to (2.1.3.2-21) and the results of the

previous Section (2.1.3.2) are recovered. But there is a qualitative differ-

ence among the two cases. If co = 0 the motion is not confined, and the

phenomenological behavior of the system is characterized by the scatter-

ing process described in the preceding Sect. 2.1.3.2. In the case (with
co # 0) considered in Sect. 2.1.3.3, the motion is instead confined to some

neighborhood of the origin, due to the elastic force pulling back each

particle towards the origin (see the first term in the right hand side of the

Newtonian equations of motion (1)). In fact it turns out that, in this case

with co # 0, the motion is completely periodic, with period

T = 2 7rlco , (17)

for any arbitrary set of initial data:

qn (t + T) = q, (t) (18)
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This is implied by (16), which shows that the matrix Q(t) is periodic with period

T, see (17):  (t + T) =  (t). Hence the setS(t) = f q,, (t); NJ of the N eigenval-

ues of  W is periodic, S(t + T) = S(t). This by itself does not imply that each eigen-

value is periodic with period P if the eigenvalues could be reshuffled through the

motion, the periodicity of the (unordered) set S(t) with period T would only imply

that each eigenvalue is periodic with period (at most) T = T - N!, since there are (at

most) N! way to reshuffle N objects. But in the case under consideration the singu-
lar character at zero separation of the repulsive pair force (see the sum in the right
hand side of (1)) excludes any such reshuffling (see (2.1.3.1-2)); this entails the perio-
dicity with period T of each canonical coordinate, see (18).

The completely periodic character, see (18), of all solutions of (1) is a

characteristic property of the integrable model (1). It would not obtain if,
for instance, (1) were replaced by the more general equations of motion

Ar

_C02q,, + 2 1]
-3

(19)g2 (q,, -q.)
m=l,m#n

with a generic choice of the (positive: to avoid any singularity possibly
caused by forces which are infinitely awactive at zero separation) cou-

pling constants g' = g2 ; note that this symmetry condition is not essen-
nm Mn

tial for the validity of the previous statement, but it is implied by the re-

quirement that (19) follow from the Hamiltonian

1 Ar N

H-
2
+ CO2q2 Z (q,, - q,,, )-

..'
g2 (20)n)+
nm

2
n=1 nm=I;m<n

The property of periodicity (18) is therefore the counterpart, for the

model treated in Sect. 2.1.3.3, of the factorization property (2.1.3.1-5) of

the model treated in the preceding Sect. 2.1.3.2.

There is indeed a connection among the model treated in the preced-
ing Sect. 2.1.3.2, see (2.1.3.2-1), and that treated in this Section, see (1);
this also entails a connection among the factorization property (2.1.3.1-5)
and the periodicity property (18).

To demonstrate these connections let us first of all note the following
remarkable fact: if qn (t) satisfies (2.1.3.2-34),

g2
-3

4,, = 2
nm

(q,, - qm) (21)
M=I'M#n
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then q,, (t) ,

 KW = cos(CO 0 q"W (22a)

r = co' tan (cot), (22b)

satisfies (19), namely

Y

q,, + 2 g2. (;L )-3 (23)
m=l,m#n

Exercise 2.1.3.3-2. Verify!

Remark 2.1.3.3-3. Since both models, see (21) and (23), are invariant under a

shift of the time variable (t -> 7 = t + to), it is clear that the above treatment would

apply equally if (22a) and (22b) were replaced by the more general formulas

q,, (t) = cos[co (t - to)] q, (r), (24a)

r = ro + co' tan [co (t - to) ], (24b)

with r, and to arbitrary constants. This would merely replace with a more compli-

cated formula the simple relation among the "initial" values of qn (t) and W,, (t) im-

plied by (22),

;L (0) = qn (0) ' (25)

Note that we have established a connection between the (more gen-

eral, nonintegrable) models with different coupling constants; it holds of

course a fortiori for the integrable models characterized by the restriction
2
=

' (see (2.1.3.2-1) and (1)).gnm 9

From (22) it might appear that 4,, (t) is generally periodic in t with pe-

riod T, see (17); indeed the prefactor cos(cot) in the right hand side of

(22a) certainly possesses this property, and the new variable r is clearly,
see (22b), itself a periodic function of t (in fact, with period T/2). This

suggests that all solutions of (23) (or, equivalently, of (19)) are periodic
in t with period T. But this conclusion is wrong: it only holds in the inte-

grable case (1), as we now explain.

Exercise 2.1.3.3-4. Find the solution to this riddle on your own, before reading
the explanation given below.
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The point is, that the change of (dependent and independent) variables

from qjt) to ;LQ), see (22), is not global. When the variable t in (22b)

spans the interval, say, from -T14 to T14 (see (17); or, say, from T14 to

3T14, etc.), the variable r spans the entire interval from-oo to +cc (see
(22b)). Accordingly, the quantity q

n
(T) see the right hand side of (22a),

spans its entire trajectory, which is not confined, so that, as Z-->Oo,

qn(z-) diverges (to the right or to the left, as the case may be). But when

r->tc*, namely when t->T14 (mod (T12)), the prefactor cos(wt), see

(22a), vanishes; hence, in these limits, ;L(t), see (22a), remains finite. In-

deed it is easily seen, from (17), (22) and (2.1.3.1-1), that

Ifill rq,, (t) co (26a)
t- -T/4+mod(T)

lin, rqJt)]=:Fco_'p(). (26b)
t-4T14+T/2+mod(T)

n

Proof.,

-1

Pnlim D
()

t

hm cos(oj t) tan(w t)
-+T/4+ T/2+mod(T)

Wsin( 2 +S)T)Co- Pn 'S = 0,1. (27)

Hence the behavior of the canonical coordinates qjt) of the confined

system (23) over the interval from t = -T14 to t = T14 (see (26a) and (17))
corresponds to the entire trajectory of the canonical coordinates qjr) of

the unconfined system (21) from r = --oo to r = +oo, with the values of the

canonical coordinates 4jt) at the beginning and at the end of the time

interval from - T14 to T14 related to the asymptotic momenta of the tra-

jectories of the unconfined model, see (1.1.3.1-1), by the rule

W,, (T/4) = co-'p(). (28a)

In the spirit of evincing, via the transformation (22), the solutions

4jt) of the confined model from the solutions qjr) of the unconfined

model, one would assign the "initial" values ;L(-T/4), obtain via (28a)
the corresponding values p(-), let the unconfined model run its entire

history, from r = --oo (with the asymptotic momenta p -) in the remote
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past, see (2.1.3.1-1)) to z-=+oo, determine thereby the asymptotic mo-

menta p + in the remote future (see (2.1-3.1-17)), and thus obtain, again
via (28a), the values  JT14) at the end of the interval (as well, of course,

as the values ;L (t) for - T14 < t < T14 via (22)).
One would then repeat the process in the subsequent interval, from

T14:! t:! 3 T14, starting from the "initial" values iL (T14) just obtained and

determining the "final" values ;L(3T/4) via a completely analogous pro-

cedure, except for the fact that, in this interval, (28a) should be replaced,
see (26b), by the relation

4JT/4+T/2) =:Fco_'p() (28b)
n

And so on.

In the nonintegrable (unconfined) case with different coupling con-

stants g2 ,
see (21), there is (for N > 2) no general rule to connect the as-

nm

ymptotic momenta p(+) in the remote future to the asymptotic mo-
n

mentap(-) in the remote past (see (3.1.3.1-1)). Hence there is no justifica-
n

tion to expect, for the corresponding confined model, see (23), any gen-

eral rule connecting the values of the canonical coordinates 4 (t) at the

end of one of the time intervals considered above to those at the begin-
ning of that time interval. In particular, therefore, there is no justification
to expect the motions of this system to be periodic, in spite of what might
have been naively inferred from (22).

The situation is different in the integrable case (gnIm = g2 ), see
n.

(2.1.3.1-1)), where we have the simple rule (2.1.3.2-5) connecting the as-

ymptotic momenta in the remote past and future, see (2.1.3.1-1). Via

(28a) this entails

 n (T14)  = _ I+I-n (_T14) I (29a)

and likewise, via (28b),

 n (3.T/4) = (T14). (29b)

But these two formulas yield

 n (-T14 + T) =  L (-T14) , (30)

which in fact corresponds to the property of periodicity (18).

43



This is a consequence of the above treatment and of the invariance of both mod-

els, (21) and (23), under shifts of the respective time variables (see the Remark

2.1.3.3-3).
However to complete the above analysis and thereby make more cogent the con-

clusion that (18) is implied, via the transformation (22), by (2.1.3.1-5), one should

prove that, in addition to (30), there also holds the relation

Al

q,, (-TI4 + T) = q ',, (-TI4) . (31)

This is left as an exercise for the diligent reader.

We also leave, as another exercise for the diligent reader, to clarify the consis-

tency of the above treatment with the validity of the inequalities (2.1.3.1-2,3), and in

particular the role played, in this connection, by the (sign) difference among (28a) and

(28b).

In contrast to the system without harmonic potential considered in the

two preceding Sects. 2.1.3.1 and 2.1.3.2, which only features repulsive
forces, the system with an additional harmonic potential considered here,
see (1) and (2), possesses an equilibrium configuration. Indeed it is clear,
see (1), that an initial configuration characterized by the initial data

q,, (0) = r,, , 4,, (0) = 0, (32)

yields the static solution

q,, (t) = r
, (33)n

if theN quantities rn satisfy theNrelations

IV

2 2 2] (rn _r -3.CO r =2g (34)
m=l;m#n

This set of N algebraic relations for the N quantities rn defines the equilibrium

configuration in which the (attractive and repulsive) forces acting on every particle
are exactly balanced (see the right hand side of (1)). Physical intuition suggests that

this set of algebraic equations admit one, and only one, real solution, up to the ambi-

guity entailed by the possibility to reshuffle the particles among themselves (there are

of course N! different permutations). This ambiguity can be lifted by sticking to some

ordering convention, say (see (2.1.3.1-2))

n N - 1
. (35)< rr
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The correctness of this physical intuition will be proven later: indeed we will see be-

low (and report in Appendix Q that the N quantities z,, characterized by the N al-

gebraic relations

N

z,, = 2 1 (z. - z. )' (36)
m=l,m#n

coincide with theNzeros of the Hermite polynomial of order N,

HAr (Zn 0' (37)

It is on the other hand obvious, see (33) and (35), that up to a rescaling the quantities

r,, coincide with these quantities Zn namely

r. = (gl0j), Z. - (38)

The fact that the equilibrium configuration of the many-body problem
considered herein, see (1) and (2), coincide essentially with the N zeros

of the Hermite polynomial of order N is remarkable (see comments in

Sect. 2.N). We now show that an additional remarkable property of the

zeros of Herraite polynomials can be evinced from the study of our many-

body problem. ,,

Let us indeed look at the behavior of the system (1) in the neighbor-
hood of the equilibrium configuration (33) with (34), by applying the

standard theory of the small oscillations of a dynamical system in the

neighborhood of a (stable) equilibrium configuration. Hence we set

qn (t) = r, (g / 0)) 1/2  n (t) ,,,+6 (39)

where e is a "small parameter". Insertion of this "small oscillations" an-

satz in (1) yields, by expanding in e and using the equilibrium condition

(34), and the definition (38), the linear evolution equations

n

+ CO21 A
n.

 In =0 (40)

with

N

An. = 5nm [I + 6 E (Zn - Z
i ) ] - (1 - i5n.) 6 (zn - zm)'. (41)

f=1,f#n
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Proof From (1) and (38)

_C 0)1/2 -r, +E (gl -3,0)1/2 02 [r, _(glC J+ 2g2 [r,, COC(glC +'

(42a)

0)1/2 en :_ _0)2[C (gA , rn + 6 (91COY12  n I

+2g2 j _ m)/(r _ r -3.(r _ r
-3 (g/toyp ( n (42b)

M=I'M#n

Expanding to first order in - and using (34) we get

+ co' , + 6g2 2] r _ r )-4(
'r .

_ .) 01 (43)( n
m=l,m#n

and, via (38), this yields (40) with (41).

The (IV x N)-matrix A is defined, see (41), in terms of the N zeros z,,

of the Hermite polynomial H,(x), see (37). Let a,, indicate its N eigen-
values. It is then well known that (40) entails that, in the neighborhood of

the equilibrium configuration, the system oscillates with the N circular

frequencies

0 a,1,2, =C (44)

namely

N

4 W [a. cos( . t) + b. sin(@. t)] (45)

But we known that the general solution of (1) is completely periodic
with period T = 2/T/co, see (17) and (18). This must be a fortiori true of

the solution characterizing the behavior of the system in the neighbor-
hood of its equilibrium configuration. But this is compatible with (44) iff

all the eigenvalues an of the matrix A, see (41) and (37), are the square of

a (nonvanishing) integer. Indeed (see Appendix Q

a,, =n2, n = 1,2,...,N . (46)

Another remarkable property of the zeros of Hermite polynomials is

evidenced by the following
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Exercise 2.1.3.3-5. Prove that the (N x N)-matrix

M.((o)=o5.cos(ip)z,,+i(1-8,.)sin(,p)(z,,-z.)-' , (47)

where the numbers z,, are the N zeros of the Hermite polynomial of or-

der N, see (37), has, for all values of the "angle"  0, the (same) zeros z,,

as its eigenvalues (the result is of course trivial if rp = 0 ). Hint: insert the

equilibrium configuration (32) in (16), recall the key properties of the ei-

genvalues of this matrix, (16), and use (33) with (38) (for another, "less

physical" hence "more mathematical" proof, see Sect. 2.4.5.5).

2.1.4 General solution of the functional equation (*).

Integrable many-body model with elliptic interactions

Let us return to the functional equation (*) (see (2.1.1-16)),

[ a(x) a(y) -a(y) a(x) ] / a(x + y) =,fl(x) -,fl(y), (1)

with the additional constraint (see (2.1.1-8))

18(-X) = 18W - (2)

Let us recall that from the solution a(x) of (1) with (2) one obtains the

(even) potential (see (2.1.1-11))

v(x) = a(x)a(-x), (3)

and that the corresponding Hamiltonian many-body problem, see (2.1.1-
12,13,15), is then generally integrable. In Sect. 2.1.4 we obtain the most

general expression of +) compatible with (1), (2) and (3).

Clearly the functional equation (1) is invariant under the transforma-

tions

fi(x) ->  (x) == ab,8(ax) +,8, (4)

a(x) --> ii(x) = b exp(cx) a(ax), (5)

with a, b,c and 6, arbitrary constants. The (only) effect of this transfor-

mation on the potential v(x), see (3), is to multiply it by the constant b2

and to rescale its argument,
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v(x) --> V(x) = b' v(ax) . (6)

Exercise 2.1.4-1. Verify all these assertions.

The functional equation (1) admits the solutions

a(x) =cn(x,k)/sn(x,k), (7a)

a(x) =dn(xk)lsn(x,k), (7b)

in both cases with

,8(x) = -a(x) a(-x) . (8)

In (7) k is an arbitrary constant, 0::- . k! - 1. Note that here and throughout
Sect. 2.1.4 we use the notation of Appendix A.

Proof From (7a) and (A-6a),

a'(x) = -d(x)ls' (x). (9)

Here and below we use the short-hand notation (see (A-1))

c(x) =-cn(x,k), s(x) =-sn(xk), d(x) =-dn(xk). (10)

Hence, from (7a) and (9)

a(x) a'(y) - a(y) a'(x) = -[s(x) s(y)]-2 [c(x) s(x) d(y) - c(y) s(y) d(x)]. (11)

From (7a) and (A-10b,c),

a(x + y) = D(x, y)l[s(x) c(y) d(y) + s(y) c(x) d(x)], (12)

D(x, y) = c(x) c(y) - s(x) d(x) s(y) d(y). (13)

Hence, from (11) and (12),

[a (x) a'(y) -a (y) a'(x)]la (x + y)

-[s(x) s(y)r [c(x) s(x) d(y) - c(y) s(y) d(x)]

- [s(x) c(y) d(y) + s(y) c(x) d(x)] / D(x, y). (14)

But

[c(x) s(x) d(y) - c(y) s(y) d(x)][s(x) c(y) d(y) + s(y) c(x) d(x)]
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= c(x) c(y) [ s2 (x) d2 (y) _S2(y)d
2

(X) ] + s(x) d(x) s(y) d(y) [ C2W - 2(Y) I

C(X) C(Y)[ S2(X)_S2(y) ]+ s(x) d(x) s(y) d(y) [ _S2(X)+S2(y)

S2(X)_S2(y) ] D(x, y). (15)

In the second step we used (A-3).
Insertion of (15) into (14) yields

[a(x) a'(y) - a(y) a(x)] / a(x + y) = [s(x)] -2
- [s(y)] -2 (16)

The fact that the right hand side of this equation separates into the difference of a

function of x minus the same function of y is the crucial property guaranteeing that

a(x) satisfy the functional equation (1), of course now with

2

,8(x) = [S(X)l
-

. (17)

It is easy to verify, via (A-8) and (A-3), that this expression corresponds to (8) with

(7a), up to an irrelevant additive constant.

The analogous proof that (7b) with (8) satisfy (1) is left as an exercise for the

diligent reader.

Up to an irrelevant additive constant, (7a) and (7b) both yield, via (3)
and (A-53) with (A-49), the same expression for the potential v(x)

v(x) = Ap(axjco, co') (18)

with

A = -a2, a= (e, -e3 (19)

(for the definition of e, and e3l see (A-19,21)

Remark 2.1.4-2. The two semiperiods co,co' of the Weierstrass function

p(a xj co, co') in (18) can be chosen arbitrarily, but to get a real potential one should

make the standard choice, co = real and co' =imaginary. The other 2 constants, A and

a, in (18) can eventually also be chosen arbitrarily, see (6). But the freedom to chose

arbitrarily all 3 constants aco,co' is apparent, since only the ratio of these constants

plays a role (see the remark after (A-35)). Hence the freedom of choice in (18) is in

fact restricted to the choice of only 2 constants, in addition to A, i.e. altogether 3 con-

stants.
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We now show that the solution we obtained for the potential v(x), see

(18), is the most general one that is compatible, via (3), with the fanc-

tional equation (1) with (2). The method of proof also suggests the route

that was originally used <C75> to discover the solutions (7), which were

given above "out of the blue".

We set

(20)

in (1), and consider the limit of vanishing 6. Consistency requires that in

this limit

a(s) = c-, /e + c, + c,s + o(g); (21a)

we moreover hereafter set

C-1 = 1, CO = 0, (21b)

since these two conditions can be enforced by taking advantage of (5).

Exercise 2.1.4-3. Verify, via (A-9), that the solutions (7) are consistent with (21).

We now insert (20) and (21) in (1) and, using (2), we equate the first

3 terms that obtain by expanding (1) (or rather, more conveniently, the

equation that obtains multiplying (1) by a(x + y)) around 6 = 0:

,8'(x)=a(x)a'(-x)-a(-x)a'(x) , (22a)

,8"(x)=2[a'(x)a'(-x)-a"(i)a(-x)] (22b)

fi"(x) + 6c, 6(x) = 3 [a'y(x) a'(-x) - dy(x) a(-x)]. (22c)

Exercise 2.1.4-4. Verify!

The first of these equations can be immediately integrated and, up to

an irrelevant additive constant (see (4)), it yields (8).
Insertion of (8) into (22b) yields

a"(x)a(-x)=a(x)a"(-x) (23)
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and from this equation and (21) one concludes that a(x) must be odd,

a(- x) = -a(x) , (24)

so that (23) becomes an identity.

Let a(x) =a,, (x) +a,, (x), with ae(x) even and a, (x) odd,

ae (-X) = ae (x), a, (-x) = -a,, (x). Then the odd part of (23) reads

a,(x)<(x)=a,(x)a,','(x), and this equation is consistent with (21) only if

a,, (x) = 0
.
Note that the conclusion that a(x) is odd holds up to the transformation

(5), which breaks this property, but has been now frozen by the requirement that the

constant co vanish, see (21).

Using (24) we see that (8) yields

fi(x) = a
2

(X) (25)

while (3) and (8) of course entail

v(x) = -,8(x) . (26)

It is now easy to show that v(x) must satisfy the second order nonlin-

ear ODE

2v"(x) v(x) - 3 [Vr(x)]2 - 24 c, [v(x)]2 = 0. (27)

To get this ODE we note first of all that (22c) can be integrated once to yield

,6"(x)+6c, fi(x)+3a"(x) a(-x) =0. (28)

Here we set to zero the integration constant, since it amounts merely to the addition of

an (irrelevant) arbitrary constant to 6(x) (see (4)).
We now note that, via (3) and (24) (or, equivalently, (25) and (26)),

2[a(x)] = -v(x) (29a)

entailing

2 a(x) a(x) = -v'(x) (29b)

2 ff

2 a"(x) a(x) + 2 [a(x)] = -V W , (29c)
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hence, via (29b),

a"(x) a(x) = -t2v%x) - [v'(x)]' / v(x)ll 4, (29d)

namely, via (24),

a"(x) a(-x) =  v (X) _[Vt(X)] 21V(X)114. (29e)

Inserting this expression in (28) and using (26) we get (27).

If v(x) is a special solution of (27), then

V(X) = A V (X - X') (30)

is clearly also a solution, and, since it depends on 2 arbitrary constants (A
and x,,), it is the general solution of the second-order, ODE (27). On the

other hand it is easy to verify, using (A.-23a) and (A.-24), that

v(x) = p (a x; 92  93) +,Y I (31a)

a' = 2c, ly, g, = 1272, 93 = 8 r3, (31b)

is such a solution.

The last 2 of the 3 equations (31b) entail a relation among g, and 93 .
This has

emerged from some of the special choices we have made, see (21b) and the remark

after (28). But this fact does not contradict our conclusions, see below.

The ODE (27) is a consequence of (1), (2) and (3); hence any function

v(x) consistent with (1), (2) and (3) must satisfy (27) (although the con-

verse statement need not, a priori, hold). Hence, from (31) and (30) we
can conclude that, up to an (irrelevant) additive constant, the potential
(18) (with A, a, co and co' arbitrary constants; see, however, Remark 2.1.4-

2) is the most general one consistent with (1), (2) and (3).

Note that, to reach this conclusion, one must exclude that x, see (30), take any

other value than x, = 0. But this condition is indeed implied, see (30), (31) and (A-

13), by the requirement that v(x) be even, see (3) (or, equivalently, see (2) and (26)).
Note that to the uniqueness, as described above, of the potential v(x) yielded by the

functional equation (1) with (2) via (3), there does not correspond an analogous
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uniqueness of the function a(x) yielded by (1) with (2), as indeed demonstrated by
the existence of the 2 different solutions (7a) and (7b), as well as by the invariance

property (5).

In conclusion we see that the most general Hamiltonian many-body
problem consistent with the ansatz (2.1.1-1,2) for the Lax pair reads as

follows:

i Ar

P2 +g2 2

IV

H =-I a I p[a(q,, -q.)jco,co'], (32)
2

j n,m=l;m<n

where p(zlco,d) is the (doubly-periodic) Weierstrass elliptic function.

This Hamiltonian depends on 4 arbitrary real constants, say g' > 0 and a,

b
, c, with co = b and co' = ic (however, of the 3 constants a, b, c, only 2

really play a role, see (A-34a); hence the Hamiltonian (32) depends ef-

fectively only on 3 real constants). The corresponding Newtonian equa-
tions of motion read

_g2 a3 q,, )Ico, o_)'] . (33)
..,
p'[a(qn

m=l,m#n

For special ("degenerate") values of the semiperiods CO,CO' one gets,

from this N -body model with elliptic forces, the more special (but per-

haps "physically" more interesting - to the extent any one-dimensional

model can be "physical"!) models with inverse-cube forces treated in

Sect. 2.1.3 (this corresponds to co=oo, co=ioo, see (A-37)), as well as

those with hyperbolic, or trigonometric, forces treated in the following
two Sects. 2.1.5 and 2.1.6 (this corresponds to co = oo, d= i;rl(2a), or to

oo =;r 1(2a), co' = i oo, see (A-36b)).

2.1.5 N particles on the line interacting pairwise via a repulsive
hyperbolic force. Technique of solution OP

Another simple solution of the functional equation (*), see (2.1.1-16),
reads

a(x) = igalsinh(ax), (1a)

,8(x) = i ga 2/Sinh2
(ax), (1b)

where a and g are 2 arbitrary (real) constants.
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Proof:

[a(x) a'(y) - a(y) a'(x)ya(x + y)

= -i g a2 [sinh (ax) sinh (ay)] -2.

- [sinh (ax)cosh (ay) - sinh (ay)cosh (ax)] [sinh (-)cosh (ay) + sfiih (ay)cosh

[Sinh ()Sinh()]
-2 [ inh2 2(l 2(4 2(=-iga2 ax ay S (ax)cosh ay)-sinh 2y)cosh ax

-ig a' [sinh (aX)Shjh(aY)J-2 [Sinh2(aX)_Sinh2 (qA

ga
2 [sinh' (ay)- sinh' (ax)]

=fl(X)_fl(Y)- - (1c)

The diligent reader will also check how this solution can be obtained from the

general solution given in the preceding Sect. 2.1.4. Hint. use (2.1.4 -5)), (2.1.4 -7b))
and (A-11b) with u = ax (as well as (2.1.4 - 4), (2.1.4 -17)), and again (A-11b) with

u = ax.

The diligent reader will also verify that another simple solution of the functional

equation (*), see (2.1.1-16), reads

aW = i g a cotanh (ax) ,
(2)

with the same expression (1b) for,8 (x) (recall that fl (x) is always defined up to an

arbitrary additive constant). Hereafter we focus on the choice (1a), which has the ad-

vantage to yield a function a (x) that vanishes as x -4 oo
,
a feature that simplifies

some of the arguments made below. The Hamiltonian yielded by this choice, see be-

low, is of course the same (up to an irrelevant additive constant) as that which obtains

from the choice (2), as the diligent reader will easily verify.

The corresponding Hamiltonian, see (2-1-L-12), reads

I
P2 +g2 2 -2,

n
a -q.)jj (3),Isinh[a (q,,

2,, n,m=l;m<n

yielding the Hamiltonian equations of motion

4n =Pn (4a.)
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N

2 21,n/ -2

-g a kd/ aqj fsinh[a (qj -qjI (4b)
j,k=l;k<j

and the Newtonian equations of motion

A'

=2g2 a
3 cosh[a(q,,-q.)]fsinh[a(q,,-q.)]1-3 (5)

Hence this model describes the motion of N equal particles that interact

pairwise via a repulsive force which is singular at zero separation

(thereby preventing the particles from crossing over, so that their ordering
on the line remains unchanged throughout the motion) and which van-

ishes exponentially at large separation ("short range force", such as, say,

the strong interaction acting among nucleons).
Except for this last feature ("short range"), these characteristics of the

interaction are analogous to those of the simple model discussed in Sect.

2.1.3.1, to which the present model indeed reduces for a= 0. Hence all

the conclusions of Sect. 2.1.3.1, with the sole exception of the rule

(2.1.3.1-6) (which is replaced by a different formula, see (44) below), re-

main valid.

The diligent reader will check this fact, using, if need be, the expression of the

Lax matrix given immediately below.

The Lax pair for this model reads

=i5,,.p,, +(1-i5,j iga1sinh[a(q,, -q.)] (6)

M,,. =,5. iga
2

{sinh[a(q,, -q,)11-2

-(I-Jnjiga
2

cosh[a(qn -q,,,)]fsinh[a(q,, -q,,,)]1-2 (7)

Note that the off-diagonal terms of these matrices, M and L, are related as

follows:

Mnm = -aCotanh1a (qn - qj]Lnm, n # m. (8)

We now reduce the solution of the equations of motion for the N-body
problem under consideration, see (3), (4) and (5), to a purely algebraic
task, via the OP technique. Our starting point are the following two ma-

trix evolution equations:
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i=[L,M1, (9)

t=[E E,:ff]+af,Lj, (10)

where f(t) is the diagonal matrix having exp[2aq.(t)] as (diagonal) ele-

ments,

diagf exp[2 a q,jt)]
In (10) and always below the notation f A,B I denotes the anticommutator of the

two matricesA and B_

A,B I =_ AB + B A. (12)

The matrix equation (9) is of course the Lax evolution equation, which we know

to be equivalent to the Hamiltonian evolution equations (4) entailed by (3), namely to

the Newtonian equations of motion (5).
The diagonal part of the matrix evolution equation (10) is an immediate conse-

quence of the definition (11), and of (4a) (note that the first term in the right hand side

of (10) does not contribute to the diagonal part). As for the nondiagonal part of (10), it

follows from (11) and (8), as the diligent reader will readily verify.

Let us now introduce the similarity transformation

=ULU-', (13a)

= UMU-, (13b)

UEU-', (13c)

where the (invertible) matrix   (t) is characterized by the evolution equa-

tion

CT = UM, (14a)

entailing of course

U-16 = M, (14b)

&U-I =kM (14c)

with the convenient initial condition

U(O) (15)

56



The evolution equation (14a), together with the initial condition (15), define

uniquely the matrix Yt), in terms of the matrix M(t). In the following, however, we

shall not need to ascertain the explicit time evolution of neither M(t) nor   (t)

Note that the simple initial condition (15) entails, via (13a) and (13c), that, at the

"initial" time t = 0

RO) =:YO) 1 (16)

f (0) = f(O) - (17)

The definitions (13c) and (11) entail that the quantities exp [2 a qn (01

coincide with the N eigenvalues of the matrix k(t). Hence our strategy

will be to obtain an evolution equation for k(t), to solve this evolution

equation, and to thereby obtain an explicit expression for this matrix. The

computation of the canonical coordinates q,(t) is thereby reduced, up to

taking logarithms (see (11)), to the purely algebraic task of evaluating the

eigenvalues of the (explicitly known) matrix k(t).
Let us therefore time-differentiate (13a) and (13c). We get

E =0, (18a)

91

E =a fE:E (19)

The first of these 2 equations, (18), follows immediately from (13a) via the Lax

matrix equation (9) and (14):

1:1

L =Uji+U-1OL-LU-'61  _' =UjLL,:g]+LM,L]jU_, =0. (18b)

The second equation, (19), is likewise entailed by (13c) via (10), (14) and (13a,c).

But (18a), together with (16), entails

Ro = mo), (20)

and this equation allows to integrate (19), yielding, via (17), the following

explicit expression for f(t) :

f(t) = exp[aL(O) t] &0) exp [a:L(O) t]. (21)
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Of course the matrices L(0) and f(o) are given, in terms of the initial data

q. (0), p. (0) = 4. (0), by the explicit formulas (6) and (11).
We have thereby achieved our goal, to reduce the solution of the N-

body problem, see (3), (4) and (5), to the purely algebraic task of com-

puting the eigenvalues of this matrix, which then yield the coordinates

q,, (t) via (11).

The fact that there is a one-to-one correspondence between the eigenvalues of the

matrix f(t)
,
see (21), and the canonical coordinates q,, (t) ,

is implied by the fact that

the ordering of the quantities q,, (t) on the line, corresponding to the rank ordering of

the eigenvalues of _W(t) (N positive integers), does not change throughout the motion.

Note moreover that, using the well-known identities

det[expUA ] = exp[ traceUA (22)

det[A A det[A ] det[B (23)

valid for diagonalizable matrices, one obtains from (21), using (6), the relation

;T(t) =;T(O) +Pt' (24)

where 4(t) is the center of mass of the system,

IV

q,, (t), (25)
n=1

and

P  P(O) = N-1Ipn (0) (26)

is the total momentum. Note that (24) is consistent with the fact that the center of

mass moves freely,

;T = 0, (27)

an equation of motion which is an obvious consequence, using (25), of the equations
of motion (5).
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For N = 2, the solution can be written in explicit form (also by inte-

grating the equations of motion (5), see below). It reads:

q, (t) =; (t) - q(t)12 , q2(t) = 47(t) + q(t) / 2
, q2W> q, (t) (28a)

q (t) [q, (t) + q, (t)y2, q(t) = q2W - q, (t) > 0 (28b)

iAt) Pt+;AO), (29)

P = [p, (t) + p, (t)V2 = [41W+ 42(t)V2 (30)

q(t) = a-' log[ b cosh [2 a (pt + c)]+ lb 2 cosh2 [2 a (pt +C)]_ly2 (31)

b=[I+g2 a2/p2]112, (32)

with P, ; (O), c and p arbitrary constants (p > 0).

Proof. Of course (29) with (30) is an obvious consequence of the free motion,

 (t) = 0, of the center of mass coordinate ifft), while (30) corresponds to the conser-

vation of momentum.. On the other hand from (3) and (4a) one gets

H = 1[4, (t)12 + [42 (t)]2 1/2+g2 a 2/Sinh2 fak(t)-- q, (t) (33)

hence, via (28) and (30),

42 =_P2 9
2
a2/sinh2 (2 a q) (34)

with

P
2
= H p2. (35)

The differential equation (35) is easily integrated (hint: introduce the new dependent

variable u = cosh (2 aq), then set u = b cosh(y) with b -given by (32)), to yield

-q(t)- a-' arccosh f b cosh[2 a (pt + c)] (36)

which coincides with (31) since

arccosh (u) =log[ U2 _1
12

(37)U+(

Exercise 2.1.5-1. Reobtain-this result by computing the eigenvalues of (21).
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Let us now look at the behavior as t -> -oo, setting (see (2.1.3.1-1), as

well as (2.1.3.1-2,3)):

q
-

"
t + q(-) + o(i) as t -> ---co, (38a.)1,2W : P1,2 1,2

q,
-  +)t+q(+)+o(l) as t->+oo. (38b),2(t): PI,2 1,2

It is then clear that these results, (28)-(32), yield

PH =P+,P, PH =P-P, (39a)1 2

q,(-) = ; (O) + c - (2 a)-' logb, q 47(0) - c + (2 a)-' logb , (40a)

PH =P-P, PH =P+P, (39b)1 2

q,(+) = q-(O) - c - (2 a)-' logb, q2(+) =;T(O) + c + (2 a)-' logb, (40b)2

implying

PH H H H (41)1 P2 11 P2 = A

qf+) q(-) + A(pH - P(_); g, a), q(+) = qf-) + A(p(-) - (=); g, a), (42)1 2 2 1 2 1 1 P2

with the following definition of the "shiff'

A (p; g, a):

A(p;g,a)=sign(p)(2a)-1 log(l+g2 a 2/P2 ) - (43)

Note that, as expected, (41) reproduces the rule (2.1.3.1-5), while (42)
with (43), as indicated above, differs from (2.1.3.1-6) (but it reproduces
it, as indeed it should, for a = 0, since clearly (43) entails A(p; g, 0) = 0).

For N > 2, the rule (2.1.3-1-5) continues of course to hold, while

(2.1.3.1-w6) is replaced by the remarkably neat formula

W H
N

q,, =qg,,,+ A(p(-)-p(-;g,a), (44)M n

m=l,m#n

which reflects the factorized character of the scattering process: its out-

come is the same as if it consisted of a sequence of isolated two-body en-

counters, each of which causes (due to energy and momentum conserva-

tion) an exchange of momenta, see (41), leading to (2.1.3.1-5), as well as

a coordinate shift, see (42) with (43), which sum up to yield (44).
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Exercise 2.1.5-2. Draw a qualitative picture of the motion (in the (q, t) plane) for

N = 2,3,4. Hint: see Exercise 2.1.3.2-2, but keep in mind the difference among

(2.1.3.1-6) and (44).

Exercise 2.1.5-3. Prove (44). Hint: see Sect. 2.N.

2.1.6 N particles on the circle interacting pairwise
via a trigonometric force

In the preceding Sect. 2.1.5 we discussed and essentially solved the

problem characterized by the Hamiltonian (2.1.5-3) and by the equations
of motion (2.1.5-4,5). In this section we consider the model that obtains

from that one via the formal replacement of the (real) constant a with the

imaginary constant ia. The Hamiltonian, and the corresponding equa-

tions of motion, for this model read

1 IV N

H p. +g a I fsin[a(qj-qk) (1)
2

n,m=l;m<n

4n =Pnl (2a)

2

N

1-2P, =-g a2(alaqj Z Isin[a(qj-qk) (2b)
j,k=l;k<j

Ar

q,, =2g2 a3Z cos[a(qn-qj]fsin[a(qn-q.)]j-3

(3)
M=1,M--n

Likewise, the solution of the initial-value problem is given by the

following prescription: the eigenvalues I& (t) of the matrix 5) defined in

terms of the initial data qn (0), 4(o) = p" (0) by the formulas

k(t) = exp[ i aL(O) t] RO) exp[ i aL(O) t], (4)

L. (0) = o5nn 4JO) + (I + 8n.) iga /sinfa [q,, (0) - q. (0)] 1, (5)

Enm (0) =J.,m exp[2 i a qn (0)] ,
(6)

yield the canonical coordinates q, (t) via the relation

i& (t) = exp[2 i a qnW (7)
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These results are clearly implied by those of the preceding Sect. 2.1.5. The fact

that the canonical coordinates qJt) obtained in this manner are real and satisfy,

throughout their motion, ordering constrains such as (2.1.3.1-2) is not immediately
apparent from (7), but it is of course implied by (3).

Clearly in this model the particle - coordinates q,, (t) are defined

mod(7cla), see (1), (2) and (3). This suggest introducing new rescaled

variables

0,,(t)=2a qjt), (8)

so that the equations of motion read

Ar

=G
2 1 cos[(O,,-O.)/2]fsin[(O,,-O.)/2]r (9)
M=I'M#n

with

G=2ga
2

(10)

The new variables OJt) are then defined mod(27r) and therefore can be

interpreted as "angles", detailing the angular positions of the particles,
which are then interpretable as moving on a circle rather than on an

straight line. This interpretation justifies the title of Sect. 2.1.6.

Exercise 2.1.6-1. For clear reasons of symmetry, the system (9) ad-

mits the equilibrium configuration

0,, =17CnIN , (Ila)

as well as the (more general) rotating configuration

0,, =vt+2znlN (11b)

with v an arbitrary constant. Verify the validity of the corresponding
trigonometric identities (see the right hand side of (9)):

IV

I cos[;r (n - m) / N] f sin[7c (n -m) / N] I ' = 0, n = 1,2,..., N; N = 2,3,... . (12)
M=I'M#n
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2.1.7 Various tricks: changes ofvariables, particles of different

types, duplications, infinite: duplications (from rational

to hyperbolic, trigonometric, elliptic forces), reductions

(model with forces only among "itearest neighbors")

In Sect. 2.1.7 we illustrate various tricks, by displaying how they work in

specific instances.

Changes ofdependent and independent variables. Consider the equa-

tions ofmotion

q" (r) = fn [ q(r)
n

Rere and below the primes denote differentiations with respect to the

variable r, while we continue to indicate with superimposed dots differ-

entiations with respect to the time t (see below), and of course the nota-

tiOn q(z-) denotes the N -vector Of Components qn (z) -

Let us now introduce the following change of dependent and inde-

pendent variables:

q(r) = (o (t) 2#), r = r(t), (2)

where we keep for the moment open the option to assign the two func-

tions  9(t) and r(t).

The transformation (2) entails that (1) become the following equa-

tions for x,, (t)

(3))f

Proof Time-differentiations of (2) yields

q,', f = 0 x, + (p in, (4)

q' i'2 +q'f +20i,, +,pi,,. (5)
n n

From (5), using (4), we get

V i,, + [2 0 -rp (i / i) ] in + [0 (i / i)] xn = q" i2' (6)
n

and, via (1) and (2), this yields (3).
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Let us pursue the analysis by considering two options, corresponding
respectively to the requirements that the second, or the third, term in the

left hand side of (3) vanish.

Let us start from the first one of these two possibilities, by setting

12 (7a.)

entailing

f (t) = 20 (t) /  o (t), (7b)

so that (3) become

i,, + [(0 / (p) - 2(0 /  p)] x,, = [ q (t)]' f,, [(p 2 1 , (8a)

or equivalently, via the convenient position

PW = l/VW - (9)

i,, -W/v) x., = Iv(01 -3f, L14 (8b)

Proof. time-differentiation of the logarithm of (9) yields

(0 = -V / V, (10a)

and a further differentiation yields

(0/ O)_(O/(P)2 (10b)

entailing, via (10a),

(01(o)-2(o /9)2 = _( il 0 (10C)

If moreover the forces see (1), satisfy the scaling property

f (A q) (q)

then (8b) read

i. -W / V) X. = 4Ux -
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Hence, if the equations of motion (1) are solvable with a force satisfying
the rescaag property (11), the more general equations of motion (12),
with a function V (t) which we are still free to choose, is also solvable, via

the transformation (2) with (7) and (9).
Note that the forces appearing in the right hand side of the equations

of motion (2.1.3.3-21) do satisfy the scaling property (11). Hence the

equations of motion

g2 (13)i,, (t) + X (t) x,, (t) 2 1] nm

with an essentially arbitrary choice of the function

XW = -OT) /VW, (14a)

entailing of course

IkW + XWVW = 0, (14b)

are no more difficult to solve than (2.1.3.3-21) (except for the need to

solve the linear ODE (14b) for V(t)); and in particular, if g2 = 2, they
nm 9

are solvable, see Sect. 2.1.3.2.

The special choice

(t) = Cos [Co (t - 01 (15)

yields (see (14a))

X (t) = C02 (16)

and, via (7a) and (9)

z- (t) = z-,, + co-' tan [qo(t -to)]. (17)

The results of Sect. 2.1.3.3, see (2.1.3.3-21)-(2.1.3.3-24), are thereby reproduced, with

WnW  _ XnW '

Another interesting choice is

V(t)=(1+bt)1a, V (t)=bla,  i(t)=O, (18)

entailing (see (9) and (7a))
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ip(t)= a l(l+bt)-', r(t)=r -a' 1[b (I+ bt)]. (19)

Note that (18), together with (13) and (14), implies that the equations of motion

(2.1.3.3-21) are invariant under the transformation (2) with (19) (as the diligent reader

will verify by direct computation).
More generally, (8b) together with (18) entail that the equations of motion

(t) = a3(1 + b t)
-3

f, [a:I(t) / (I + b t)] (20)

are transformable into (1) (via (2) with (19)). Hence the many body-problems char-

acterized by the (nonautonomous) Newtonian equations of motion

i,, =2g2 a3(1+bt)-3 cosh[a(xn-x.)I(I+bt)]Isinh[a(x,,-x.)I(I+bt)]r
m=l,m#n

(21)

or, more generally,

N

Y,, = g2 a3(1+bt)-' p[a(Xn -Xm)l('+bt)] (22)
m=l,m#n

are amenable to exact treatment ((21) is transformed into (2.1.5-5) via (2) with (9),
(18) and (19); likewise (22) is transformed into (2.1.4-33) ).

Let us now return to (3) to explore the second option, corresponding
to the position

ZV) = CV (t), (23)

whose insertion in (3) clearly yields

-(010&, =c
2 (02 / O) f (24)

n
ko 2d

If we moreover assume the forces fn to satisfy the scaling law (11),
then (24) read

in+ [2 (0 / 9) _ (0 / 0)] in= C2 (0 / 92)2 f, j],nk (25a)

or equivalently, via (9) (see (10a) and (10c))

1. - (1,i -in = (co
2

f, Lx1 - (25b)
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We may therefore conclude that, for a largely arbitrary choice of the

function V(t), the equations of motion (see (2.1.2-5))

N

in_ (, / V/) i =(Cg02 1 (X _XM)-3 (26)
.=I,.#n

are solvable. In particular the choice

V(t) = b exp (-at) (27)

with a, b arbitrary constants, yields

N

in=a2, n+[Gexp(-at)J' Yj(xn-xm)-3 , G=abcg. (28)
m=l,m#n

The diligent reader will enjoy exploring the behavior of the solutions of (28), us-

ing the results of Sect. 2.1.3; as well as other options resulting from the possibility to

transform (1) into (3).

Particles of different types. To illustrate this trick, let us return to the

N-body model of Sect. 2.1.5, characterized by the Hamiltonian (see

(2.1.5-3))

1 N

P2+lg2 2

N
-2

H =

2 2
a Z Jsinh[a(q,,-q.)]J (29)

n=1 n,m=l;m#n

which, let us recall, describes N particles on the line interacting pairwise
via a short-range repulsive force singular at zero separation.

We now set

N = N, +N2, (30a)

q
(1) (t), p, (t) = p

(1) W, n = L.,N, (30b)
n
W = qn n

q,,+, (t) = q(2) (0+"T1(24 Pn+N,(t)=,6(')(t), n=l,...,N,. (30c)
I n

Thereby (29) becomes
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H=
1 AF,

P(j)]2 + 1 NZ

P
2) 2

+

Ar, Nz
(2) (2))

JVI k'

V (q,(1)-q.(1))+- V (q,, q. V (1) -q(2))
, (31a)

2
e

2
d (q,,

2
n,m=l;m#n n,m=I;m#:n n=1 m=1

with

V = g2 /Sinh2 (31b)(q) a (aq),

2

Vd(q) = _g2 a' / cosh (a q) (31c)

Clearly this Hamiltonian describes N = N, +N, particles on the line, N, of

them of one type and N2 of another, all having the same (unit) mass, and

interacting pairwise via the repulsive singular potential V,(q) (see (31b))

acting among equal particles, and via the attractive nonsingular potential

vd(q) (see (31c)) acting among different particles. This system is of

course integrable indeed solvable: its Lax matrices, as well as the reduc-

tion of its solution to a purely algebraic task, can be immediately ob-

tained, via the position (30), from the results of Sect. 2.1.5 for the

Hamiltonian (29).

Exercise 2.1.7-1. (i) Draw a graph of the potentials V,.,(q) and Vjq), see (31b)

and (31c); (U) write the Hamiltonian and Newtonian equations of motion entailed by

(31); (iii) verify that they (obviously!) coincide with the equations of motion that ob-

tain from (2.1.5-4, 5) via (30); (iv) ponder on the extent to which the results of Sect.

2.1.5 continue to hold. Hint: the main phenomenological changes are that different

particles can now go through each other, and that bound states can now exist (see be-

low).

Two different particles may now form a bound state, with negative
total energy (aside from the kinetic energy associated to the free motion

of the center-of-mass). The phenomenology associated to the N-body
model (31) includes therefore scattering processes involving bound

"molecules" in addition to single particles. The diligent reader will, for

instance, show that in a scattering process characterized (say, in the center

of mass frame of reference) by particle 1, say, of the first kind coming, in

the remote past, say, from the left, while a bound state composed of a

couple of particles of different kinds (say, particle 2 of the first kind and

particle 3 of the second kind) comes from the right, the phenomenon of
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partner swapping generally occurs: namely, in the remote future, particle
2 returns alone to the right, while a bound pair formed by particles I and

3 escapes to the left.

There is a special configuration of this many body problem with

N, = IV, =9 (32a)

which is worth a special mention. It corresponds to the assignment

q(1)(t)=q(2(t)=q,,(t), p()(t)=p((t)=pjt), n=l,...,R, (32b)
n n n n

which clearly describes R "molecules", each composed of 2 particles of

different types bound together maximally. Clearly such a configuration is

compatible with the time evolution entailed by the Hamiltonian H;

namely, if the conditions (32b) hold initially, say at t = 0, for all values of

n, n:-- L., 9, they remain always valid. It is then sufficient to consider the

time evolution of the 9 quantities q, (t), Pn (0'

Hence one has thereby manufactured a (new?) many-body problem,
whose Hamiltonian is given by the following formula:

Ar N

H p + - q.), (33a)
, Y, W(qn

2
n=1 n,m=l;m<n

with

W(q) = V,(q) + Vd(q) (33b)

The skeptical reader will verify that the Hamiltonian (33) produces indeed the

same equations of motion that (31a) yields for, say, q()(t) (or, equivalently, for
n

q(') (t)) whenever the configuration (32) prevails.

One might believe to have thereby discovered a new integrable many-
body problem. But it is easy to verify that (33b) with (31b,c) entail

W(q) = g2 (2a)2 /sinh2(2aq). (33c)
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Proof.

92 a2t[sinh(aq)1_2 - [cosh (a q)] -2

= g2a2[sinh(a q)'COsh (a q)]' [cosh(aq)- sinh2 (a q)]

=92(2 a)2 [sinh (2 aq)r . (34)

Hence one has in this manner re-obtained the original system (29),
except for the replacement of the constant a with 2a.

There is, however, an amusing twist. Consider the [(2N) x (2 N)j-Lax matrices

for the (2N) -body problem (29) with (30) and (32); and replace in it a with a12. This

yields a new Lax pair, composed of (2N x 2N) -matrices, for the original system (29)!
Moreover, this procedure can be repeated again and again, getting thereby, always for

the system (29), new Lax pairs composed of square matrices of size 4N, 8N, 16N

and so on. But of course these new Lax matrices will only yield N independent con-

stants of the motion, as the diligent reader will verify.

Duplication. For a first illustration of this idea, let us consider the 9 -

body problem characterized by the following Hamiltonian of normal type
with one-and two-body interactions:

IV

H
n +L7 ffn)+_ (35a)-1: j5n

2
n=1 n=1

2
n,m=l;m#n

V(11 (- ) = VIII a), V") (-4) = V(" (4). (35b)

The corresponding Newtonian equations of motion read

q,, = f(l) (4 )+f(2) q, _  m n (36a)
m=l,m#n

with

f(I)q)=_dV(1)(4)1d-' f(2)(4) V(2)(4)ld-q -d q (36b)

entailing, via (35b),
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(_4) = _f(l) (4), f(2)H) = _f
(2) q). (36c)

Consider now the following special (symmetrical) configuration of

this 9 -body system:

9=2N+M, (37a)

 , (t) = q, (t), p,, (t), n N (37b)

W,,+, (t) = -q,, (t), Pn+,YW = -Pn (t), n = N (37c)

L21J0=09 Pn+2N(t)=O, n=l,...Im . (37d)

It is easily seen that this configuration is compatible with the equations of motion

(36a) with (36c): if it holds at any one time, say at t = to, it holds for all time. It is

also clear that, without loss of generality, at any one time t = to we can supplement

the ansatz (37) with the prescription, say,

0 < q, (to) < q, (to) < ...
< q, (to) ,

(38)

although the persistence of this rule during the time evolution depends then on the

nature of the forces: a sufficient condition is that the two-body force be infinitely re-

pulsive at zero separation, so as toprevent the particles from crossing over each other.

We can now fix our attention only on the behavior of the firstN parti-

cles, namely on the canonical coordinates qjt) and momenta pjt), see

(37b); the behavior of the other N particles, see (37c), duplicates faith-

fully that of the first N; and the lastM particles simply sit at the origin.

Clearly the equations of motion for the coordinates qn(t) now read

IV

4,, f
(') (q,,) +Mf

(2) (qn) +f
(2)

(2 q,,,) + 1 (2)
(q,, - q +f

(2) (q,, + qj] (39)
n=l,m#n

and it is easily seen that they are obtainable from the Hamiltonian

IV N 1
P2 +j]

(1)
(q +M V(2) (q,,)+-V( (2qn)]

n -,
IV

2
n=1 n=1

2

N

-q + V(2) (qn + q.)]. (40)[V(2) (q,
2

n,m=l;.#n
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These equations of motion, (39), follow from (36a) (with n = N) via (37);
their applicability is implied by the compatibility of the ansatz (37) with (36a,c), a

fact which is rather obvious (a graphical representation may be helpful in this respect;
the diligent reader may wish to go through a formal analytic proof).

The Hamiltonian (40) is obtained, again via (37), from (35a). It is wise, when

making such derivations, to actually check the consistency of the equations of motion

(in our case, (39)) with the Hamiltonian (in our case, (40)), to make sure that the two

are indeed consistent (trouble might originate from "double-counting7 when deriving
the new Hamiltonian). Note that, in deriving the Hamiltonian, there may be a constant

term, that can of course be neglected: for instance, in our case, the term

(M_1) pr(2) (0) arising from the part of the last sum in the right hand side of (35a)
with the indices n and m in the range from 2N + 1 to 2N +M). If the two-body po-

tential V(2) (q) is singular at q = 0
,
this term is actually infinite; but this fact can be

safely ignored, as the diligent reader will verify by checking the consistency of (39)
with (40).

It is also clear that, if the problem we started from, see (35) and (36),
was solvable and/or integrable, these same properties hold for the prob-
lem (39) and (40). Hence from the integrable and solvable models treated

in the preceding Sections one can obtain new models by using this kind

of "duplication7.

If V(1) = 0
,
the model (35, 36) is translation-invariant; but this invariance prop-

erty is no more featured by the new model (39, 40).

Exercise 2.1.7-2. The diligent reader will write out explicitly the models that ob-

tain via this trick from those discussed in preceding Sections, and will analyze quali-
tatively their behavior.

Other duplications are possible, which however entail some excur-

sions into the complex plane. The basic idea is again to identify a special
configuration that is preserved throughout the motion. Let us illustrate

this kind of trick by exhibiting one specific example.
We take as starting point the simple model of Sect. 2.1.3.3, charac-

terized by the Hamiltonian (see (2.1.3.3-2))

1 N IV

H = -1] V2 q?)+g?- q. )-2, (41)_,(V2 +0n n (qn
2

 =I n,m=1,m<n

and correspondingly by the equations of motion (see (2.1.3.3-1))
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N

+ CO2q,, = 2 g' L (q,, q.)-3, n N. (42)
M=1,M#n

Let us now set

N=N,+2N, ,
(43a)

qjt)=zjt), n=l,...,N, (43b)

q,,.,,(t)=x,,(t)+iyjt), n=l,...,N, (43c)

I
(0=X.(t)-iyjt) , n=1.... (43d)qn+,,

Note that we are assuming here the quantities Xn 9 Yn 9 Zn to be real; it

is easy to see that this is compatible with (42), provided g2 and co2 are

also real (indeed, we hereafter assume that they are nonnegative).
It is now a matter of trivial algebra to obtain from (42), via (43), the

following equations:

All

Yn +C92z. =2g
2 1 n

-Zj-3
.'

(Z
m=l,m#n

NI

+4g2 - xM XJ2 Y2 1 [(Zn _ XM)2 + Y2 1-3I (Zn [(Zn -3
m M

n N, (44a.)
M--I

IV,

21[ 2
-3

=2g2l zm)2 - 3 y,, (x,, - zm)2 + y,, ]Yn +C02 Xn (x zm ) VX,
n n

M=1

+2 g2
N2

f[(Xn -XJ2 - 3 (Yn _ YM)21 [(Xn _ xM )2 + (Yn _ YM)2 ]-3I (Xn -Xm)
M=I'M#n

+ [(X, _ XJ2 -3(yn +YM)2] [(Xn _ XM)2 + (Yn +YM)21-3 1 1
n = N2 , (44b) -

AT,1 2 -3 2 1] n[3 (Xn _ ZJ2 _Y2 ] [(Xn _ ZJ2 + Y2 ]-3 n+C02Yn= 9 Yn -2g
.'
Y n n

4
M=1

-2 g2
IV,

2_ 3 (Xn _ XJ2 xM )2 + (Yn _Yj]-31: 1 (Yn - YJ [(Yn - YJ [(Xn
m=l,m#n

-3
2

+ (Yn + Ym) [(Yn +YJ -3 (xn _XM)2 1 [(xn -xM)2 + (Yn +YM)2 ] 1, n=i
.....

.v2.(44c)
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Clearly these equations can be interpreted as the Newtonian equations
of motion of an N-body problem (see (43a)) composed of Ar, particles of

one kind (coordinates z,, (t) ,
n = L..., N, ), N, of a second kind (coordinates

x,, (t) ,
n N,) and (again) N, of a third kind (coordinates

yn (t), n = N,), all having the same (unit) mass and moving on the

(straight) line. The forces acting among these particles can be read from

(44). They include forces of one-body type (see the first term in the right
hand side of (44c); in addition of course to the "elastic" force, see the

second term in the left hand sides of (44a,b,c)), of two-body type (see the

first sum in the right hand side of (44a)), of three-body type (see the sec-

ond sum in the right hand side of (44a) and the first sum in the right hand
sides of (44b) and (44c)), and of four-body type (see the second sum in

the right hand side of (44b) and (44c)).
Note the lack of translation invariance (even in the CO = 0 case).
The solutions of these equations of motion, (44), can be obtained

from the solutions of (42); hence the phenomenology discussed in Sects.

2.1.3.1, 2.1.3.2 and 2.1.3.3 is, to a large extent, also featured by this

model, as well as the possibility to reduce the solution of the initial-value

problem to the purely algebraic task of computing the eigenvalues of a

matrix explicitly known in terms of the initial data and the time. In par-

ticular, for C02 >0 the model features a completely periodic behavior, and

for CO
2
= 0 the scattering process gives rise to no new momenta (the set of

those characterizing the behavior in the remote future coincides with the

set of those characterizing the behavior in the remote past).

There is, however, a nontrivial. difference with respect to the models of Sects.

2.1.3.1, 2.1.3.2 and 2.1.3.3: while (as in the previous models) the N, particles of the

first kind cannot overtake each other (see the first term in the right hand side of (44a)),
now (in contrast to the previous models) no analogous restriction applies to the mo-

tion of the 2N, particles of the second and third kind (except for the fact that the

particles of the third kind cannot cross the origin, see the first term in the right hand
side of (44c)). The diligent reader will investigate the qualitative modifications, rela-

tive to the treatments of Sects. 2.1.3.1, 2.1.3.2 and 2.1.3.3, caused by these differ-

ences.

Exercise 2.1.7-3. Understand the origin of these differences, in terms of motions

in the complex plane.

As the diligent reader will readily verify, the Newtonian equations of

motion (44) are yielded by the Hamiltonian
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I I Nt

(4 2 + C

N,
2 2

gnI + CO
2 X"I ) _I '

+H=-Z '01 Z2)+I ' + '0' Yn -9 Yn(17n
2

n=1 n=1 n=1
4

Ar, All
2 ]21+_g2 -2 +E

N2

1[(Zn -Xm)2 _Ym211 [(Zn _XJ2 +Ym1: (zn - zM ) 1
2

n,m=l;m#n n=1 M=1

+gz
N,

[ _ )2 _ Y )21 / [(Xn _XM)2 )2I: f (XK XM - (Yn M
+(Yn _YM

n,m=l;m#n

+ [(Xn _ XM )2 - (Yn + YM)2 (Xn _ XM )2 + (Yn + YM)
2 ]2 (45)

Here of course  , is the canonical momentum conjugated to the canoni-

cal coordinateZn, and likewise for  n relative to xn, and q,, relative toYn'

This Hamiltonian, (45), is obtained from (41) via the assignments positions (43),

supplemented by analogous assignments positions for the momenta:

N=NI+2N, ,
(46a)

Pn
(0-  n (0 ,

n IV, (46b)

Pn+Af, (0 =  n (0 - '17n (t), n N2 (46c)

Pn+N,+N, (0 =  nW -'?7n (t), n N2 (46d)

Note however the sign difference of the imaginary term in the right hand side, among

(46c) and (41c), and likewise among (46d) and (41d) (although it should be noted that

this choice is motivated by philosophical reasons, see Sect. 4.1, but it is really of no

consequence here: clearly the opposite sign choice yields the same result!).
Also note the negative sign in front of the third sum in the right hand side of (45).
The diligent reader is advised to reflect on the significance, in terms of motions in

the complex plane, of the ansatz (43). There clearly are various other ansaetze which

are also compatible with the evolution (42), and the diligent reader is also advised to

explore them, before looking at the literature where additional instances are given
<CF92>.

Infinite duplications. To introduce this trick we start from the simple

integrable system of Sect. 2.1.3, whose Hamiltonian function and equa-

tions of motion we write here as follows:

H
1

1] P2 +
1
91 1(Wi -m-z (47)

2
1

2
J,K;J#K
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Z

-g' -2

q, = -(ala ') I (48a)
K#J

qj =2g2 _ K)-3 (48b)-,(qj
K#J

We now assume that there are in fact an infinite number of particles,
arranged (in the complex plane) according to the following configuration:
N particles are located on the real axis, at the N positions q,, (t) ; to each

of them there correspond in addition an infinity of other particles, located

equispaced on a vertical straight line (in the complex plane), at the posi-
tions

Wj (t) = q,, (t) + i;r s / a, s = 1, 2, 3,..., (49a)

where a is a real constant (independent of the index n). It is clear that such

a configuration is compatible with the equations of motion (48): indeed,
the symmetry of this configuration, and the antisymmetrical. character of

the pair force (see the right hand side of (48b)) entail that the vertical com-

ponent of the forces acting on each particle cancels out, while the horizon-

tal components are exactly the same for all the particles located on each

vertical line. This of course entails that, throughout the motion character-

ized by the configuration (49a), all the particles sitting equispaced on a

vertical line move horizontally with the same velocity or, equivalently,
have the same momentum: namely (49a) is complemented by

j5j (t) = qj Q) = 4n Q) (49b)

which is clearly compatible (indeed implied) by (49a).
The evolution of this configuration is completely characterized by the

motion on the N particles on the real line, namely by the time-evolution

of the N coordinates q., (t), see (49a). The corresponding equations of

motion read

4,=-g'a'(a1aqj fsinh[a(q,,-q )11 -2, (50a)

,V

4,, =2g2a3 cosh[a(q -q,,)]fsinh[a(q,,-qn)]j -3

(50b)n

which are clearly obtainable from the N-body Hamiltonian

1
2 +g2H = I Isinh[a (q,, - qj] I-1p.

2
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Proof. The equations of motion (50) obtain from (48) (and likawise the Hamilto-

nian (51) from (47)) via the identity

+CO

Z (q + i)rsl a)' = a' /sinh2 (aq). (52)
S=.

(This well-known identity is implied by the following statements: both sides of (52)
are meromorphic. functions of q, both are periodic in q with period iT Ia, both have,

as their only singularities, double poles, with the same strength, at the same locations,

q = i 7cs / a, s = 0, 1, 2,..., and both remain finite (or vanish) as q -> 00 in any di-

rection in the complex plane away from the poles). This identity holds of course for

arbitrary (complex) values of both q and a.

We have thereby obtained the (integrable) many-body model of Sect.

2.1.5, featuring hyperbolic interactions, from the (integrable) model of

Sect. 2.1.3, featuring rational interactions.

Exercise 2.1.7-4. (i) Reflect on the significance of these findings, in terms of the

motion in the complex plane of the infinite number of particles of the model (48) cor-

responding to the configuration (49), a motion which is, as we just saw, equivalent to

(50). (ii) Ditto, but replacing a with ia, so that (50) gets replaced by (2.1.6-3). (iii)

Ditto, but for the model with particles of 2 different Ends, see (31). (iv) Ditto, but for

the phenomenon discussed in connection with the assignment (32) (indeed, what is

the interpretation of (34) with (32) and (31) in terms of symm tri al configurations of

infinite points in the complex plane, and what is the relation of (34) to (52) ?). (y) Try
and derive via (49) the Lax pair for the system with hyperbolic interactions, see

(2.1.5-6,7), from the Lax pair for the system with rational interactions, see (2.1.2-6,7).

It is easily seen that, in an analogous manner, but adding to every

particle on the real axis, characterized by the coordinate q,,(t), a double

infinity of particles, according to the rule

W, (t) = q,, (t) + s co / (2a) + s'cv'1(2a); s = 1,2,...; s'= 1,2,... (53)

it is possible to pass from the integrable Hamiltonian many-body problem
characterized by the rational two-body potential g2 q-2, see (2.1.2-4), to

the integrable Hamiltonian many-body problem characterized by the "el-

liptic" potential g2 p(a qJ co, co'), see (2.1.4-32). Here the key formula is

(A-12). Note that co and co' are 2 a priori arbitrary constants, but a natu-

ral prescription is that co be real and co' be imaginary.
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The diligent reader will go through the appropriate derivation, proceeding in

close analogy to the previous treatment. In fact this can be done, as indicated above

(see (53)), starting from the rational case and adding to each particle a double infinity
of replicas; or one can start from the hyperbolic or trigonometric cases of Sect. 2.1.5

or 2.1.6 and add appropriately a single infinity of replicas to either of those cases,

getting thereby again, the "elliptic" model of Sect. 2.1.4

The diligent reader is also advised to repeat the series of Exercise 2.1.7-4, to the

extent they are applicable, in the doubly-periodic elliptic context. It is also of interest

to ask oneself why the process of infinite duplication cannot be pursued any further.

(Hint: there are simply periodic - i.e., hyperbolic or trigonometric - and doubly peri-
odic - i.e., elliptic - functions of a complex variable; there do not exist triple periodic
functions).

Before closing the topic of infinite duplications we report one amus-

ing observation, which we discuss for simplicity in the context of the first

model discussed above, see after (47). Indeed let us return to the argu-

ment presented after (49a). Clearly it entails that the configuration (49a)
would be compatible with the equations of motion (48) even if the quan-

tity ;r1a, which characterizes the interparticle separation of the equis-

paced particles on each vertical line, varies linearly in time rather than

being constant (both behaviors are indeed compatible with the lack, or

rather the balancing off, of forces in the vertical direction). This suggests

replacing a with a / (I + b t) (where a and b are now 2 real constants). This

entails replacing, say, (50b) with

N

Y,, =2g2 a'(I+bt)-' 1] cosh[a(xn-x.)1(1+bt)]Isinh[a(xn-x, )1(1+bt)]

(54)

The argument we just made suggests that these equations of motion,
in spite of their nonautonomous character, should be amenable to exact

treatments. But this is a forgone finding: see (21)!

We end this tricky section by reporting a technique based on an ap-

propriate limiting process, whereby from the model of Sect. 2.1.5 one

obtains a new many-body problem featuring only "nearest neighbor" in-

teractions.

Let us start from the equations of motion (2.1.5-5),

N

2 3 1]q,, =2g a cosh[a(;L-W.)]fsinh[a(W,,-Wm)]y3 (55)
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for definiteness, we assume hereafter the constant a to be positive, a > 0.

We now set in these equations
= q,, (t) + A n, n = N

, (56a)

9 c (2a)' exp (2 a A) , (56b)

and we let the parameter z diverge to positive infinity, A CO, It is then

clear that (55) yield

4,,=cfexp[2a(q,-q,)I-exp[2a(q,,I-q,)]I, n=2,...,N-1, (57a)

41 = -c exp[2 a (q2 - qj)], (57b)

4, = c exp[2 a (q,-, - qv)] (57c)

Proof. As A --> oo, for n > m

2 g2a3cosh[a (qn -  ,)]/ sinh3 [a (q"

=cexp(2aA)Iexp[aA(n-m)+a(qn-q, n)]+O(exp[-aA(n-m)]) I

jeiEp[a A (n - m) + a (q,, - qJ]+ O(exp[- aA (n - m)]) Y

= c expJ2 aA [1 - (n - m)] I exp[- 2 a (qn - q.)]11 + O(exp[- 2 aA (n - m)]) (58)

Hence, for m < n - 1, the limit vanishes, while for m = n - 1, in the A --> oo limit one

gets

2g2a3cosh[a (qn _qM)]/Sinh3[aqn - qn)] == c exp[2 a (qn-1 - qn)] (59a)

Likewise, for m > n + 1 one gets a vanishing limit, while for m=n+l in the

A -> oo limit one gets

2 g2a3cosh[a (qn _ qm)]l Sinh3 [a (qn - q.)] = -c exp[2 a (qn+l - qn)] (59b)

It is easily seen that these equations of motion obtain from the

Hamiltonian

1 IV

P2
N

(60)H =-I: +[c1(2a)]j] exp[2a(qn -qn-l)]'
n

2
n=1 n=2

79



The N -body problem on the line defined by this Hamiltonian, hence by
the Newtonian equations of motion (59), is characterized by an interac-

tion acting only among "nearest neighbors"; namely, the n-th particle in-

teracts only with the particles identified by the labels n -I and n + 1 (in-
dependently, of course, from where these particles actually happen to be

through the time evolution, be it far away, or close to each other). Note

moreover that the two-body potential, V(2) (q) = _(C212a) exp(2aq), see

(60), is not even, V(2) (-q)*V(2)(q), and that it vanishes at one end

(V(2) (--oo) = o) but diverges at the other, namely if q --> +oO.

The way this model has been obtained suggests that it should also be

amenable to exact treatment: integrable, indeed solvable. This is indeed

the case, but we do not elaborate on this aspect here, except as material

for exercises, see below.

Exercise 2.1.7-5. (i) Derive from the model characterized be (57) and (60) an

analogous model containing N different "coupling" constants. Hint: replace q,, (t)

with qnW + log(Cn) * (h) Find a Lax pair for this model. Hint.- apply (56) to (2.1.5-

6,7). (iii) Perform a qualitative analysis of the "scattering" behavior of this model. (iv)
Find a Lax pair for the model characterized by the validity of the equations of motion

(57a) for n = N (i.e., also for n = I and n = N ), with the "periodicity" prescrip-

tion q, (t) -= qN (t), qv,, (t) -= q, (t) . (y) Find techniques whereby the solution of these

models is reduced to a purely algebraic task. Solution: see, for instance, <P90>.

2.1.8 Another convenient representation for the Lax pair.
The functional equation (**)

In this Section we introduce another convenient representation for a Lax

pair. It reads:

L. = 4,, if m = n
, (1a)

(4,, 4.)112 a (q,, - q. if m#n (1b)

N

Mnm= Y -qj) if m=n (2a)4,,O(qn

M
n.

= (4n 4
.

)1/2 r(q,, -q if m#n (2b)
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Let us pause to analyze the similarities and differences of these expressions, (1)
and (2), with respect to (2.1.1-1) and (2.1.1-2).

The two matrices L and M are written in terms of q,, (t) and 4,, (t) ,
rather than

q,, (t) and p,, (t) (but note that (1a) coincides with (2. 1. 1-1a) via (2.1.1-6)). Hence we

shall require, see below, that the Lax equation, see (2.1-2), with (1) and (2), corre-

spond to equations of motion of Newtonian, rather than Hamiltonian, type. (We will

eventually also find a Hamiltonian formulation, see below).
.

Let us also note that, from (1) and (2), via the positions

q,, (t) = t + 8;K (t), (3a)

a(q)=6iiff1.-), fi(q)= fflg), r(q)=Tffle), (3b)

one obtains

L=1+.-E
, (4a)

M=k (4b)

with

=;L if m = n (5a)

j:
n.

= [ (I + ,

Z,

)(1 + 8
-t,

) ] 1/2 ii gn_ M)qn q. if m#n (5b)

'V

knm= if m=n (6a)

k + +
1/2

co qn qm 4n _ 4M) if m#n (6b)

But (4) clearly entails that, if L and M satisfy the Lax equation [L'g], T and

k obey the same Lax equation, Z [L. R]. On the other hand it is also clear that, up
to trivial notational changes, for = 0 (5) respectively (6) coincide, via (2.1.1-6),
with (2.1.1-1) respectively (2.1.1-2). This indicates that the results of this section

contain, as a special (limiting) case, the results of Sect. 2.1.1.

Exercise 2.1.8-1. Verify!

Let us now insert this ansatz, see (1) and (2), in the Lax equation,
which is to this end conveniently written in the form (2.1.1-3).

From the diagonal terms (see (2.1.1-3a)) we now get the Newtonian

equations of motion
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N

n

= 1] w(q,, - q.) (7)4
m=l,.#n

with

WW = a (X) 7 (-x) - a (-x) rW ,
(8)

entailing that w(q) is odd,

W(-x) = -W(x) - (9)

Note that the "forces" appearing in the right hand side of (7) have two-

body character and are translation-invariant; they do however depend (in
contrast to the previous case) on the velocities (quadratically), hence (7)
is not invariant under the Galilei transformation qnW --> qn (t) = q,, (t) + vo t

-

Next, we look at the off-diagonal terms of the Lax equation, see

(2.1.1-3b), again of course with the ansatz (1) and (2). We get:

flW fl (-X) 1
(10)

rW a'(X) -aW 17W, (11)

'-I fl, (A + IW(X) (12)
2

a (z) a'(y) - a (y) a'(x) = [a (x + y) - a(x)a (y)] [q (x) - q (y)], (13)

of course with w(q), see (12), defined by (8).

Proof From (2.1.1-3b)

N

L,,. /L. = (L. - L, M,,. /L. - M,,,, + M.. + (14)

Here, of course, m # n. Now, using (1) and (2), we get

1[(qn / 4j + (qm / 4m)]+ [a'(q,, - q.) /a (qn - qj](4,, - 4,,,)
2

N

(q,, - q,,,,) / a (q,, - q.)] - (q., - q,) + (q. q,)

8-2



IV

+ L 41[a(q,,-ql),v(ql-q.)-,v(q,-ql)a(ql-q.)]Ia(q,,-q.). (15)

We now use (7) and re-write this equation as follows (by taking out of the sums all

terms proportional to 4n or 4m ):

4n [ Iw(qm -qn)+a(qn -qm)la(qn -qm)-r(qn -q, J
2

,)Ia(q,, -q )-,8(qm -q

+4M [ 1w(q,, -qm)-a'(qn -q.)Ia(qn -qn)+r(q,, -q.)Ia(qn -qm)+,8(qn -q.)
2

IV

+ 41 w(qn - q,) + w(q. - q,) ]/ 2 +,0 (q,, - qj) -,8 (qn - qj)
1=1;1#n,.

- [a (qn - ql),v (q, - qm) -y (q,, - qj)a (q, - q.)] / a (q,, - q.) I = 0
. (16)

Equating to zero the factors that multiply 4,, and 4. (and setting, for notational

convenience, qn - q. = x), and using (9) and the definition (12), one gets

a'(x)-,v(x)-q(x)a(x)+[fl(x)-,8(-x)]a(x)=O , (17a)

a'(x) -,v(x) - q (x) a (x) = 0
, (17b)

which clearly yield (10) and (11).
Finally, one equates to zero the factor multiplying 4, in the sum in the left hand

side of (16). Setting, for notational convenience, qn

- q, = x, q, - q. = y (entailing

qn - q,,, == x + y ), and using (9), (10) and (12), one gets

a (x) r (Y) - r (x) a (y) = [q (x) - q (y)]a (x + y) , (18)

which, via (11), yields (13).

Clearly the main constraint is provided by (13), namely by the func-

tional equation (* *):

(* *) [a (x) a(y) -a (y) a'(x)] / [a (x + y) -a (x) a (y)] = Y7 (x) - q(y) . (19)

This is essentially a functional equation for the function a(x), corre-

sponding to the requirement that the combination appearing in the left

hand side of (19) separate additively into two terms, one depending only
on x and the other only on y. The fact that these two terms are the dif-

ference of a function of x only, q (x), minus the same function of y only,
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i7(y) (see the right hand side of (19)) is then automatically implied by the

antisymmetry of the left hand side of (19). Once a function a (x) havi

this property is found, it determines the function q (x) up to an (irrelevant,
see below) additive constant via (19). Then a (x) and 77 (x) yield r (x) via

(11), and q(x) yields 6(x) and w(x) via (12) with (9) and (10), which

clearly entail

,6 (x) = [q (x) + q (-x)]l 2 = even part of q (x) (20)

w(x) = q (x) - 77 (-x) = odd part of 2 q (x) . (21)

Note that, if the function a (x) has a finite value a (0) at x = 0 (as we

shall indeed find, see below), by setting y = -x in (19) and using (21) we

get

w(x) = v(x) /[v (x) -a (0)] = (dl dx) log[v(x) - a (0)], (22)

with

v(x) = a(x)a(-x) = v(-x). (23)

Let us end this section by noting the explicit form of the first 2 traces,

T, and T, (see (2.1-19)), of the Lax matrix (1), which are of course two

constants of motion for the system whose time evolution is determined by
the Newtonian equations (7):

IV

T
1 (24)

'V N

]2 + (t) v[q, (t) (25a)T2 0

Ar

T =T2+ q (t)]-I4nW 4mW v [q. (t) (25b)
n,.=I;,.#n

The fact that T, is a constant of motion is also an immediate consequence of (7)
and of the odd character of w, see (9).

As for T,, (see (25),
which has been obtained from (1) via (23)), the fact that (7)

entail its time-independence is less obvious (although itis of course guaranteed by our

treatment).
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2.1.9 A simple solution of the functional equation (**)

In Sect. 2.1.9 we introduce a simple solution of the functional equation
(**), see (2.1.8-19):

[a(x) a(y) - a(y) a(x)] a(x + y) - a(x) a(y) 77(x) - 77(y). (1)

We then introduce and discuss (but in the separate Sect. 2.1.9.1) the no-

tion of "fake" Lax pairs.
A simple solution of the functional equation see (1), reads

a(x) = (1 + ax) / (1 + b x), (2)

with a and b two arbitrary constants. The corresponding expression for

q(x) reads

77(x) =11[x (I+bx) (3)

Proof.

a'(x) = (a-b)1(1+bX)2 (4)

a(x) d(y) - a(y) a'(x) = (a - b) [ (1 + bx) (1 + by)]-2[(l + ax) (1 + bx) - (I + ay) (1 + by)]

= (a - b) [(I + bx) (1 + by)r (x - y) [ (a + b) + ab (x + y) 1, (5)

a(x + y) - a(x) a(y) = [I + a(x + y)] / [1 + b(x + y)]- (1 + ax) (I + ay) / [(I + bx) (I + by)]

= 1 [1 + b(x + y)](1 + bx) (I + by)y' -

- f(l + bx) (1 + by)[1+ a(x + y)] - (1 + ax) (1 + ay) [1 + b (x + y)] I

= f [1 + b(x + y)](1 + bx) (1 + hy)j-' (b - a) xy [a + b + ab(x + y)], (6)

[a(x) a(y) -a(y) a'(x)]l [a(x + y) - a(x) a(y)]

[xy(I + bx) (I + by)]-' f(x - y) [1 + b (x + y) ] I

-[xy(l + bx) (1 + by)]-' I x (I + bx) - y (1 + by)l

[x (I + bx) ' - [y(I + by) (7)
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The corresponding expressions of 8(x), 7(x) and w(x) read:

,6(x) -b / (1 - b
2 X2) (8)

,y(x) -1 / [x(1 - bx)], (9)

w(x) = 2 I[x(l. - b
2 x-)]. (10)

Exercise 2.1.9-1. Verify that these expressions follow, respectively, from (2.1.8-

20) with (3), from (2.1.8-11) with (2), (3) and (4), and from (2.1.8-21) with (3).

Remark 2.1.9-2. These expressions, (8), (9) and (10), of 8(x), Y(x) and w(x), as

well as the expression (3) of 77(x), are independent of the quantity a, which does in-

stead appear in a(x), see (2). One may therefore set a = 0, with the advantage of

getting, at least for b # 0, a function a(x), see (2), that has the convenient feature to

vanish as x -> Go. On the other hand if both a and b vanish, a = b = 0, the Lax ma-

trix becomes exceedingly simple, since then

a(x) = 1. (11)

The peculiarities of this case are discussed in the following Sect. 2.1.9.1. Note that

with this assignment, (11), of a(x), the relation (2.1.8-13) is identically satisfied, im-

plying no condition on 77(x).

2.1.9.1 Fake Lax pairs

In this Section we focus on the very special case of the Lax pair of type

(2.1.8-1,2) with a(x) = 1, which we write as follows:

L. = S. 4 +
1/2 4.)112

M.. =_
1
(1-,5,,,,)(4n4m)'12w(q,,-qm) , (2)

2

where however we assume now that w(q) is an arbitrary function, except

for the restriction to be odd,

W(-X) = -W(x) - (3)

Indeed it is easy to verify that the corresponding Lax equation,
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LLM 1, (4)

is satisfied if the quantities q, (t) evolve according to the Newtonian

equations of motion (see (2.1.8-7))

IV

w(q, - q,,,') (5)
m=l,m#n

The ansatz (1), (2) is obtained by setting

a(x) = 1 (6)

in (2.1.8-1,2). Indeed, as noted at the end of the preceding Sect. 2.1.9, when (6) holds,

(2.1.8-13) is identically satisfied, entailing no restriction on ift). The conditions that

must still be implemented are (2.1.8-9,10,11,12), which yield (from (2.1.8-11) and

(6))

AX) = -77(x) (7)

as well as

q(x) =,8(x) + W(X) (8)
2

or, more precisely, (2.1.8-20,21). To get (2) we have, for simplicity, made the addi-

tional choice

AX) = 0 (9)

Let us reemphasize that we now have no restriction on the function

w(q), other than (3). Does this imply that (5) is integrable for any arbi-

trary (odd) choice of the function w(q) ?

Not so. The Lax pair (1), (2) is a fake Lax pair. Indeed it is clear that

(1) yields, for the traces T
,
see (2.1-9), of the Lai matrix (1), the simple

identity

T, = (TI) P

, p = 1, 2,3,... (10)

Hence the time-independence of the traces of the Lax matrix L, see (1),

yields in this case only one conserved quantity, the trace T, see (2.1.8-

24), whose constancy in time is indeed an obvious consequence of (5)
with (3).
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Many other instances of fake Lax pairs can be manufactured. For instance, let

&(q) be N arbitrarily given functions of the N coordinates q. (t), and let these N

coordinates evolve according to theN "equations of motion"

4,, = p,, (q) -
(11)

Introduce then the following Lax pair:

(12)

N

p1(q)(q,,-q1)-1 -(I-5,.)pJq)(q,,-q.)-1. (13)

Here q indicates of course the N -vector of components q,

Statement (i): the evolution (11) corresponds to the Lax equation (4). Statement

(d): this Lax pair is a fake one. There indeed holds the following Statement (0): the

matrix L, see (12), has as eigenvalues the numbers 1, 2, ...,N for any arbitrary choice

of the N quantities q. .
Hence the constancy in time of the eigenvalues of L provides

no information on the time evolution (11) of the coordinates qJt), which is actually

largely arbitrary, given the assumed arbitrariness of the functions p,, (q) .

The diligent reader will ponder, and perhaps try to prove, these statements, whose

validity will be shown later (see Sect. 2.4.5.1).

Let us end Sect. 2.1.9.1 by reporting a result that generalizes that

mentioned at its beginning. The Lax equation (4) with L given by (1) and

M defined as follows,

M. = -

1
(1 - J.) (q,, - q.) (14)

2

where w_(q) is an arbitrary (Nx N) -matrix-valued function only subject

to the "oddness" restriction

W". (-X) = -W." W , (15)

corresponds to the Newtonian equations of motion

N

W_ (q,, - q (16)
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Moreover, these equations of motion obtain from the following Hamilto-

nian (not of normal type):

N

H(q, p) Y h,, (s p,,; q) (17a)
n=1

where s is an arbitrary (nonvanishing) constant and

h exp P_

Ar

I(q, (17b)n(p;q) W -ql
2

w. (x) W.M (x) - W,, (-x) ]/ 2 (17c)

Note that this formula, (17c), implies (15).

Proof It is easily seen that (16) corresponds, via (15), to the diagonal terms of the

Lax equation (4). As for the off-diagonal terms of (4), they yield (see (2.1.8-15), (1)
and (14))

(4 / 4J + (4m /M;:_ _On- 4m) wm (q,, q

JV

+ -wm (q, - qm) + w, (qn- q,)] (18)4j

and it is easily seen that (16) and (15) entail that this equation is indeed satisfied.

The Hamiltonian equations, see (1.2-1), corresponding to (17a) read

4n = a hn (S Pn; q) / aPn (19a)

'V

Pn =-jah, (sp,;q)1aqn (19b)

From (19a), using (17b), we get

1 IV

4n =sexp Pn -_ E WI(qn -ql) (20a)IS 2

4,, = s hn (s Pn; q) (20b)

Logarithmic t -differentiation of (20a) yields

,IV 4,) Wn, (qn - q,)
_.,

(4, (21)4n 14n = SPn n

2
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One the other hand logarithmic differentiation with respect to q,, of h,, see (17b),

yields

ah,(sp,;q)1aq,, ]lh,(sp,;q)

1 A( 1
(22)-9., - W'j, (q , - qj) + (1 - Wj,, (q, - qj

2 2

hence, using (20b),

c9 h,, (sp q) / t9q,,

I N

S) I- g", - W (23)L,(q,,
2

9'=1,f'#n
2

Insertion of this into (19b) yields

_1
1 N

S f4n W,,'e (qn - q,) - 41 We,, (q, (24)
2

e=,,I#n

and insertion of this into (21) yields

jV

4n 14n =
1
Y (25)

2
4f [Wnre (qn - q,) - W,n (qj - qn)]

t=1,9#n

which coincides, via (17c), with (16).

2.1.10 N particles on the Me, interacting pairwise via forces

equal to twice the product of their velocities divided

by their mutual distance

In Sect. 2. 1. 10, and in the following Sects. 2.1.10.1,2,'we discuss the N -

body problem characterized by the Newtonian equations of motion

Y

4n = 2 1:4n 4m I(qn - q

These equations of motion contain no C'coupling") constant. They are invariant

under C'space") translations (q,, (t) -->  L (t) = q,, (t) + q0, 4,, = 0); they are not invariant

under Galilei transformations (q,, (t) -> q,, (t) = qnW +VO t) ; they are autonomous,
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hence invariant under translation.of the time variable (qn(t) -->  n (t) = q, (t + to )) ;

and they are moreover invariant under rescaling of both the independent C'time")
variable and the dependent C'space") variables (q, (t) -> 4 (t) = a q,, (b t)) ,

with a

and b two arbitrary constants). These latter two invariance properties underline the

remarkable nature of these equations of motion.

This model, (1), is discussed in some detail in Sect. 2.1.10 and the following
Sects. 2.1.10.1,2; but, for a much richer understanding of its dynamics one must pass

from the real to the complex: see Chap. 4, and in particular Sect. 4.2.4.

The equations of motion (1) correspond to (2.1.8-7) with

w(x) = 21x. (2)

Hence the evolution (1) is of Lax type, LL, M], the matrices L and M

being given by the representation (2.1.8-1,2) with

a(x)=l+ax (3)

,8(x) = 0
, (4)

7(X)=-l/x (5)

Exercise 2.1.10-1. Verify that these expressions, (2), (3), (4) respectively (5), cor-

respond to (2.1.9-10), (2.1.9-2), (2.1.9-8) respectively (2.1.9-9), with b = 0.

Hence the explicit expressions of the matrices L and M read (see

(2.13-1,2) )

L,,. 4n + (I -Jj(4, 4.)'12 [1 + a (q,, - q.)] + a (q,, - q.)] (6)

M". = _(I _ S.) (4" 4.)112 (q,, - q )-' . (7)

We have seen in the previous Sect. 2.1.9.1 that, for a= 0, this is a

fake'Lax pair: the time-independence of the traces of the powers of the

Lax matrix (6) with a= 0 (which coincides with (2.1.9.1-1)) yields only
one constant of motion, see (2.1.9.1-10). This is as well (or perhaps as

badly ?) the case for the Lax matrix (6) with a # 0, except that in this case

one gets 3 constants of the motion rather than only one, namely

cp = Y, 4,, (qj p=0,1,2 (8)

91



It is indeed clear from (6) that the traces T
,
see (2.1.9), can all be ex-

pressed in terms of c, c, andC21 see (8).

Proof. from (2.1-9) and (6)

N

T" + a (q,, - q,, + a (q,,, - q, 
MIIM211M.

+ a q. + a qI (9a)

hence, see (8),

T = F,, (co 1, cl, c,) , (9b)

where F,, is a function of its 3 arguments whose computation is left as an (irrelevant)

exercise for the very diligent reader.

One might therefore doubt that the system (1) is integrable. But in the

following Sect. 2. 1. 10.1 we show that this system is actually solvable, via

an (appropriate) application ofthe OP technique.

2.1.10.1 Technique of solution OP

To apply this technique we return, for simplicity, to the Lax pair (2.1.10-
6) with a = 0, which can be written as follows:

(q,, - q (2)

Note the close similarity of the last equation to (2.1.3.2-12), or,

equivalently, to (2.1.5-8) with a= 0. This immediately suggests that we

introduce, as in Sect. 2.1.3.2, the matrix

Q(t)=diag[q,(t)], Q.(t)=1'n,,qjt), (3)

and we take as starting point for the application of the OP technique, in

addition to the Lax evolution equation

-L = (4)
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the matrix evolution equation

0 = [ Q,:M J+L ,
(5)

which is clearly entailed by (2) and (1).

Proof. The diagonal terms of (5) yield the identities and the off-diagonal

terms yield the equations

0=(q,,-q.)M,,,,,+L,,n, m#n, (5a)

which are obviously satisfied, see (2).

We now proceed in close analogy to the previous treatments, see Sect.

2.1.3.2 and 2.1.5, introducing the similarity transformation

Z=ULU-' (6a)

UMU-' (6b)

 =UQU- (6c)

with the invertible matrix gt) defined by the evolution equation

6'=UM
,

(7a)

which entails of course

U-,O=m (7b)

QU-I =k (7c)

and by the convenient initial condition

Eo) = i - (8)

We thereby obtain

Z=O (9)

z (10)
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entailing (see (8) and (6)

Ro = RO) =:L(O)

 w = &) +RO) t Q(O) +go) t. (12)

Hence we conclude, see (6c), that the initial-value problem for

(2.1-10-1) is solved by the following recipe: the coordinates qjt) coin-

cide with the eigenvalues of the matrix  (t), whose explicit expression

reads

t) 15
.

[ (0) + 0) t]+ 1 _,5 ) [
 
0 0)]1/2 t

,n qn nm
4 ( (13a)

I  W L = 5. q,, (0) + 14,,(0) 4m (0)11/2 t. (13b)

2.1.10.2 Behavior of the solutions: mention of future developments

The eigenvalues of the matrix  (t) coincide with the N roots of the poly-

nomial of degree N in q defined by the formula

IV

det[q qv + 1, cm (t) q
N_r"

M=1

Here  (t) is defined by (2.1.10.1-13), and this formula, (1), defines the N

coefficients cm Q).

Hence we can write

Ar Ar

fj[q-q,Q&qA' + Y, cm Q) q'v-m (2)
n=1 M=1

As it is well known, the mapping between the set f q,, (t); n = I,,N I and the

set f cm (t); m = I,-,N I is one-to-one (it is the mapping between the N zeros

and the N coefficients of a monic polynomial): of course the set

f q,, (t); n=NI is not ordered (namely, the N! sets obtained by permut-

ing the zeros qn (t) among themselves must not be considered as different

sets), while the set f c. (t); m=NI is of course ordered.

The fact that the matrix  (t) is linear in t, see (2.1.10.1-13), dearly

entails that the left hand side of (1) is a polynomial in t, of degree at most

N; hence the coefficients cm(t), see (1), are also polynomials in t., of de-

gree at most N. But in fact the special nature of the matrix  (t), which is
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the sum of a time-independent diagonal matrix and of a dyadic matrix

linear in t, see (2.1.10.1-13), entails that the left hand side of (1), hence

all the quantities c. (t), are linear in t, so that

ejt) = 0
. (3)

Proof Let us rewrite (2.1.10.1-13b) as follows:

 (t)=diag[q,,(O)I+tV(O)v(')(gv(') (4a)

15"" q, (0) + t V(O) V(1) (1) (4b)V 

with

A'

V(O) = Y
,

q,, (0) (5)
n=1

V(11
= f k" (0)1/ V(O) 11/2

n
(6)

so that the vector v(') is normalized,

(V(I)
I
V(1) )=1 (7)

Let us now introduce N - 1 other vectors, v(j), j 2,..., N, which, together with

v(') form an orthonormal set, so that

C
'V

V(n),V(m)) =  n)11
j J(M) (5n. I (8a)V Vj

j=1

as well as

Ar

V(n)V(n) (8b)
., j k jkI

n=I

Note that all these vectors are time-independent.
Now define the (time-independent) matrix V whose matrix elements are given by

the following prescription:

V,(n). (9a)

Then clearly (8) entails

V(M). (9b)
n
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Let now

Z -

Q(t) = V Q(t) V (10)

Clearly

det[&)] = detLQ(t)] (11)

But (4a), (8a) and (9b) imply that only the first diagonal element of the matrix Q(t)

depends (linearly) on t, while all the other elements are t -independent:

F Z Ar

VW qj (0) v
(m) (12)I 0(t)] =I: V(O) t

-

Lt: '
, j=I

i i

Exercise 2.1.10.2-1. Verify!

Z

Hence the determinant of Q(t), and as well the determinant of Q(t), see (11), is

linear in t: the determinant of a matrix is a sum of terms, each of which is a product

(of elements of the matrix) which contains only one element belonging to the first line

(or to the first column).
This proof requires that the initial conditions entail V(O) # 0, see (5); if instead

V(O) = 0, the above treatment has to be modified. Since in any case we win return to

this topic below, see Sect. 2.3.4.2, we leave this adjustment as an exercise for the dili-

gent reader.

The result (3) is remarkable, and it leads to the following neat solu-

tion of the initial-value problem for the equations of motion (2.1.10-1):
the N roots of the following equation in q,

N

1] 4,, (0) I[q - q,, (0)] = t, (13)

yield the N coordinates q,, (t) .
Note the neat way in which the initial data,

q,, (0) and4n (0), are encoded in this formula.

Exercise 2.1.10.2-2. Prove this statement, and analyze its implica-
tions, namely the motions entailed by (2.1.10-1). Solution: see Sect.

2.3.4.2.
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2.1.10.3 Can a fake Lax pair be used to solve a nontrivial

many-body problem?

The development reported in Sect. 2.1.10.1 demonstrates that the ques-

tion posed by the title of the present Sect. 2.1.10.3 must be answered

positively. It is therefore justified to wonder how much further such an

approach can be pushed.
In particular we saw in Sect. 2.1.9.1 that the Newtonian equations of

motion (2.1.9.1-16),

IV

4n 4, 4,, w,,,, (q, - q,,,),
m=l,m#n

correspond to the Lax evolution equation

L = [LIM] 1 (2)

with L and M given by (2.1.9.1-1) and (2.1.9.1-14),

L. = (4,, 4.)'12 1 (3)

M11. =
-1

G - 9".) (41 4.) 1/2 w,,,(q,, -q,,), (4)
2

under the sole "oddness" condition (2.1.9.1-15),

W.W = -W."W - (5)

On the other hand we have learned, from repeated applications of the

OP technique (see Sects. 2.1.3.2, 2.1.3.3, 2.1.5 and 2.1.10.1), that key to

the applicability of this technique of solution is the availability of a sec-

ond matrix evolution equation, in addition to the Lax equation (2). Hence

we propose now to explore whether, by assuming the existence of such a

second equation, we can discover some new solvable model. To this end

we introduce the matrix

G = diag[g(qJ] 1 (6)

with g(q) a function yet to be determined, and we require that it satisfy
the evolution equation

d=LG,,ff1+afg,LJ+bLGJJ+cG+dL+h (7)
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with a, b, c, d, h five arbitrary (scalar) constants. The justification for this

ansatz for the right hand side of this equation is that it entails the possi-

bility to perform all subsequent steps in the OP technique.
The compatibility of (7) with (6), (3), (4) and (5) yields the following

constraints:

b=c=h=O (8)

g(x)=Cexp(2ax)-d1(2a) (9)

w,,. (x) = 2a cotanh(a x) , (10)

with C another arbitrary constant. Note however that neither C, nor d,

enter in the expression (10) of w,,. (x), which is moreover independent of

the indices n and m.

Proof Insertion of (3), (4) and (6) in the diagonal part of (7) yields

g'(q,,) 4,, = 2 ag(q,,) 4, + c g(qn)+d4n +h (11)

implying

c=h=O (12)

and

g'(x) = 2 a g(x) + d (13)

which yields (9).
Likewise, and using (12), the off-diagonal part of (7) yields

[g(qn) - &,,J] w,,,, (q,, - qr,,) = 2a [g(q.) + g(q.)]+ 2b [g(q,,) - g(q + 2d (14)

which, via (9), yields

w,,,. (x) = 2acotanh (ax) + 2b. (15)

Finally the requirement (5) entails

b =0. (16)

This concludes the proof. The diligent reader will check that, if one had started from

the more general ansatz for G that obtains by replacing in (6) g(qn) with g,, (q,,),
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the more general result obtained would have merely corresponded to that entailed by
the trivial freedom to shift every coordinate q, (t) by an arbitrary (different) constant,

q, (t) -+ W,, (t) = q, (t) + c,, e, = 0
.

We therefore conclude that the Newtonian equations of motion

2a cotanh [a(q,, - q.)] (17)
m=l,m#n

are solvable. Note that, for a = 0, they reduce to (2.1.10-1). We will see in

the following Sect. 2.1.11 that this model, (17), is also contained in the

class of many-body problems whose integrability is entailed by a Lax pair
of type (2.1.8-1,2), leading to the functional equation (**), see (2.1.8-19).

Exercise 2.1.10.3-1. Obtain, via the OP technique, the formulas that

provide the solution of the initial-value problem for (17). Solution: see

Sects. 2.1.12.4 and 2.3.4.2.

Exercise 2.1.10.3-2. Obtain for the solvable many-body problem (17)
a result in some way analogous to that yielded, for (2.1.10-1), by

(2.1.10.2-2,3). Solution: see Sect. 2.3.4.2.

2.1.11 General solution of the functional equation

The functional equation (**), see (2.1.8-19), reads

[a(x)a'(y) -a(y)a(x)]1[a(x+y) -a(x)a(y)]= q(x) -q(y).

In Sect. 2.1.11 we discuss its general solution.

Let us recall that the Newtonian equations of motion (2.1.8-7),

N

4n 4n 4- W(qn - qm) (2)
m=l,m#n

are associated with the functional equation (1), via the relation

w(x) = v(x) l[v(x) - 11 = (d / dx) log [v(x) - 11 (3)

where

V(X) = a(X) a(-X) (4)
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This formula, (3) with (4), coincides with (2.1.8-22,23) via the relation

a(O) = 1
, (5)

which is easily seen to follow from (1) (see below). Note that (3) with (5)
entail that w(x) is singular at x = 0 (see below). We also recall that w(x)

coincides with the odd part of 21ft), see (2.1.8-21),

W(X) = q(X) - 77(-X) = -w(-x) - (6)

Let us emphasize that the simultaneous validity of (3) with (4) and (5),
and of (6), is nontrivial.

The functional equation (1), or rather the equation (2.1.8-13), admits the trivial

solution

a(x) = exp(p x) (7)

with arbitrary q(x). The corresponding Lax matrix, up to the similarity transforma-

tion from L to L (see (2.1-17)),

.T = RLR-' (8)

with

;g = diag [exp (p qj] (9)

coincides with the case considered in Sect. 2.1.9.1, see (2.1.9.1-1). In the following
we ignore this anomalous (and trivial) case.

The functional equation (1) with (5) is clearly invariant under the

transformation

a(x) a(x) a(ax) exp (bx) (10a)

77(x)  (x) a 77 (ax) + 77, (10b)

with a, b and q,, arbitrary constants (a#- 0), which entails

w(x) -> iv-(x) = a w(ax). (10C)
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It is also invariant under the (somewhat less trivial) transformation

a(x) ->,E (x) Ila(x), (11a.)

q(x) -4 q(x) 77W - a'(x) / a(x) (11b)

which entails (via (3) and (4))

w(x) --> iv-(x) = w(x) / v(x) = w(x) l[a(x) a(-x)]. (11c)

Of course these two transformations, (10) and (11), can also be combined,

i.e. performed sequentially.
The next step is to derive from (1), or rather from (2.1.8-13), an ex-

pression of q(x) in terms of a(x) and its derivatives, as well as a differ-

ential equation for a(x). To this end we firstly parametrize the behavior

of a(e) and q(e) as -* 0, by setting

a(6) = ao +a, 6 +
1
a2

2
+ 1a3 63+0(64) (12)

2 6

)=77 :.-1+170+17j,7+0(,2)TKE (13)

(Ihe validity of this parameterization is implied by the consistency of the

following developments). Then, by setting y in (1), or rather in

(2.1.8-13), we get

ao =1, (14)

q-1 = 1, (15)

q0 +
1
[a"(x) - 2 a, a(x) + a2 a(x)]I.[a'(x) - a, a(x)] , (16)

2

d

2 [a(x) - a, a(x)] aw(x) - 3 [aff(x) - 2a, a(x)] a'(x)

+ a[a (X)]2 + b a(x) a'(x) + C [aw]2=0 ,
(17a)

with

a=6(2i7,-a2) (17b)

b = 4(a, -6a, 77) (17c)
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c=3a22-4a,a,+12a,2q, . (17d)

Note that (14) corresponds to (5), that is thereby proven.

Proof. From (2.1.8-13) with y e we get, in the c --> 0 limit, via (12) and (13),

a(X) [al + a26 +
1

a3 .62]_[a0 +aI +
1

a2 6
2 ] aI(X)

2 2

1
3

MW
3 3]f=  [a(x) + ca(x) +

1
s2 a"(x) + 6 a a(x) +ale+-a26 +-a36

2 6 [a, 2 6

[77(x) - 77-1 qo - 771 _,1+0(63) (18)

This yields, to order eP, p = -1,0, 1, 2, the following relations:

(I - ao) 77-1 = 0
, (19a)

[a, a(x) - a'(x)] (I - q-1) ao) a(x) [77(x) - q 0 (19b)

a2 a(x) - a, a(x) = 1k a(x) -a"(x)] q-1 - [a, a(x) - a(x)] [q(x) - 77 o (19C)
2

[a3 a(X) - a2 a(X)l
2

I[a3 a(x) -a(x)] 77-1 -
I
[a. a(x) - a"(x)][q(x) - 77 0 + [a, a(x) - a(x)] 771, (19d)

6 2

and using these equations one gets (16) from (19c). Finally, using (14), (15) and

(19c), with a little (tivial) labor, one gets (17).

The 7 coefficients ao . a, , a2 , a3 -177-1,770  771 in (12) and (13) were a priori

arbitrary. Now 2 of these, ao and 77, have been fixed to unity, see (14)
and (15), and another one, 770, is clearly irrelevant (see (10b)). There re-

main 4, so far undetermined, coefficients, which correspond to the 4 coef-

ficients, a, a, b, c, appearing in (17a).

The consistency of (17) with (12) and (14) is obviously implied by the way (17)
has been derived, yet the diligent reader might wish to verify it directly.
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The ODE (17a) is a consequence of the functional equation (1) with

(5); hence any solution a(x) of (1) must satisfy (17a) (note that the con-

verse need not be true, there is no a priori guarantee that a solution of

(17a) also satisfy (1)). But the most general solution of the third order

ODE (17a) can contain at most 6 arbitrary constants: indeed 6 = 4 + 3 - 1,

4 being the number of a priori arbitrary constants that appear in (17a), 3

being the order of this ODE, and 1 being the number of constraints the

solution a(x) is required to satisfy (see (5)); of course the 6 parameters

characterizing a solution of (17a) and (5) determine the values of the 4

constants al,a,b,c, appearing in (17a), in addition to, say, the values of

a'(0) and a"(0) (a(0) = 1, see (5)). Hence the most general solution of the

functional equation (1) can contain at most 6 arbitrary parameters.
We now exhibit such a solution of (1), containing 6 arbitrary pa-

rameters. It reads

a(x) = exp (,ox)
U(,U I C0, Co') C(,Ix + VC0, Co')

(20)
C(V I C0, Co') 0-( X +,U co, Co')

where c is the "sigma" Weierstrass function, see Appendix A.

The 6 arbitrary parameters in this expression, (20), of a(x) are p, /.I, v, A, ao, Cof

It is plain that (20) entails a(O) = 1, see (5).
The diligent reader, using the appropriate formulas from Appendix A, will readily

verify that this expression of a(x) is invariant under the transformations (10a) and

(Ila), whose only effect is to cause a redefinition of (some of) the 6 parameters in

(20).
The verification that a(x), see (20), satisfies the ODE (17a) is a cumbersome

task, that can be left as an exercise for the diligent reader. This result is of course im-

plied by the property of (20) to satisfy (1), which is proved below.

To prove that the expression (20) of a(x), with no (nontrivial) restric-

tion on the 6 parameters p, p, v, A,oo. co, satisfies (1) (yielding in the proc-

ess an appropriate expression for q(x)), is a cumbersome task, that can

however be eased thanks to the following two remarks.

In the first place, by taking advantage of the invariance property (10a)
one can simplify (20) to read

a(x) =
a(,u) 0-(x + v)

(21)
CMC(X +,U)
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Here and below, as it is also often done in Appendix A, we omit to indi-

cate explicitly the dependence on the 2 "semiperiods" co and co'.

The expression of q(x) that corresponds to (21) is, up to an irrelevant

additive constant,

77W =, W -, (x +,u) (22)

where  is the "zeta7 Weierstrass function, see Appendix A.

The validity of this expression of q(x) is proven below; the diligent reader might

try and derive it immediately from (21) via (16).

The second remark that simplifies our task to verify that (20) satisfies

(1), but has in fact an interest of its own, is contained in the following
Proposition 2.1.11-1. If a(x) satisfies the functional equation

a(x + y) = a(x) a(y) +  9(x)  o(y) v(x + y) , (23)

with (o(x) and Vf(x) a priori arbitrary functions, then it also satisfies the

functional equation (1).
Of course in (1) the function q(x) is also, a priori, arbitrary. But it

actually turns out that the two a priori arbitrary functions q(x) and q7(x)

are related to each other as follows:

q(X) = (0,(X) / (O(X) - (24)

Before proving this Proposition 2.1.11-1, as well as (24), let us inte ect 3 re-

marks.

Remark 2.1.11 -2. The functional equation (23), in contrast to the functional equa-

tion (1), contains no differentiations.

Remark 2.1.11-3. By taIdng advantage of the a priori arbitrariness of the 3 func-

tions a(x), p(x) and Vf(x) appearing in (23), this functional equation can be pre-

sented in many different guises, for instance

a(x) a(y) / a(x + y) = 1 + v(x) (o(y) / ,(x + y) (25)

which corresponds to (23) via the position

x(x) = -a(x) / v(x). (26)
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The diligent reader will obtain, by appropriate substitutions, several other avatars of

the functional equation (23) (see Appendix B).

Remark 2.1.11-4. It is plain that if a(x), (o(x) and V(x) satisfy (23), so do

ii(x) = a(ax) exp (bx) ,
(27a)

O(x) = c  9(ax) exp[ (b + d)x] ,
(27b)

 1'(x)=c-2V1(ax)exp(-dx) , (27c)

with a, b, c, d arbitrary constants, as well as

&(x)=11a(x) ,
(28a)

O(x)=V(x)la(x) (28b)

 1'(x) = -V(x) / a(x) (28c)

Clearly these invariance properties correspond to (10) respectively (11).

Let us then proceed to prove the Proposition  3.11-1 stated above. To this end

we define

F(x,y)=1og[1-a(x)a(y)1a(x+y)j (29)

and we note that (1) implies

F (x, y) - FY (x, y) = 77(X) - 77(Y) ,
(30)

where the subscripts denote partial differentiation. This first-order linear PDE has the

general solution

F(x, y) = H(x) +H(y) + g(x + y) (31)

with g(x) an arbitrary function and

H'(x) = q(x) .
(32)

But (29) and (31) entail precisely (23) with (24), via the positions

V(x) = a(x) exp [g(x)] ,
(33)

,p(x) = exp [H(x)] -
(34)

The last two equations, (33) and (34), correspond to the arbitrariness of V(x) in (23)

and, via (32), to the fact that (p(x) is related to q(x) by (24), which is thereby proven.
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To prove that a(x), see (21), satisfies (23) we now conveniently set

N [u(v)o# +,a) a(y +,a) u(x + y + v)]- [a <-> v] , (35)

D c(p) c(x+ v) c(y + v) c(x + y +,u) (36)

so that (23) with (21) read

a(x+y)1[a(x)a(y)j-I=N1D (37)

Of course the symbol [p <-> v] in the right hand side of (35) means: "the

same expression within the square bracket preceding it, except for the in-

terchange of p and v ".

The main tool one must now use is (A-58a),

47(ZI +Z2)U(ZI _Z2) =,72(Z1)0_2 (Z2)[P(z2)-P(ZI)l 3 (38)

which entails the following relations:

07(V) 07(X + Y + V) = 072 [V + (x + y) 12]072 [(X + y) /2]1 p[(x + y) /2]- p[v + (x + y) /2] 1,
(39a)

c(x+,u)c(y+,u) = cr'[p+(x+y)12]o-2[(x-y)12]f p[(x-y)12]-p[u +(x+y)12]1,
(39b)

and of course analogous ones witla i/  ,,,zchanged with p

Hence from (35), via (39), one gets

- z

IV = A'N (40)

KT=fc[g+(x+y)12]o-[v+(x+y)12]c[(x-y)12]c[(x+y)12]12
, (41)

R=jp[(x+y)12]-p[v+(x+y)12]j fp[(x-y)12j-p[p+(x+y)12]j

-fp[(x+y)12]-p[,u+(x+y)12]lfp[(x-y)12]-p[v+(x+y)121l, (42a)

K=lp[(x+y)12]-p[(x-y)12]lfp[v+(x+y)12]-p[#+(x+y)12]1. (42b)

Now one uses again (38), to get from (42b)

z
-

N = u(x) a(y) o-(v -,u) o-(x + y + p + v) IN (43)
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Hence, from (40),

N = u(x) c(y) o-(v -,u) c(x + y + p + v) (44)

and, via (37) and (36), this yields precisely (23) with

 9(x) = a(x) u(x) / c(x + v) , (45)

Vf(X) = CT(V -,a) 0-(X +'U + V) / [0-('") C(X +,U)] (46)

From (45) and (21) one gets

(OW = O-CU) O-W / [U(V) C(X +,U)] (47)

The last formula, (47), yields (22) via (24) and (A-39).
In conclusion let us report the most general expression (up to a trivial

rescaling of the variable x) for the function a(x), as well as correspond-

ing expressions, for 6(x) and v(x), see (2.1.8-1,2), for q(x), see (1), for

V(x) and VI(x), see (23), for v(x), see (4), and finally, and most impor-

tantly, for w(x), see (2), (3) and (6):

a(x) = exp (p x) a(u) a(x + v) / [c(v) c(x +,u)] , (48a)

Xx) C +I P,(P) /[P(X) - P(/_ol (48b)
2

)"(X), a(X) [ (X + V) -  (X)] (48c)

77(X) I& +  (X) -  (x +,U) (48d)

 9(x) exp (qox) o-(u) c(x) / [a(v) o7(x +,a)] (48e)

VW exP[(P -'7o)xl a(v -P) u(x+ P + v)1[0-(,u) 0'(x+ PA (48f)

V(X)=[P(X)-P(V)]/[P(X)-P(,U)l ,
(48g)

w(x) p(x) I[B - p(x)] (48h)

with

B (48i)
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The expression (48g) of v(x) follows from (48a) and (4) via (A-58); likewise, the

expression (48h) with (48i) of w(x) follows from (48d) and (6) via (A-59) and (A-

41), or, more directly, from (48g) and (3).
The diligent reader will note again the obvious consistency of (48a) with (5), as

well as the fact that the transformation (28) entails merely an exchange among the pa-

rameters u and v, as well as a change of sign of the (largely irrelevant) parameter

P

The diligent reader may also verify, using the appropriate formulas of Appendix
A, that by taking advantage of the transformations (10) and (11) several alternative

definitions of the function a(x) can be introduced, all of which however lead to the

same expression (48h) for w(x), possibly up to a rescaling of the independent vari-

able x and a redefinition of the constant B
.
For instance the following 3 expressions

of a(x), in terms of Jacobian elliptic functions, which also provide solutions of the

functional equation (1),

a(x) = sn(u) / sn(x +,a) (49a)

a(x) = sn(u) cn(x +,u) / cn(,u) sn(x +,u)] (49b)

a(x) = sn(u) dn(x +,u) / dn(u) sn(x +,u)] (49c)

all yield the same expression (48h) of w(x), while the following 3 expressions of

a(x),

a(x) = cn(x +,u) / cn(,u'), IU Cor (50a)

a(x) = dn(x+ 1Z) / dn(/i), a' P - CO' (50b)

a(x) = dn(,u") cn(x +,d) / [cn(,u') dn(x +,d)], 'U" ='U + CO + W, (50c)

which also provide solutions of the functional equation (1), all yield the same rescaled

version of (48h), obtained via the replacement of x with ax where (see (A-19))

.t)t)]-1/2a
-

= (el _ e ) -1/2
. (51)2)) _ V(C= [P(O

Let us emphasize that these developments entail that the most general
function w(x) for which (2) can be recast in Lax form via the ansatz

(2.1.8-1,2) is given by the expression (48h), which features the 3 arbitrary
constants B, co and co'. Note moreover that, quite generally, this function

w(x) has a simple pole at x = 0 with residue 2:

lim[xw(x)]=2 . (52)
x >0
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This follows from (A-22a).
The diligent reader, using (A-34,35), will check that the possibility to rescale the

variables q,, in (2) (q,, ->  , = aqj does not introduce an additional arbitrary con-

stant, but corresponds merely to a rescaling of the 3 constants B, co and co.

Likewise, no arbitrary constant is produced in (2) by a rescaling of the time vari-

able t --> 7 = b t, since (2) (in contrast to, say, (2.1.1-15)) is clearly invariant under

such a transformation.

Finally let us exhibit the special expressions that obtain, in place of

(48), in the degenerate cases in which one, or both, of the semiperiods W

and co' diverge.
For co = oo, co' = i ir / 2 one obtains. from (48) (setting moreover, for

simplicity, p = 0, 77,, = 0, c = -cotanh(u)), via (A-36) and (A-54),

a(x)=exp[(,u-v)x/3]sinh(p)sinh(x+v)/[sinh(v)sinh(x+,u)] (53a)

,8(x) = 1sinh(2/,)/[Sinh2(X)_Sinh2(,U)] (53b)
2

y(x)=-a(x)fv/3+sinh(v)/[sinh(x)sinh(x+v)]I (53c)

77(x)=sinh(,u)/[sinh(x)sinh(x+,u)] ,
(53d)

 o(x)=exp(/zc/3)sinh(p)sinh(x)/[sinh(v)sinh(x+,u)] (53e)

Vf(x)=exp(-vx/3)sinh(v-,u)sinh(x+,u+v)/[sinh(,u)sinh(x+,u)] (53t)

2 2

(X)V(X) [s inhCU) ginh(V)]2 [Sinh2(X) - sinh (v)]l [sinh _ Sinh2 ('U)] (53g)

w(x) = 2 sinh
2

(,U) cotanh(x) / [sinh2(a)-sinh'(x)] - (53h)

Likewise, for o) = oo, co'= ioc), setting for simplicity p = 0, 77" = 0,

c = -b, u = b-1/2, v=a-1/2, one gets via (A-37) and (A-55),

a(x)=(l+ax)1(1+bx) (54a)

,8(x) = -b /(I + b2X2) (54b)

,v(x)=-11[x(1+bx)] (54c)

77(x)=11[x(I+bx)] (54d)
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v(x)=,ux/[Y(X+P)l (54e)

V(x)=(V-'U)(X+P+V)1[g(x+'U)] (54f)

v(x) Q - a2x2)/(l - b2X2) (54g)

w(x) 2 I[x (I - b2X2)] . (54h)

The diligent reader will note that (54a), (54b), (54c), (54d) respectively (54h) re-

produce (2.1.9-2), (2.1.9-8), (2.1.9-9), (2.1.9-3) respectively (2.1,9-10).

2.1.12 The manyv-body problem
of Ruijsenaars and Schneider (RS)

The results of the previous Sects. 2.1.8 and 2.1.11 entail that the many-

body problems characterized by the equations of motion

N

w(q,, - q.)
M=1'm#n

With w(q) an appropriate, odd,

w(-x) = -w(x) , (2)

function belonging to a certain class, see below, are reducible to the Lax

form, see (2.1-2),

i=[-L'M1 , (3)

via the ansatz, see (2.1.8-1,2),

L,,. = gnm 4n +(I - gnm) (4n 4.)1/2 a(q, -qn), (4)

IV

M,,,n = 8,,n 41,8(qn -'ql) + (1 - gnm) (4n 4")1/2 r(qn - qm) (5)

The most general version of the function w(x) reads

w(x)-V'(x)l[p(p)-p(x)]=-(dldx)log[p(,u)-p(x)] (6a)
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and corresponding expressions of the functions a(x), 8(x) and y(x) read

a(x) = a(u) a(x + v) / [u(v) c(x +,a)] (6b)

AX) = IP,(X) / [P(X) - P(,")] (6c)
2

r(x) = a(x) [,;(x + v) -  (x)j . (6d)

Here we are of course using the notation of Appendix A.

The following special cases are particularly interesting:

Case (i):

w(x) = 2/x (7a)

a(x) = 1 (7b)

18(X) = 0 (7c)

,V(X)=-l/x (7d)

case (ii):

2
/ g2)] = 2g2 (g2 + X2)]w(x) = 2 I[x(l + T X (8a)

a(x)=11(1+ixlg) (8b)

,8(x) = [ig (1+X2lg2)]-l (8c)

r(x)=-[x(1+ix1g) '=-x-'a(x) (8d)

case (iii):

w(x) = 2 a cotanh(ax) (9a)

a(x) = cosh(ax) (9b)

18(X) = 0
1 (9c)

,v(x)=-alsinh(ax)=-acotanh(ax)a(x) (9d)
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case (iv):

w(x) = 2 a / sinh(a x) , (10a)

a(x)=llcosh(axl2) (10b)

AX) = 0
1 (10C)

r(x)=-(a/2)/sinh(ax/2) (10d)

case (y):

w(x) = 2 g' a cotanh(a x) /[g2 +sinh2(ax)] (11a)

a(x) = sinh(au) / sinh[a (x +,u)] , (11b)

,6(x)=(al2)sinh(2a,u)l[g2+sinh2(ax)] , (11C)

r(x)=-asinh(a,u)cotanh(ax)lsinh[a(x+,u)]=-acotanh(ax)a(x) (11d)

g = i sinh(au) . (11e)

The neater notation has been chosen in each case; the diligent reader will have no

dffficulty to relate these formulas with those of Sect. 2.1.11, by identifying appropri-
ately the constants appearing in those formulas, and if need be by rescaling the coor-

dinates q,, (t) .

Let us also emphasize that these 5 cases are all special cases of (6); moreover,

clearly case (iv) obtains from case (y) by setting g2 = 1 and moreover by replacing a

with a12, case (iii) obtains from case (y) via the limit g2 -3 oo, case (ii) obtains

from case (y) by first replacing in it g with ga and then letting a --> 0 ; and finally

case (i) obtains from case (ii) via g2 _3, 00.

Case (i) and case (ii) are hereafter referred to as rational models; case (iii), case

(iv) and case (y), as hyperbolic models. The replacement of a with i a in these last 3

cases turns the hyperbolic functions into trigonometric functions, without negating the

property of w(x) to be real (provided g2 is also real, as we generally assume); the

corresponding cases are then referred to as trigonometric models.
All the models of this class are referred to as Ruijsenaars-Schneider (for short,

RS) models (see Sect. IN).
Let us finally note that, as shown below in Sect. 2.3.6.3, the more general model

that obtains by adding the term A q, with A an arbitrary constant, to w(q), see (1),
can be reduced to the case without this extra term via a change of the independent
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("time") variable, if attention is restricted to the subclass of solutions satisfying the

single condition

IV

Y 4nW = 0
1 (12)

n=1

a constraint which is clearly compatible with (1) via (2).

2.1.12.1 Hamiltonian and Newtonian equations for the RS model

Let us recall that the Newtonian equations of motion (2.1.12-1) with

(2.1.12-2) are Hamiltonian (see the last part of Sect. 2.1.9.1). The corre-

sponding Hamiltonian function reads (see 2.1.9.1-17))

N

H(q, p; s) h, (s p,,; q)

IV

h,, (p; q) = exp [p -- W(q,, - qj)j (2)
21=1,1#n

with (see (2.1.9.1-17c))

W'(x) = WW , (3)

entailing (see (2.1.12-2)) that W(x) is even,

W(-x) = WW - (4)

As emphasized by the notation employed in the left hand side of (1)
the Hamiltonian H contains the arbitrary constant s, which however does

not appear in the Newtonian equations of motion (2.1.12-1); it does in-

stead appear in the Hamiltonian equations of motion, that read (see
(2.1.9.1-20), (2.1.9.1-24), (3) and (2.1.12-2))

s h,, (s p,,; q) (5a)

,V

w(q, - qj) [h, (s pn; q) - h, (s p,; q)]l 2 (5b)
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The formulas written above apply for any choice of the functions

W(x) and w(x), provided they are related by (3) and are, respectively,

even and odd, see (4) and (2.1.12-2).
Let us now specialize to the RS models, see Sect. 2.1.12; but before

doing so, let us rewrite (2) in the form

IV

h,, (p; q) = exp(p) Y(q,, - qj) (6)

where of course

Y(x) = exp [-W(x) (7)

Then from (2.1.12-6a), (3) and (7) we get

Ax) = I P(X) - P(U) I , (8)

and the special versions of this formula corresponding to the various de-

generate cases considered in Sect. 2.1.12 read as follows:

case (i):

w(x) = 2 / x, Y(x) = x-2 ; (9a.)

case (ii):

W(X) = 2g2 / [X (g2 + X2)], y(x) =I+g2/X2 ; (9b)

case (iii):

w(x) = 2acotanh(a x), Y(x) = [ a / sinh(a x) 12 ; (90

case (iv):

w(x) = 2 a / sinh(a x), Y(x) = [ (a/2)/tanh(ax/2) ]2 ; (9d)

case (y):

w(x) = 2 g2 a cotanh(a x) / [g2 + a-2 sinh2(ax)], Y(x)=I+ga
2
/ sinh2(ax). (9e)
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2.1.12.2 Relativistic character of the RS model

Let us formally replace, in the basic ansatz (2.1.8-1,2) for the Lax pair

(that underlines all subsequent developments on the RS model) qjt) with

c t + q,, (t) (hence 4,, (t) withC+ 4n (t) ) and let us simultaneously rescale the

3 functions a(q), fi(q), v(q) by dividing them by the constant c. One

obtains thereby the following version of (2.1.8-1,2):

Lnm _= c + 4n if m=n
, (1a)

[a + c-1 4J(1+c_14M)1 1/2

a (q. - qm) if m:;,- n (1b)

IV

Mnm = (1+c-'4m),O(q -qj) if m=n (2a)

Mnm = [Q + C-1 4n) (1 +.C-14m)] 1/2

7(qn-q.) if m#n (2b)

It is then clear, by comparing this ansatz, (1,2), with the ansatz (2.1.1-

1,2), that the RS models (as treated in the Sections from 2.1.8. to 2.1.13)
can be considered as (integrable.0 deformations of the integrable models

treated in Sect. from 2.1.1 to 2.1.7, with the constant c (or rather its in-

verse!) playing the role of deformation parameter.

It is indeed clear that, in the limit c --> oo
, (1) respectively (2) essentially coincide

with (2.1.1-1) respectively (2.1.1-2).

Exercise 2.1.12.2-1. Verify! Hint: recall that, as implied by the very structure of

the Lax equation (2.1-2), the Lax matrix L is always defined up to addition of a con-

stant multiple of the unit matrix, say al, with a an arbitrary constant; and also take

note of (2.1.1-6).

The parameter c, as introduced above, has clearly the dimensions of a

velocity. It is therefore appealing to interpret the RS models as relativistic

models, inasmuch as they yield, in the limit in which the parameter c

(now interpreted as the speed of light) diverges, the many-body models

whose time evolution is characterized by classical nonrelativistic Hamil-

tonian dynamics, see (2.1.2-4), (2.1.4-32), (2.1.5-3), (2.1.6-1). This very

appealing interpretation is made more cogent by the following considera-

tions.
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The group-theoretical structure underlying nonrelativistic. classical

dynamics (in 1 + 1 dimensions) is associated with the Galilei algebra,

[H' P] = 0, (3a)

[Q, H] P, (3b)

[Q, P] AT. (3c)

In the algebraic context these square brackets must be read as commuta-

tors; while in the context of Hamiltonian dynamics, these same relations,

(3), are read in terms of the Poisson brackets (1.2-4), with the following
definitions (and interpretations) of the 4 quantities H, P, Q, N: H is

the Hamiltonian (total energy - generator of time translations)

H =T+V, (4a)

T =
I IV

2

(4b)-Y, Pn 7

2
 =j

Ar

V = V(qn - qn), (4c)
n,m=l;n#m

(note that we set to unity the mass of the particles, see (4b) P is the to-

tal momentum (generator of space translations),

IV

P=j Pn; (5)
n=1

Q = Nq- with 47 the center-of-mass coordinate,

Ar

Q=Y q (6)
n=1

and N is the number of particles (which is of course independent of p

and q 7
hence it Poisson-commutes with all physical quantities, and in

particular with H 7 P, Q).

116



Exercise 2.1.12.2-2. Verify that (4), (5) and (6) satisfy (3). Hint: note that, via

(1.2-4), the definitions (5) respectively (6) entail

'v

[F(q), P] W(q) / aq., (7a)
M=1

[F p), P] 0 (7b)

respectively

[F(q),Q]=O (8a)

IV

[F(f),Q]=-j W(p)lap., (8b)

where F indicates a generic function of its arguments; and recall that V(q) (see the

right hand side of (4c) ) is even, V(-q) = V(q) (hence V'(-q) = -V'(q)).

In the relativistic ( (1 + i)-dimensional) context, the Galilei algebra (3)
is replaced by the following Poincar6 algebra:

[ff, P] = 0, (9a)

[Q,Kj=p, (9b)

[ j5]=Tj/C2,Q (90

with T1, P respectively B = -Q (see (6) ) interpreted as the Hamiltonian

(total energy), the total momentum (generator of space translations) re-

spectively the "boost" generator. Here again, in the algebraic context, the

square brackets in (9) are commutators. But the following remarkable fact

was discovered by Ruijsenaars and Schneider <RS86>: the relations (9),
with the square brackets interpreted as Poisson brackets, see (1.2-4), are

satisfied by the following expressions of T1, P (and Q, see (6)

Ar

fl(q,f) = c
2

cosh(p,, / c) u, (q) (10a)
n=1

,V

-T(q,p)=cY, Snh(&1C)Un(q), (10b)
n=1
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with

u,, (q) [I + 2 (g a / c)
2 go[a (q, - q.) I co, co'] (10C)

The verification that (10) and (6) entail (9b) and (9c) is easy: it follows immedi-

ately from the definition (1.2-4) of the Poisson bracketl quite independently of the

specific expression (10c) of u,, (q) .

The verification that (10) entail (9a) is highly non trivial; in fact the discovery
that the requir6ment (9a), dictated by relativistic invariance, could be satisfied by the

ansatz (10) and that it would yield an integrable many-body problem (see below) is

quite amazing.

Exercise 2.1.12.2-3. Verify that (10) satisfies (9a). Solution: see <RS86>.

The alert reader will have noticed that, up to a multiplicative constant

the Hamiltonian (10a) is just the sum of the two (Poisson commuting!)
RS Hamiltonians (2.1.12. 1-1) with s = 1/ c:

TI(q, p) = k [H(q, p; 1 / c) + H(q,-p;l / c)] , (11a)
with H(q,p;s) given by (2.1.12.1-1) and

k = cga, (11b)

p(,u) = -(c g a)
-2

(11C)

(see (2.1.12-6,8) ). And it is moreover clear that, in the nonrelativistic

limit c --> oo, FI(q, p), see (10a), yields precisely the nonrelativistic

Hamiltonian (2.1.4-32) (up to the addition of the rest mass contribution):

TI(q,P) = NC2 + H(q, p) + 0(c-2) , (12a)

with H(q,p) given by (2.1.4-32), and likewise the total relativistic mo-

mentum P(q,p), see (10b), yields the nonrelativistic. total momentum,

P(q, p) = P + 0(c-2) , (12b)

with P defined by (5).
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Exercise 2.1.12.2-4. Verify all these statements; and trace in detail how analogous
results apply for the special cases of the Weierstrass functions (see (2.1.12.1-9), and

identify the corresponding nonrelativistic Hamiltonians).

Exercise 2.1.12.2-5. Compare the Newtonian equations of motions yielded by the

Hamiltonians FI(q, p), see (10a), and H(q, p), see (2.1.12.1-1,2). Hint: see Exercise

1.1-7 and 1.1-8.

In our treatment above, and below as well, we focus on the subclass

of Hamiltonian evolutions of RS type that are described in a more

straightforward manner by Newtonian equations of motions: hence we

generally restrict our attention to Hamiltonians of type (2.1.12.1-1,2)
rather than (10a).

Let us end Sect. 2.1.12.2 by noting that the "relativistic" character of

the RS models is further evidenced by the possibility to identify in some

cases the motion of RS particles with that of the "solitons" of a relativis-

tically invariant integrable PDE in (1+1) dimensions, the so-called Sine-

Gordon equation (this type of connections is one of many topics we have

not treated in this book). But it is on other hand well known that no

many-body dynamics of Newtonian type, as considered in this book, can

be fully consistent with Einsteinian (special) relativity, inasmuch as it is

fundamentally based on the notion of a single universal C'absolute") time.

2.1.12.3 Newtonian case. Complex extension presumably
characterized by completely periodic motions

In Sect. 2.1.12.3 three remarks are offered, the third of which led to a

conjecture which is also reported. A fourth remark that considerably
strengthens the plausibility of that conjecture is then given. A proof ofthe

conjecture is provided in the subsequent Sect. 2.1.12.4, for the cases

(y) (see Sect. 2.1.12).
M

Remark 2.1.12.3-1. Addition of a term 1], g,, (qn) to theHamiltonian
n=1

(2.1.12.1-1), so that it read

N

H(q, p; s) [h,, (s p,; q) + gn (qn)]

with h,, (p; q) defined by (2.1.12.1-2,3,4), leads to the Newtonian equa-

tions of motion
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N

+ s g(q,,) -q.)
n

4,,4. w(q,, (2)
.=l,.#n

Proof It is closely analogous to that given above, see Sect. 2.1.9.1. Indeed the

addition of a term ,g,,(qn) in the right hand side of (2.1.9.1-17a) only entails the

n=1

presence of an additional term g'(q,,) in the left hand sides of (2.1.9.1-19b) hence of
n

(2.1.9.1-24), leading, see (2.1.9.1-21), merely to the addition of a term sg,',(q,,)4,, to

the left hand side of (2.1.9.1-16).

Hereafter we focus on the special case

g"W = -(A / s) x , (3)

and correspondingly on the Newtonian equations

'V

4n 4n 4,,4. w(q. - q (4)
M=I'M#n

Remark 2.1.12.3-2. The equations of motion (4) correspond to the

(modified) Lax equation

i-AL=[,LM] (5)

This statement applies of course only in the context of the models under consid-

eration, see the formulas of Sect. 2.1.12. It is easily proven by retracing the treatment

of Sect. 2.1.8, a task that is left as an easy exercise for the diligent reader.

Remark 2.1.12.3-3. The modified Lax equation (5) entails that the

traces of the p-th powers of the Lax matrix,

TP = trace[ :L' ], p = 1,2,... , (6)

all evolve as follows

TP (t) = TP (0) exp(p A t) . (7)

In particular, if A is imaginary,

A=ico
, (8)
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with co real and nonvanishing, the traces T, (t) are all periodic in t with

period

T=27rlco (9)

Proof Time-differentiation of (6) yields (using (5) and (2.1-16))

Tp-pATP=O ,

which immediately entails (7).

Conjecture 2.1.12.3-4. All solutions of the many-body problem char-

acterized by the Newtonian equation of motion

IV

4n -'0)4n = E 4n 4,,, w(qn

- qr,,) ,
(10)

with co an arbitrary (nonvanishing, real) constant and w(x) as given in

Sect. 2.1.12, are completely periodic.

Note that this Conjecture 2.1.12.3-4 refers to a complex extension of the RS

model, see (10), as well as (1) with (3) and (8).

Remark 2.1.12.3-5. If qnW is a solution of the equations of motion

(2.1.12-1) (namely, of (10) with co = 0 ), then  n (t),

 , (t) = q, (r) ,
(11a)

T-(t)=[exP(iCOt)-I]1(iCO) (11b)

is a solution of the equations of motion (10).

Proof

r

W exp(i cot) (12a)4nW = Wn f(Z
n

`

-) Ot) (12b)7(Z [f(I.)] 2
=: 4,7(Z.) eXP(2 i C4nW - 'CO 4nW =  n
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Insertion of (12a) and (12b) in (10) yields, up to a trivial notational change, (2.1.12-1).
Note that r(t) ,

see (11b), is periodic in t with period T, see (9).

Obviously this Remark 2.1.12.3-5 strengthens the plausibility of the

Conjecture 2.1.12.3-4, although it does not quite prove it. Indeed the

transformation (11), entailing a relation among the equations of motion

(10) and (2.1.12-1), plays an important role in several subsequent devel-

opments related to models featuring completely periodic motions (see, for

instance, Sect. 4.5).

2.1.12.4 Solution via the OP technique in the rational, hyperbolic
and trigonometric cases. Completely periodic character

of the motion

In Sect. 2.1.12.4 we provide the solution of the RS many-body problem
of Sect. 2.1.12 in the rational, hyperbolic and trigonometric cases. The

Conjecture 2.1.12.3-4 is thereby proven, for these cases, via the Remark

2.1.12.3-5.

We focus on the more general hyperbolic case (y), see (2.1.12-11); the

treatment also covers the trigonometric case, since to obtain the solution

no assumption needs to be made, see below, on the constant a (see
(2.1.12-11), which may therefore be imaginary as well as real (indeed,
arbitrarily complex). The other cases (i)-(iv) are then easily taken care of,
see below, by appropriate specializations of the values of the two a priori

arbitrary constants a and g' (see (2.1.12-11)), as discussed in Sect.

2.1.12 (after (2.1.12-11e)).
The procedure is actually quite close to that of Sect. 2.1.5. Indeed the

starting point are the two matrix evolution equations

k=[E,Afl+afE,LJ , (2)

with the diagonal matrix f(t) defined as follows:

f(t) = diagJ exp[2aq, (t)] I - (3)

The first of these two matrix evolution equations, (1), is of course the Lax equa-

tion, see (2.1.12-1,4,11); the second, (2) with (3), can be shown to hold by exactly the

same argument as given in Sect. 2.1.5 (after (2.1.5-11); the key point is that (2.1.5-8)
holds as well in the present case, see (2.1.12-4,5,11d)).
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Since (1), (2) and (3) coincide with (2.1.5-9,10,11), one can directly

jump to the conclusion of the treatment of Sect. 2.1.5, namely to the fol-

lowing
Proposition 2.1.12.4-1. The quantities exp[2aqn(t)] coincide with the

N eigenvalues of the matrix E(t),

f(t) = exp[a:L(O) t] E(O) exp[a:L(O) tj (4)

where of course now

f(O) = diaglexp [2 a q,, (O)D, E,,. (0) = 5,,. exp[2 a qn (0)] , (5)

L,. (0) = 6n. 4n (0) + G - 5nm) 14n (0) 4M (0)] 1/2 a[q, (0) - qm (0)] (6)

(see (2.1.12-4)), and a(x) is given by (2.1.12-11b),

a(x) = sinh(ay) / sinh[a (x +,u)] (7a)

with

g = i sinh(ay) (7b)

As mentioned above, the trigonometric cases obtains by the simple

replacement a -> ia; and the (hyperbolic or trigonometric) cases (iii) re-

spectively (iv), by replacing the definition (7a) of a(x) with the appropri-

ate definitions as given in Sect. 2.1.12, see (2.1.12-9b) respectively

(2.1.12-10b). As for the rational cases (i) respectively (ii), the formula (4)
must be replaced by

 w = Q(O) +ao) t (8)

where

Q(O)=diag[q,(O)],Q,,,(O)=,5,,,q,(O) (9)

while L(O) is still given by (6), but with a(x) given by (2.1.12-7b) re-

sPectively (2.1.12-8b); and in these 2 cases, the preceding Proposition
2.1.12.4-1 is replaced by the following

Proposition 2.1.12.4-2. The coordinates q,(t) coincide directly with

the eigenvalues of the matrix  (t), see (8).
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These results for the rational case obtain easily from those for the hyperbolic case

by taking the limit a --> 0; otherwise, they could be obtained directly, indeed this is

precisely what was done in Sect. 2.1.10.1 for case (i).

From the explicit formulas (4) or (8) it is now easy to prove the Con-

jecture 2.1.12.3-4. Indeed the Remark 2.1.12.3-5 entails that the solution

of the equations ofmotion (see (2.1.12.3-4) with (2.1.12.3-8))

N

co w(q,, - q. (10)

which obtain from the Hamiltonian (see (2.1.12.3-1) with (2.1.12.3-3,8))

Ar

H=J[hJsp,,;q)-i(co1s)qn1
n=1

with h,, defined by (2.1.12.1-6), are given, in the cases (iii), (iv) and (y),

by Proposition 2.1.12.4-1, and in cases (i) and (ii) by Proposition

2.1.12.4-2, both however modified via the replacement of the time t, in

(4) or (8) (as the case may be), by (see (2.1.12.3-1 1b))

z- = [exp(i co t) - fl/ (i co) . (12)

This entails that the matrices f respectively  , see (4) and (8), are now

periodic in t with period T, see (2.1.12.3-9):

k(t + T) = k(t) (13a)

 (t + T) =  (t) (13b)

Hence the (unordered) set of the (complex) eigenvalues of these matrices

is also periodic with period T, and this entails that each eigenvalue, con-

sidered as a continuous function of t, is also periodic,

qn (t + ') = qnW (14)

with period (at most)

T=T-N! (15)
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This argument guarantees that the coordinates q, (t) have periodicity T (rather

than T), because of the possibility that they get reshuffled through the motion (which
now takes place in the complex plane, see (10)). The mechanism whereby this may

happen is analyzed in Sect. 4.5, in the context of a, possibly even nonintegrable, gen-

eralization of the simplest rational case (i).

Note that the complete periodicity of the motion holds in spite of the

(evident !) translation-invariant character of the equations of motion (10)

(which, incidentally, are instead, in contrast to (2.1.12-1), not invariant

under a rescaling t -> 7 = bt of the time variable). Indeed it is clear (see

(2.1.12-2)) that (10) entail, for the center of mass

Ar

N_ q,, (t) (16)
n=1

the equation of motion

i co ql,0 (17)

whose solution q_(t),

47(t) = q_(0) +  (O) [exp(i co t) - 1] (i co) (18)

is indeed periodic with period T, see (9).

Exercise 2.1.12.4-3. We saw in Sect. 2.1.9.1 that the Lax pair (2.1.12-4,5) with

(2.1.12-7) C'case (i)") was a fake Lax pair. Show that (2.1.12-4,5) with (2.1.12-9)

('case (iii)") is also a fake Lax pair (although a little less so: in this case (iii) the traces

TI, T2 and T3 are functionally independent, but TP with p > 3 is a function of T, T,

and TD.

Exercise 2.1.12.4-4. The equations of motion (2.1.12-1) with (2.1.12-9) C'case

(W)") have been shown in Sect. 2.1.10.3 to be solvable (see (2.1.10.3-17)). Is the

technique of solution identical to that of this Section? Hint: compare (2.1.9.1-1) with

(2.1.12-4,9b)). Do the two techniques yield the same solution? Reply: of course !

Exercise 2.1.12.4-5. The separable character of the Lax matrix (2.1.12-4,7) O'case

(i)") was taken advantage of in Sect. 2.1.12.2 to obtain the result (2.1.12.2-3), leading

to (2.1.12.2-13). Try and obtain analogous results for case (iii).

Exercise 2.1.12.4-6. Obtain (17) from (4) and (12).
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2.1.13 Various tricks: changes of variables, duplications,
infinite duplications, reductions to "nearest-neighbor"'
forces, eliniination of velocity-dependent forces

In Sect. 2.1.7 various tricks were introduced and illustrated by showing
how they work in a few exemplary cases. In Sect. 2.1,13 we revisit some

of those tricks, and we introduce a few new ones. Our treatment is again
based on the discussion of specific examples, this being the appropriate
way to show how tricks work. And we naturally select now these exam-

ples from the material presented above, after Sect. 2.1.7.

Changes of variables. Let us review here an approach already utilized

repeatedly above. Consider the class of Newtonian equations ofmotion

,V

(r) (r) qt(z) Lq(r)]qn qm
M,t=l

where the primes indicate of course derivatives with respect to the inde-

pendent variable r. Here and below we use the notation f,,.,(q) to indi-

cate that the functions f,., may depend on all the coordinates

qj, j = I_, N. Note that these equations of motion, (1), are invariant under

rescaling of the independent variable (I- -> c Z-). (Verify!).
Let us now introduce the following change of dependent and inde-

pendent variables (see (2.1.7-2)):

qn (r) = V(t) x. (t) I
r = Z-W, (2a)

where we keep for the moment open the option to assign the two func-

tions p(t) and r(t) .

These transformations, (2), entail the following relations (see (2.1.7-
4,5)):

r

q, (o(t) i, (t) + 0 (t) x,, (t)]l f(t) (2b)

qnff (r) = 1 9(t) i,, (t) + [2 0(t) -  o (t) f(t) / f(t)] i,, (t)

+ [ 0(t) - 0(t) f(t) / f(t)] X , (t) I/ KtT- - (2c)

The Newtonian equations (1) take then the following form:

in + [2 (0 /  9) - (f / i-)] i,, + [(0 /  9) - (f / f) (0 / (p)] x,,

0 E ri. + (0 /,P) X
.

I k, + (0 /ox, I f"", [P 2d - (3)
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Two cases deserve to be singled out. For

V=1 (4a)

(and unrestricted f, (q) ), (3) take the neat form

A'

i,, (t) - [-ew / iwl i,, (t) = Y i. (t) i, (t) fkol - (4b)
.' =I

The close similarity among (4b) and (1) should be noted. If we moreover

set

r(t) = [exp (a t) - 11/ a (5a)

(with a an arbitrary constant), which clearly entails z-(O) = 0, i(o) = 1,

fQ) / f(t) = a, then (4b) reads

Ar

Y. -a i, = I -ii,f..,Lx1 - (5b)
M,e=l

Note that these results imply the following

Proposition 2.1.13-1. To every Solution qnW of (1) that is analytic in

inside a disk centered at -=ilco with radius I/n, there corresponds
(via (2a), (4a) and (5a)) a solution of (5b) with

a = ico, (6a)

co being apositive constant larger than Q,

CO > Q, (6b)

which is periodic in t with period

T=2zlco
,

(6c)

see (5a) with (6a). And of course if all solutions of (1) possess such an

analyticity property -- a fact which happens, presumably, only for special
choices of the functions f,,,,, (q) (if at all) -- then all solutions of (5b) with

(6a,b) are periodic with period T, see (6c).
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The second case we like to single out is characterized by functions

(q) which are homogeneous of degree - 1 in their arguments,

(q) (7a.)(A q)f

(for an example, see (2.1.10-1); note that (7a.) entails that (1) is invariant

under rescaling of the coordinates (q,, --> cq,,)). Then of course (3) can be

replaced by

: ,, + [2 (0 /  o) - (f / f)] i,, + [(0 / q7) - (f / f) (0 / (p)] x,,

= Y k. + (0 /0X. I k, + (0 / P)X, I f"", LY-1 - (7b)
M,9=1

Let us also record the simple form,taken by these equations of motion if

the choice (5a) is made for r(t), and moreover the following simple
choice is made for  9(t):

,p(t) = exp(b t) , (8a)

entailing of course p(o) = 1. Then (7b) reads simply

IV

i,, +(2b-a).i, +b(b-a)x,, = 1] ij + b x ) fm, Ux
.-,

(i", + b x.) (8b)
M,e=l

Exercise 2.1.13-2. Show that the solution of the initial-value problem for the gen-

eralized version of the equations of motion (1) that obtains by replacing there

f .1 [q(r)] with fm, Lq(z-)]+ A i&, [q, (r) - q, (z-)] ,
where A is an arbitrary constant,

can be reduced, via an appropriate change of the independent variable, to the solution

of the initial-value problem for (1), provided attention is restricted to the class of so-

N

lutions whose center-of-mass does not move, I q(r) = 0 (and provided of course
n

n=1

this constraint is compatible with the equations of motion (1) ); and write the relevant

change of independent variable in the context of the initial-value problem. Hint: see

Sect. 2.3.6.3.

This ends our discussion here of the implications of the "trick" based

on changes of (dependent and independent) variables.
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We do not repeat here, but leave it as an instructive task for the dili-

gent reader, a treatment of the results (for instance, in the context of the

RS models treated above, see Sect. 2.1.12) entailed by the possibility to

introduce particles of different kinds via shifts of the corresponding vari-

ables, see (2.1.7-30).

Likewise, we do not repeat here the analysis of the results implied by
the consideration of duplications based on symmetrical configurations,
see for instance (2.1.7-39). The diligent reader will have no difficulty to

obtain, via such an approach, generalized versions of the models consid-

ered above, or below.

As an example of finite duplications, we start from the solvable sys-

tem (see (2.1.10-1))

IV

4,, =2 4n4,n1(q,-q.) (9)

where we assume of course the indices n and m to go from 1 to R. We

then set

N=N+2M (10a)

qnW = ZnW  
n = I,., N (10b)

q,,Iv (t) == XnW + 'YnW 7
n = M

, (10c)

qn,N,m Q) = Xn (t) - 'Yn Q)  
n = M

. (10d)

It is easily seen that this ansatz, (10), is compatible with the equations
of motion (9), and it yields the following (new, real) equations of motion:

N

Y,, = 2 Yd  n' m*n_Zm)
.=I,?n#n

+4 2' - Xm) _Xm)2 +Y2 ] n N (Ila)-M [' M(Zn  m Y m
I/ [(Zn

M

M=1

M

i,, = 4 A
n
/D_

.=I,M#n

+ 4

'v

2
+ Y 21 n M (Ilb)1:  n [n (Xn - Zm) -  n Y n

11 [(Xn - Zm)
n

M=1
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M

+ y,, + 4 D
n

Bnm
n.

+ 4
2

+Y 2] n M (11C)1:  m  n (xn - Zn) - inY
n
]/ [(Xn - Zm) n

-1

,4nm _iijim _Xm)[ _Xm)2 +Y2 +Y2 2  ,,  m (xn - xm) y. ym(x
n

(x
n n m

Xj2 _Y2 +Y2 _ XM)Z+y2_y2 ] , (11d)_, n  m Y. [ (x" - n m
I+  n - m Yn I (xn

n M

n
_Y2 2

( _Xj2 +Y2 2+ymBnm = -in 'm Yn [
n m

1+  n  m Ym [ (Xn _Xm)2 _Ynx
n m

i _XM)2 +Y2 +Y2+ 2.i,  ,,, (Xn - Xm) Yn Ym +  n ,M (Xn _Xm)  (Xn
n M e)

D,m =-[ (x
n _xM)2 +(Yn _YM )2 ] [ (Xn _ xM )2+ (Y

12 +YM)2 ] . (lit)

These equations, (11), may be interpreted as the Newtonian equations
of motion of a many-body problem on the line featuring N + 2M particles
of three different kinds, N of one kind represented by the coordinates

Zn, n = L..., N, and M each of two other, different, kinds, represented by
the coordinates xm and y., m = I,-,M.

The original system, (9), features only two-body forces and is invariant under the

translation q,, --> qn +C; the new system is invariant under the (partial) translation

z,, -> z,, + c, x. -> x. + c
, (n = N; m = M ), but not under the (overall)

translation Zn-->Zn+Cl Xm->Xm+el ym->ym+c, (n=l,...,N; M=l,.,.,M),

affecting the coordinates of all particles. It is however possible to recreate a fully
translation-invariant system via the change of dependent variables

Zn (t) eXp[a 4. (01 1
n = L...,N

, (12a)

xm (t) exp[a  ,_
,,
(t)] , y. (t) = exp[a 77, (t)] M M

. (12b)

Exercise 2.1.13-3. Write the equations of motion satisfied by the "new particle
coordinates" 4 , 4 , 77m , and, for N = M = 1, find the explicit solution of these

equations of motion, or equivalently of the equations of motion (11). Hint: see

(2.1.10.2-13).

Exercise 2.1.13-4. Modify the equations of motion (11), and the equations of mo-

tion obtained from (11) via (12), so that all their solutions are periodic. Hint: note that

the system (11) belongs to the class (1), and see Proposition 2.1.13-1.
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Infinite duplications. This trick has been described in Sect. 2.1.7, see

the treatment beginning with (2.1.7-47). It will be instructive for the dili-

gent reader to use this approach to obtain, in the context of the equations
of motion (2.1.12-1), for instance, (2.1.12-9a) from (2.1.12-7a) and like-

wise (2.1.12-11a) from (2.1.12-8a).

Hints: see (2.1.7-49), and take advantage of the identities

(x+is)r1a)-=acotanh(ax), (13a)
S=-

2g
2 [X (g2 +X2)]-I =2x-'-(x+ig)-'-(x-ig)-', (14)

cotanh(x + i y) = [c otanh(x) cotan(y) + i] / [c otan(y) + i cotanh(x)] (15)

(actually (13a) should, more rigorously, be written in the following form, see eq.

1.421.3 of <GRJ 94>:

x-' + 2 xj: (X2 +S2;r2 / a2)-1 = a cotanh(a x) , (13b)
S=1

to eliminate any doubt about the convergence of the infinite sum in the left-hand side

of (13a)). Let us mention that the version of (2.1.12-11a) that will be obtained in this

manner from (2.1.12-8a) will feature the quantity sin(g) in place of g, a modifica-

tion that amounts merely to a notational change.

The diligent reader is also advised to revisit more generally the treat-

ment of Sect. 2.1.7 (from (2.1.7-49) to (2.1.7-55) ), in the context of the

RS many-body problem, see Sect. 2.1.12.

Next, we discuss again the trick, see (2.1.7-56), whereby models in-

volving only "nearest-neighbor" interactions are obtained from certain

models with pair forces. To illustrate how this works in the context of RS

models, see Sect. 2.1.12, we rewrite (2.1.12-2) as follows:

IV

q,, w (16)
M=1,.#n

and we focus on the assignment (2.1.12-11a),

w(x) = 2 g2 a cotanh(ax) / [g2+sinh2(a x)] (17a)
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Here the sign of the real constant a is irrelevant. Hereafter, for

definiteness we assume that a is positive,

a>0
. (17b)

We then set

 ,(t)=q,(t)+nA (18a)

9
2
= (2/ C)2 exp (2 aA) (18b)

and take the limit A -o, obtaining thereby

4 = 2a [ 4
n
4_, / fi + c' exp[2 a(q,, - q,,,)] I

- 4n 4n+I /fl+c'exp[-2a(q,, -q,+,)Il J, n=2,...,N-1 (19a)

41 =-2a4142 /fl+C2 exp[- 2 a (q, - q,) ] I , (19b)

4, = 2a4, 4, / fl+C2 exp[2a(qv-qv-,)]j (19c)

Proof From (16), (17) and (18) we get

4, 4. iv- (q, - q,,; A) (20)

with

;,
(x; A) = 2 a cotanj a [x + A (n - m)] I -

.11+C2 [expja[x+ A (n -m -l)]j-expf-a[x+ A (n -m +1) (21)

In the limit A -> co (with (17b)), this yields

iv-,,. (x; oo) = 2 a sign(n - m) -

- I t5m'n (5 l+C2exp(-2ax)]j (22)-1 [1 + c
2

exp(2 a x)]-' + m,n+l [

and the insertion of this expression in (20) clearly yields (19).

The "Ruijsenaars-Toda" (RT) system (19) is of course integrable, in-

deed, as the system from which it has now been derived, its solution can

be reduced to purely algebraic operations.
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Let us recall that the solution of (2.1.12-1) with (2.1.12-11a) is detailed in Sect.

2.1.12.4. We leave it as an instructive (unnumbered!) Exercise for the diligent reader

to provide an analogous treatment for the system (19). Such a procedure, as well as

the Lax pair associated to (19), can of course be derived from the corresponding re-

sults for the system (2.1.12-1) with (2.1.12-11) (conveniently rewritten by replacing

q,, (t) by ;L (t) ,
which amounts merely to a notational change), via (18) followed by a

careful scrutiny of the limit A -> co.

There are two other interesting many-body systems with nearest-

neighbor interactions that are easily obtained from the RT system (19).
They read:

iin = il,2
n -1 (Un -U-0-k k+lUn [Un+1 (Un _Un+I )I n 2,...,N-i,(23a)
,
/ Un _ I n in

ii, =Ii2 IU (23b)
i I

- zil fi2 U1 [U2 (Ul - U2

fix = i12 /U (23c)
N N-10IN-11(UN-UN-1)

and

_ n = _ n K-I / (Vn - Vn-I ) +  n+l / (Vn - Vn+I n 2,...,N- 1
, (24a)

';1 = _ l  2 / (VI - VZ) 7
(24b)

VAr = _ N  N-l / (VI - VII (24c)

To derive the system (23) from (19) we set

Un(0=exp[2aqn(01 I
(25a)

entailing

"n /Un = 2a4n I
(25b)

"n lUn = Oln /Un)2 +2a4n 2
(25c)

hence, via (19a) and (25).

ji =

2

/Un + C
2 +C2 (26)

n
lin + "n fin-1 / (Un-I Un ) -tin "n+I Un / [Un+1 (Un Un+M 3
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which coincides with (23a) for

C
2
=_1

. (27)

The derivation of (23b,c) from (19b,c) is completely analogous.
To obtain (24), one can set, in (23),

V,,=U,, +A , (28)

and then take the limit A -> oo. Alternatively, and equivalently, one can set (27) in

(19) and then take the limit a -> 0. This yields again (24), except for the notational

replacement of v,, by q,

Note that (19) and (24), but not (23), are translation-invariant; moreover, (23) and

(24), but not (19), are invariant under rescaling of the dependent variables (q,,,u,,, or

v, as the case may be); and all three systems, (19), (23) and (24), are invariant under

rescaling of the independent ("time") variable. Also note that all these systems, (19),
(23) and (24), belong to the class (1) (up to trivial notational changes); hence addition

to these (integrable !) equations of motion, (19), (23) or (24), of a term ico 4,, (or

icofi,,, or as appropriate), with co a nonvanishing real constant, yields new

(complex) equations of motion featuring only completely periodic solutions (see the

discussion above, after (5a)).

Let us finally introduce a trick whereby certain equations of motion

featuring velocity-dependent forces are reduced to equations without

such forces. As usual, rather than presenting a "general" approach, we il-

lustrate the procedure by applying it to a specific example.
Let us take as starting point the equations of motion (2.1.12-1) with

(2.1.12-8a), which we write here in the convenient form

1jqn_qj[j+qn_ j2162jjq,, 2 1 q, q. (29)
M=I'M#n

(for notational convenience we replaced g with e).
We now set

qn(t)=qn(t)+(g1,,)t (30a)

entailing

q,,= g16+4,, qn= q,, (30b)

so that we get from (29)

g2
N

)2 2]j.qn =2 [1+(s1g)4j[1+(e1g)4j I {(qn -qn) [(qn -q (31)
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It is then clear that, in the limit e -> 0, (31) become

'V

=2g2 (q,, -qm)
-3 (32)

m=l,m#n

which coincide with (2.1.2-5).

This result should not come as a surprise: see (2.1.8-3a) and the treatment fol-

lowing this equation.

Exercise 2.1.13-5. By an analogous treatment obtain (2.1.5-5) from (2.1.12-1)
with (2.1.12-11a) and, more generally, (2.1.4-33) from (2.1.12-1) with (2.1.12-6a).

Exercise 2.1.13-6. Explore the connection entailed by this trick among the Lax

pairs, as well as the techniques of explicit solution, of the RS models, see Sections

2.1.12 and 2.1.12.4, and those of the models featuring no velocity-dependent forces,

see Sections 2.1.1, 2.1.3.2 and 2.1.5.

Exercise 2.1.13-7. To what extent can this connection (see Exercise 2.1.13-6) be

interpreted as the nonrelativistic limit of a relativistic model ? Hint. see Sect. 2.1.12.2.

Exercise 2.1.13-8. Repeat the analysis of the three preceding exercises in the

context of models with nearest-neighbor interactions only: in particular, obtain (2.1.7-
57) from (19).

2.1.14 Another Lax pair corresponding to a Hamiltonian

many-body problem on the line.

The functional equation (***)

In Sect. 2.1.1 a convenient representation of a Lax pair was introduced,

see (2.1.1-1,2), and in subsequent sections results that obtain from this

ansatz were reported. Likewise, another (in fact more general) represen-

tation of a Lax pair was introduced in Sect. 2.1.8, see (2.1.8-1, 2), and its

implications were treated in subsequent sections. We now introduce a

third representation of a Lax pair and, in the following Sect. 2.1.15 and its

subsections, we investigate results that flow from it.

The Lax pair we now introduce reads

L,. = (Pn PJ/2 a (qn - q.) (1)

Mnm=(Pnp.)"2r(q,-q.) (2)

where we are of course assuming that the two functions a (x) and r(x)

are finite at x = 0
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Remark. These equations, (1) and (2), are rather similar to (2.1.8-1,2): indeed the

resemblance among (1) and (2.1.8-1) is reinforced by (2.1.11-5), which entails that (1)
obtains from (2.1.8-1) via the replacement of 4j with pj. But this replacement corre-

sponds in fact to an important change, since -for the system we are now considering, as

indeed for the system that obtained from the ansatz (2.1.8-1,2), there does not hold the

relation (2.1.1-6) (nor (1.2-25a), with u,, =1): see (5a) below, and (2.1.12.1-5a) with

(2.1.12.1-2).
One might also consider a more general ansatz for M, including an additional

diagonal term of type

IV

p,,8(q,, -q,) (3)

in the right-hand side of (2). But this does not entail a significant generalization. We
leave an exploration of its implications as an exercise for the diligent reader, who can

usefully consult in this connection the relevant papers referred to in Sect. 2.N.

It is now easily seen that the Lax equation,

i=[L'M1 , (4)

with the ansatz (1) and (2), corresponds to the Hamiltonian equations

'V

4,, = 2 p. f (q,, - q.) (5a)

'V

= -2& p. f'(q, - q.) (5b)
M=1

entailed by the Hamiltonian

Ar

H & p,,, f (q,, - q.) (6)

provided the even (see (6)) function f(x),

f(_X) = AX) I (7a)

satisfies, together with the two functions a (x) and y (x), see (1) and (2),
the following functional equation
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(* **) 2a(x+ y) [f(x) - f(y)]-a(x + y) [f'(x) -f'(y)] =a (x),,(y) -a(y)r(x).(8)

Proof The diagonal term of the Lax matrix equation (4) with (1) and (2) yields

'V

P,, a (0) = 1: p,, p. [ a(q,, - q.) r (q,,, - q,,) -a(q. - q,,) r (q,, - q.) ] . (9)
m=l,m#n

But the functional equation (8), for y = -x, yields, using (7a) (or rather the relation

f
I

(-X) = -f'(X) (7b)

entailed by (7a)),

- 2a(O)f'(x) =a (x) y (-x) - a(-x) r(x). (10)

Insertion of this expression in the right-hand side of (9) demonstrates that this formula

coincides with (5b).
Let us then look at the off-diagonal terms of the Lax equation (4) with (1) and (2).

One gets

1
[(P,, / pj + (P,, 1p.)] a(q, - q.) +(4, - 4.) a(q,, - q,,,)

2

Ar

p, [a(q,, - q,) y (q, - qm) -a (q, - q.) v (q,, - q,)]

We now use, in the right hand side of this equation, (11), the formula (see (8), with

x = q,, -q,, y = q, -q.)

a(q,, - q,) y (q, - q.) - a (q, - qm) v (q,, - q,)

2 a'(q
n -qm) [f(qn - q ) - f (q - qm)]-a (qn - qm) [f'(q

n

- qm) -f'(q - qm)],
(12)

and then equate the terms which multiply a (qn - q.) respectively a'(q,, - qm) .
We

thus obtain (5b) respectively (5a): in each case twice, namely once for the index n

and once for the index m
.

The proof is thereby completed: the matrix Lax equation (4) with (1), (2), (8) and

(7) is equivalent to the Hamiltonian equations of motion (5).
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2.1.15 A simple solution of the functional equation (***),
and the corresponding Hamiltonian many-body problem
on the line

A simple solution of the functional equation see (2.1.14-8), reads

a (x) = c sin (axl 2) , (1)

r(x)=0 , (2)

f(x)=A+pcos(ax) . (3)

Proof.

2a'(x + y) [f(x) - f(y)]-a (x + y) [f'(x) -f'(y)]

= ac#fcos [a(x+y)12][cos(ax) -cos(ay)]+ sin [a(x+y)12][sin(ax) -sin (ay)] I

=ac,utcos[a(y-x)12]-cos[a(x-y)12]1=0 (4)

Here the first step has been made by using the expression (1) and (3) of a (x) and

f(x), and the second step by using (twice) the trigonometric identity
cos (A) cos(B) + sin (A) sin (B) = cos (A - B). The final result demonstrates the valid-

ity of (2.1.14-8) with (1), (2) and (3).

We now note that, in this case, thanks to (2.1.14-2) and (2), the Lax

equation (2.1.14-4) entails

1=0
. (5)

Hence in this case, not only the eigenvalues of the Lax matrix L, but

every matrix element of L is a constant of the motion. Let us focus, for

notational convenience, on twice the squares of these matrix elements:

c,m = 2PnPm Sin2 [a(q,-q.)12]=p,,pmfl-cos[a(q,,-qm)]I . (6)

Note that there are 1N(N- 1) constants c., since clearly c,m = c.,, and
2

Cm =0'
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Not all these IN(N -1) constants of the motion are in involution, but
2

it is easily seen that

[C
nm 11 Cem] = 0 if n':;'- n, n' # m,.m' n, m' m (7)

and moreover that, if one defines

M

hM Cnm M = 2,3,..., N, (8)

then

[hmjhm,j=O (9)

Proofs. From (6)

a Cnm / a q = Vn - gm ) pn pm sin [a (qn - q,.,)] (10)

a c. / a p, = 2 pm +5mi Pn) Sin
2 [a (qn -qm)12] (11)

Hence, see (1.2-4),

Ar

[Cm I
C nJ=21  (g,,t-'5.e)(gn'ePne+'5m'tP?i)PnPm*

e=1

- sin [a (qn - q,,, )] Sin2 [a (qn' - qm,) / 211- (n <-> n', m <-> mf)

-2 (Snn'pm'-'5='Pm'+'3='Pn'-Smm'Pn')Pn Pm

- sin [a (qn - qm )] sin2[a (qn' - q.,) / 2] - (n <-> n', m <-> m'), (12)

and this proves (7).
To prove (8), let us assume, without loss of generality, that M'> M, and let us

note that the definition (8) entails

hm, = hm +
M, M,

1: 1 Cnm + Cnm + 2: E Cnm (13)
n=1 m=M+l n=M+l m=1 n=M+l m=M+l

Hence, see (8) and (7),

M M, M M,

[hm, h m 1: 1: [Cnm) C .1 + I I IC-, C'e. I
n,m=l m'=M+l n,m=l d=M+1
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M M,

=21 1: [C
nm  

C nm'] (14)
n,m=l m'=M+l

To perform the last step we used the symm try of c,,,,,, c. = c., see (6).

We now use (12) (as well as cmm = 0, see (6)):

M M,

[hAf,hm]=4Z Z PnPmPm"
n,m=l m'=M+l

- Is in[a (q,, - q. )] Sin2 [a (qn - qm,) / 2]- sin[a (qn - qm, )] sin2[a (q,, - qm) / 2]1

M M,

=81] 1 p,,p p., sin[a (qn - q.)12] sin[a (qn - qm,)12].

- I cos[a (q,, - qm) / 2] sin[a (q,, - qm,) / 2] - cos[a (q,, - q., 2] sin[a (q,, - qm) / 2]

M M,

8 E I P, Pm Pm, sin[a (q,, - q.)12] sin[a (q,, - qw)12] sin[a(qm - qm,) /21. (15)
n,m=l W=M+l

To make the second step we replaced sin [a(qn - qm)] with

2 sin [a(q. - qm) /2] cos [a(q. - q.) /2], and likewise for sin [a(q. - qm,)] ; while in.

the last step we used the identity cos (A) sin (B) - cos (B) sin (A) = sin (B - A) .
Now

the summand in the right hand side of the last equation is antisymmetrical under the

exchange of the two dummy indices n and m, which are summed over the same

range. Hence the sum vanishes, and (9) is proven.

It is thus seen that the many-body system defined by the Hamiltonian

(see (2.1.14-6) and (3))

IV

H=AP2 Pn pn cos [a (q,, - qm)] (16)

where P is the total momentum,

N

P=j P (17)
n=1

is integrable: it possesses the N -I Constants of motion in involution (8).
An additional constant of motion is the total momentum P,

15=0
, (18)

140



or the Hamiltonian itself, see (16); note that these two constants are re-

lated to the constant of motion h, see (8), as follows:

H =(A +,u) P2-,u h, . (19)

This relation is an immediate consequence of (8), (6), (16) and (17).
Note that the translation-invariance of all the constants of motion h,, see (8) and

(6), and of the Hamiltonian H, see (16), implies that all these quantities Poisson-

commute with P.

Let us also emphasize that the term A p2 in the right hand side of (16) could be

replaced by an arbitrary function of P, say g(P), without modifying, other than

trivially, the evolution of the system. Indeed the additive presence of a term g(P) in

the Hamiltonian has the only effect to induce the same, additive, linear time-

dependence g" (P) t on all the canonical coordinates q,, (t) ,
and it has no effect on the

canonical momenta & (t). In particular, see below, the only effect of the term A p2

appearing in the right-hand side of (16) is to add the linear term 2A P t to all q,, (t)s

(hence one could, without any significant loss of generality, set A = 0, although we
refrain from doing so).

The equations of motion of this many-body problem read (see
(2.1.14.5) and (3))

21 p. I A +,u cos [a (q,, - q (20a)
M=1

'V

2 ap&I &, sin [a (q,, - q.)] (20b)
M=1

There is no straightforward way to write them in Newtonian form.

This system is not only integrable: it is solvable, indeed, as we show

in the next Sect. 2.1.15.1, its general solution can be exhibited in com-

pletely explicit form.

2.1.15.1 Explicit solution

In Sect. 2.1.15.1 we report the general solution of the Hamiltonian equa-

tions of motion (2.1.15-20). It reads

qjt) = (ala) +2(A +,u)Pt
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-(2/a)arctanf2a,u[(P-A)/ct)j tan[c9(t-t,,)/2]j , (1a)

p,,(t)=p,,(O)IP+Acos[co(t-t,,)]IIIP+Acos(cot,,)I (1b)

co = 2ap (p2 _,42)112 . (10

In these formulas a, A and p are the constants that appear in the Hamil-

tonian (2.1.15-16,17) and in the equations of motion (2.1.15-20), P is the

total momentum, see (2.1.15-17), and the two constants a and A are de-

fined by the expressions

a=arctan(S/C)-2a,uPt (2a)

,4 = (C2 + s2)112 (2b)

where

N

C=j p,,cos(aq,,) (3a)

IV

S & sin (a q,,) (3b)

These two quantities, C and S, evolve in time (unless A +,U 0, see (6)
below), but the two quantities a and A, defined by (2) and (3), are time-

independent (see (12) and (13) below); hence they, as well as the total

momentum P, see (2.1.15-17), can be evaluated, via (2) and (3), at the

initial time t = 0, namely in terms of the initial data q,, (0), & (0). Finally,
the quantities & (0), appearing in the right-hand-side of - (1b), are of

course the initial values of the canonical momenta p. (t); while the N

constants t,, are determined, in terms of the initial coordinates q,, (0), by
the requirement that (1a) hold at t = 0.

Note that the time-evolution of the coordinates qjt), except for the

linear contribution displayed by the second term in the right-hand side of

(1a), is given by a "universal" function of t (namely, the same function of

the time t, independent of the index n, for all the qn'S)l evaluated, for

each qn, at an appropriately shifted time t -t, see (1a). Also note that, as

indeed entailed by the equations of motion (2.1.15-20), the coordinates

qn (t) are defined mod(27r/a); as they evolve over time, this ambiguity is

of course lifted, for each of them, by the requirement of continuity.
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We have written the formulas (1) in the manner which is most appro-

priate to the case characterized by the inequality

p2 -A2 =hN >0
. (4)

The validity of this inequality depends on the initial conditions; it is

clearly satisfied if all the initial momenta, pjo), have the same sign (see

(2.1.15-8) and (2.1.15-6), as well as (2.1.15-17), (2b) and (3) which entail

the equality in (4)). When the inequality (4) holds, clearly the canonical

coordinates qjt), except for the linear drift represented by the second

term in the right-hand side of (1a) (absent if Z +,a= 0), are all periodic
with period

T = 2;r1co
, (5)

see (1c); likewise, if the inequality (4) holds, the canonical momenta

pjt) are all periodic with the same period, and never vanish (so that their

signs are determined by their initial values).
If instead the inequality in (4) does not hold, then the solution (1) is

perhaps better written in the following (equivalent) form:

q, (t) = (ala) + 2 (A +,u) Pt

-(2/a)arctanf2a,u[(P-a)/v]tanh[v(t-t,,)/2]1 (6a)

p,(t)=p,,(O)IP+Acosh[v(t-t,)]IlfP+Acosh(vt,,)I (6b)

v=2a'U('42 _P2)1/2 . (6c)

In this case neither the canonical coordinates qjt), nor the canonical

momenta p,, (t), are periodic; note, however, that also in this case the ca-

nonical momenta never vanish (this general property is indeed already
apparent from (2.1.14-5 b)).

Here and below we assume that the constant a is real, and of course that the ca-

nonical coordinates and momenta, q,, (t) and p,, (t), are real as well. The reality of

the canonical coordinates and momenta, qn Q) and PnW I
is also compatible with a

purely imaginary choice for the constant a, namely with the replacement of a with

ia, which amounts essentially to a replacement everywhere (in the Hamiltonian, in

the equations of motion, in the expression of the solution: see (2.1.15-16), (2.1.15-20)
and (1)) of the trigonometric functions with their hyperbolic counterparts. We leave
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the exploration of the model obtained in this manner as an interesting exercise for the

diligent reader.

Let us now prove that (1) provides a solution to the equations of mo-

tion (2.1.15-20). The following three remarks are instrumental to this end.

Remark 2.1.15.1-1. The Hamiltonian (2.1.15-16) can be rewritten, via

(3) and (2b), in the simple form

H=AP2 +,a (C2 + S2) = A p2 +,U A2 (7)

Remark 2.1.15.1-2. The evolution equations (2.1.15-20) can be recast

in the following form:

4,,=2AP+2,u[Ccos(aq,,)+Ssin(aq,,)I (8a)

,b,, = 2 au& [-S cos(a q,,) + Csin(a qj] (8b)

with P, C and S defined by (2.1.15-17) and (3).

Remark 2.1.15.1-3. The quantities C(t) and S(t), see (3), evolve ac-

cording to the following linear evolution equations:

( =-Ps
, (9a)

 =Pc
, (9b)

p=2(A+,u)aP (90

Proofs. (7) follows from (2.1.15-16) and (3) (as well as (2b)), via the trigonomet-
ric identity

cos[a(q,,-q,,,)]=cos(aq,,)cos(aq.)+sin(aqn)sin(aq.) (10a)

This identity, and the analogous one,

sin[a (q,, - q.)] = sin(a qn) cos(a q.) - cos(a q,,) sin(a q.) (10b)

are also instrumental to show, by inserting the definitions (2.1.15-17) and (3) in the

right hand side of (8), that these equations of motion coincide with (2.1.15-20).
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Finally, to prove (9), let us time-differentiate the definitions (3):

IV

jP,,cos(aqj-a&4,sin(aq,,)j (11a)

N

Z  P, sin(aqj+ap,,4,cos(aqn)I (11b)
n=1

We then use (8) in the right-hand sides of (11a), getting thereby

N

I p,12a U[-SCOS2 (a qn) + Csin(a qn) cos(a qj]- 2APa sin(a qn)
n=1

2 au [Csin(a q,,) cos (a qn) + S sin2(a qn (12a)

=-2a,uPS-2aAPS (12b)

To get the last equation, (12b), we used the definitions (2.1.15-17) and (3b) of P and

S. It is immediately seen, via (9c), that (12b) coincides with (9a).
The proof of (9b) is completely analogous.

The solution of (9a) and (9b) is easy:

C (t) = C(O) cos(p t) - S(O) sin P t) , (13a)

S (t) = S(O) cos(p t) + C(O) sin(p t) , (13b)

namely

C(t)=Acos(yt+a) (14a)

S(t)=Asin(rt+a) (14b)

with the 3 constants o, A and a defined by (9c), (2a) and (2b).

Proofs. The verification that (10b) satisfy (9) is too trivial to require any elabora-

tion.

Summing the squares of (13a) and (13b) one gets

A
2
= C2 (t) + S2 (t) = C2 (0) + S2 (0) , (15)

which proves that A, see (2b), is indeed time-independent.
Finally the ratio of (14b) over (14a) yields pTecisely (2a), while comparison of

(13a) with (14a), and of (13b) with (14b), entails
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a=arctan[S(O)/C(O)j , (16)

which demonstrates the time independence of a.

Insertion of (14) in (8) yields

4,,=2AP+2,uAcos(aq,,-pt-a) (17a)

P,,=2a,uAsin(aq,-jot-a) . (17b)

It is now easily seen that these (decoupled ODEs can be integrated to

yield (1).

Proofs. Let us set

q,, (t) =  ,, (t) + (p t + a) / a (18)

so that (17a) become (using (9c))

q,, =-2,u[P-Acos(a;L)] (19)

entailing

W
dy1[P-Acos(ay)j=-2,ut :f (20)

(0)W

The integral on the left hand side can be performed explicitly (see for instance eq.

2.553.3. of < GRJ 94>) and, via (18) and (1c), there obtains

4 (t)=(2/a)arctanf2a,u[(P-A)/co]tan[co(t,,-t)/2]1 (21)

which, via (18), yields (1a).
To obtain (1b) one notes that (17b), (18) and (19) entail

I p,, = -(d/dt) log[P-Acos(a;L)] (22)

hence

p,,(t)=p,,(O)fP-Acos[a4 (0))]IIIP-Acos[a4 (t))II (23)

We then use (twice) the trigonometric identity

cos(z) tan2(z / 2)1/ [1 + tan2(z / 2)] (24)
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to obtain, from (21),

P -A cos(a;K) = W2 _,42) / fp + ACoS[C0 (t_t" (25)

The insertion of this expression in (23) yields (1b).

Let us end Sect. 2.1.15.1 with the following

Exercise 2.1.15.1-4. Investigate the many-body system defined by the

Hamiltonian
IV

H = 1] - q.)2 (26)
.-,
& p. (q,,

n,m=l

Hint: Note that this Hamiltonian corresponds to (2.1.14-6) with

2

f (q) = A +,u q (27)

Then in (2.1.15-1) replace c with 2251a, in (2.1.15-3) replace A with

A+2PIa', set u=-2P1a2, take the limit a --> 0 and then eliminate all til-

des. Or, more directly, perform this same transformation on the Hamilto-

nian (2.1.15-16).

2.1.15.2 Reformulation via canonical transformations

Another approach to the solution of the problem characterized by the

Hamiltonian (2.1.15-16,17) is via appropriate canonical transformations.

We indicate two of them in Sect. 2.1.15.2.

Firstly, let us set

  =exp(iaqj, i& = -i (p, / a) exp (-i a q, ) , (1a)

q,, =-ia-'log( J, p,, = i a   i& . (1b)

This transformation, from the ("old") canonical coordinates and mo-

menta qn p, to the ("new") coordinates and momenta  ,,77, is canoni-

cal.
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Proof

L9 ,, laq, = 5,,, ia ,, , a ' lap, =0 , (2a)

ai7.1aq,=-i5.,ia77., a77.1ap,=,6.,(ia4j_' (2b)

Hence (see (1.2-4))

k., 77 .1 k.,  . I = [77,,, 77. 1 = 0 (3)

It is now convenient to introduce the quantities

'V

(4)E,, = 1 77,, s = 0,1,2 ,

and to note that there then hold the following equations:

P=iaE, ,
(5)

2(,ZE2 +'UE E (6)H -a
1 0 2

-a2(,uE2+211E,,  +,uEo ,2,) (7a)

=2a2q,, (A E, +,u E,  ,,) ; (7b)

t., = (1 - s),8 Es ,
s=0,1,2 , (8a)

,6 = 2a
2

(A +,U) EI= _iy , (8b)

E,(t)=E,(O)exp[(1-s),6t] , s=0,1,2 (8c)

The expressions (5) and (6) of the total momentum P, see (2.1.15-17), and of the

Hamiltonian H, see (2.1.15-16), in terms of the quantities Es, see (4), are immediate

consequences of the second (1b), and of the formula

p,, p,, cos [a (q,, - q.)] = -(a2/ 2) 1& 77. ( ,'
,
+  'z') , (9)

which is itself an immediate consequence of (1). Note that these expressions, (5) and

(6), suggest that E, and E, E2 are time-independent, see indeed (8c).
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The evolution equations (7) are the Hamiltonian equations, see (1.2-1), entailed

by (6) and by the relations

c9 E, / c9  , = s i& a E, / a  ,s (10)

entailed by (4).
The evolution equations (8a) with (8b) obtain by time-differentiation of the defi-

nitions (4) (separately, for s = 0, s = 1 and s = 2), using (7); note that (8a) with s = 1

entails that El, hence fl, see (8b), are time-independent; and this entails (8c) (from

(8a)). Finally, the consistency of (8b) with (2.1.15.1-9c) is guaranteed by (5).

The structures of (7a) and (8c) suggest the position

(t) = Z (t) exp(-fl t)

entailing

-,a a' I E, (0) - 2 E, (0) + E, (0) [ (t)]21 (12)
n

an ODE with constant coefficients that is immediately integrated (by
quadratures), yielding

  (t) = I El + i [co 1(2,u a2)] cotan[co(t-z-,)/2)]j/E0(0) , (13a)

with

2 1/2co=2,ua[E,(0)E,(0)-Ej] (13b)

where the (integration) constants r,, are determined by the initial cond,i-

tions, see (11),

Z (0) =   (0) = fE, + [co 1(2,u a2)] cotan[-co-r,,/2]j/E0(0) . (13c)

(The diligent reader will check the consistency of the definitions (13b)
and (2.1.15.1-1c)).

Via (11), (13c) yields

  (t) = exp(-,8 t) fE, + [co /(2p a2)] cotan.[co(t-z-,,)/2]j/E,(0) . (14)

Hence, via (7b) and (8c),

i& f 2 (A +,a) a2E, + co cotan[co(t - z-j /2]1 (15)
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and this can be immediately integrated by quadratures, to yield

q, (t) = 77, (0) exp[2 (A +,a) a2 E, t] fSin[CO(I_" - t) /2]/ sin(z-,, / 2)12 . (16)

Exercise 2.1.15.2-2. Verify that, via (1), these expressions of and i& (t)

yield (2.1.15.1-1). Hint: use the following two identities:

2 log[ i x + y cotan(O)]= log(y
2 _X2) + 4 i arctan[z tan(O - 0,)] , (17a)

Z (X/Y)1[1_ (Y /X) 2 11/2 -11 1 (17b)

0 =-i (x/Y) f[l_ (Y/ X) 2 ]+11 (17c)

2 [x sin(O) -y cos(O)] sin 0 = x+ (x' +Y2)1/2 COS[2 (0_00 (18a)

tan(2 00) = y / x (18b)

As we just saw, the canonical transformation (1) provides an alterna-

tive, perhaps more elegant, route for the solution of the problem charac-

terized by the Hamiltonian (2.1.15-16,17). But this approach appears in

fact more suitable to treat the case in which the parameter a is purely

imaginary, because only then the transform (1) is real, namely it maps

real variables into real variables. We introduce now another canonical

transformation, which is instead real when the parameter a is real. How-

ever, in this case, we only report some of the formulas relevant to this

new approach, leaving their proofs, as well as the derivation (for the

third time !) of the explicit solution of the problem, as an exercise for the

diligent reader.

The canonical transformation among the "old" variables qn  pn

and

the "new" variables x, Yn reads

xn=2(p,,Ia)"'sin(aqn12) , Yn = 2 (p,, la)
112

cos(aqn /2) (19a)

p,, = (a / 4) (x,2, + y,,2) , qn = (2 / a) arctan(x,, /YJ (19b)

And there hold then the following formulas:

[Xn7YM1=i5nM 7 [xn3XM1= nIYM1=O (20)

H=AP2 +,U(C2 +S2) (21)
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with

N

P =(al4) +Y2)I (X 2
n J22)

n=1

(_X,2C = (a14) +Y2) (23a)n

n=1

N

S=(al2)1 Xn Yn (23b)
n=1

- n = a[USxn +(' P +,UC) YJ (25a)

 n = -a [M S Yn + (/1 P _," C) Xn (25b)

which are easily seen to entail (2.1.15-18) as well as (2.1.15.1-9), hence

(2.1.15.1-13,14).

2.1.16 A nonanalytic solution of the functional equation
and the corresponding Hamiltonian many-body problem

The functional equation (***), see (2.1.14-8), admits a more general so-

lution than that presented at the beginning of Sect. 2.1.15, see (2.1.15-
1,2,3). It reads as follows:

a(x)=cos(ax/2)+Msign(x)sin(ax/2)

y(x)=a,u'[sip(x)cos(a-r/2)-M-'sin(ax/2)] (2)

f(x)=A+pcos(ax)+,u'sign(x)sin(ax) , (3)

M= f [I + cu, /,a) 2]1/2 -11
1/ 2

/1 [1 + (,U, 1,U)
2 ]1/ 2 +1/2 (4)

Without loss of generality we assume throughout Sect. 2.1.16 that a is a

positive constant, a> 0.

A comparison of (3) with (2.1.15-3) clarifies in which sense this solution of the

functional equation (* * *) is more general than that given at the -beginning of Sect.

2.1.15. However, for p= 0, while (3) becomes (2.1.15-3), (1) and (2) yield

a(x)=cos(axl2) (5)

7(x) = -2,u a sin (ax / 2) (6)
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which differ from (2.1.15-1,2). The diligent reader may verify that these expressions,

(5) and (6), together with (2.1.15-3), do satisfy the functional equation (***) (this is of

course implied by the result proved below).
To verify that (1), (2), (3) and (4) satisfy the functional equation (***), see

(2.1.14-8), we must show that the following expression vanishes:

a-'I 2 a'(x + y) [f(x) - f(y)]-a (x + y) [f'(x) - f'(y)] - [a (x) y (y) -a (y) r (x)] I

= f-sin[a (x+ y) /21+ Msip(x+ y) cos[a (x + y) /2] 1.
- Ju [cos(ax) -cos(a y)] +,u'[sign(x) sin(ax) - sign(y) sin(ay)]

- fcos[a (x + y) /2]+Msign(x + y) sin[a (x + y) /211.

- I-,a [sin(ax) - sin(ay)] +,a' [sign(x) cos(ax) -sign(y) cos(ay)] I

-#'I [cos(ax/ 2) +Msign(x) sin(ax/ 2)] [sign(y) cos(ay / 2) - M-' sin(ay / 2)]

-[cos(ay /2) +Msign(y) sin(ay / 2)] [sign(x) cos(ax/ 2) -M-' sin(ax / 2)]

=2,usin[a(x+y)12]-,q' [sign(x)-sign(y)]cos[a(x+y)/2]

+M,u'sign(x+y) [sip(x)+sign(y)] sin[a(x-y)/2]

-,u' [ M-' +Msign(x) sign(y)] sin [a (x -y) /2]

+,u'[sign(x)-sign(y)]cos[a(x+y)/2]=sin[a(x-y)/2]Z (7)

Z = 2,u -,u'[M-' +Msign(x) sign(y)] +,U'Msign(x+ y) [sign(x) + sign(y)] (8)

To obtain this result we used several times the trigonometric identities

sin(A) sin(B) + cos(A)cos(B) = cos(A -B), sin(A) cos(B) - cos(A) sin(B) = sin(A - B).

We now note that the definition (4) entails, as can be easily verified, the relation

M-' =M+ 2,u /,a' (9)

hence (8) becomes

Z=,u'Mz , (10)

Z=-[I+sip(x)sip(y)]+sip(x+y)[sign(x)+sip(y)] (11)

But z clearly vanishes: if x and y have opposite signs, obviously each square

bracket in the right hand side of (11) vanishes, if x and y have the same sip, then

x + y also has the same sign, hence (11) yields z = -2 + 2 = 0
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The many-body problem corresponding to the Lax equation (2.1.14-4)
with (2.1.14-1), (2.1.14-2) and (1), (2), (4) is therefore characterized, see

(2.1.14-6) and (3), by the Hamiltonian

N

H =Ap2+ p,, p. Ig cos[a (q,, - qj]+,u' sinj a (q,, - q.)l (12)
n,m=l

where as usual P is the total momentum, see (2.1.15-17). The corre-

sponding equations of motion read

'V

21 p. t A + p cos[a (q,, -qj]+,u'sinj a(qn - qjj I (13a)
M=1

'V

P. =2ap,,j pmlp sin[a(q, -qm)j-p'sip(q,, -q cos[a(qn -q,,,)Jl (13b)
M=1

Of course for a'= 0 these formulas, (12) respectively (13), reduce to

(2.1.15-16) respectively (2.1.15-20).
The possibility to recast these equations of motion, (13), in Lax form,

entails the existence of N integrals of motion; let us focus on the traces

of the powers of the Lax matrix L,

T, = trace[ :L' n = 1, 2,..., N (14)

The fact that these quantities are constants of motion is implied by the

general treatment of Sect. 2.1 (see for instance (2.1-9, 10)); to conclude

that the corresponding Hamiltonian system, see (12) and (13), is com-

pletely integrable one must moreover show that these N quantities are in

involution. We prove this in the following Sect. 2.1.16.1; here we note

that (14), with (2.1.14-1) and (1), entail

T, =P , (15)

T2 = (Mlu') [H + (u - A +M'Ui)p2 (16)

Proofs. (15) is an immediate consequence of (14), (2.1.14-1), and (1). To prove

(16) we note that (14) and (2.1.14-1) yield

'V Ar

(17)T2 L,,. L. pn pn [a (qn - q. )]21
n,m=l n,m=l

where we also used the fact that a is even, a (-q) = a (q) ,
see (1). We now use (1) to

get
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[a(x)] 2

=cos(ax/2) +M2 sin(ax/2)+2Mcos(ax/2) sin(alxl/2) , (18a)

[a(x)]I=
I (I+M2)+l (I_M2) cos(ax)+Msin(alxl) , (18b)
2 2

[a(x)]2=(M1,u')[a+Mp+,u cos(ax)+p'sin(ajxj)j. (18c)

To get (18b) from (18a) we used the trigonometric identities COS2 (A / 2) = [cos(A) + 1]/ 2,
sin2(A / 2) = [- cos(A) + 1]/ 2 ; to get (18c) from (18b), we used (9).

We now insert (18c) in (17), and use the definitions of H and P, see (12) and

(2.1.15-17); this yields (16), which is thereby proven.

Of course the treatment given in Sect. 2.1.16, as well as in the fol-

lowing Sect. 2.1.16.1, holds equally if the constant a is replaced by ia,

entailing generally the replacement of trigonometric with hyperbolic
functions. A particularly interesting-instance in this case obtains for the

special choice a'= iu, since the Hamiltonian (12) takes then the neat

form

'V

H =Ap2 +,a I p,,p.exp[-ajq,-q.j] (19)
n,m=l

2.1.16.1 Proof of integrability. A new functional equation

In Sect. 2.1.16.1 we prove that the traces T,, defined by (2.1.16-14) with

(2.1.14-1) and (2.1.16-1) are in involution,

[Tn, T, 0; n, n' N

(see (1.2-4)).
Since T, coincides with the total momentum P, see (2.1.16-15) and

(2.1.15-17), and all the traces T, as indeed the Lax matrix L itself, see

(2.1.14-1), are translation-invariant, the validity of (1) for n = 1, and for

n'= 1, is trivial. Hence in the following we assume that both n and n' are

larger than unity, say 1 < n'< n.

The result (1) is proven via the following two steps.

Proposition 2.1.16.1-1. The quantities Tn defined by (2.1.16-14) with

(2.1.14-1) are in involution, see (1), if the even function a(x),

a(-x) = aW (2)
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satisfies the following functional equation:

a'(x)a (x + y + z) - a'(x + y + z) a(x) + a'(y) a(z) + a(z) a(y) =

=a (y + z) [ , (x) +,B, (y) +,6, (z) -,8,, (x + y + z) (3)

where the 4 functions 8,, (x) are all odd,

18, (-X) = -18, (A s = 1, 2,3,4 ,
(4)

but are otherwise arbitrary.

Proposition 2.1.16.1-2. The (clearly even) function a(x) defined by

(2.1.16-1) satisfies the functional equation (3) with

,6s (x) = (a/ 2) M sign(x), s = 1, 2,3,4 , (5)

which clearly satisfy (4).

Proofs. The proof of Proposition 2.1.16.1-1 is somewhat cumbersome. We note

first of all that the definition (2.1.16-14) of the traces T,, entails

Ar

aT,,1aq,=n (aLj j, 16qj)Ljj,...L (6a)
jji

'V

aTnlapj =n (aL
jIj2 1apj)Lj2j3..IjJ' (6b)

and that the definition (2.1.14-1) of the Lax matrix L entails

aLjk / L9 qn = (Pj Pk )1/2(15
in
_ 5kn)a'(qj - qk) -1 (7a)

6 Ljk /'0 Pn = (Pj Pk )1/2 (,5jn + Jj a (qj - qk) /(2 Pn) (7b)

Hence, via (1.2-4) and after a little elementary algebra,

A'

[T, T,,, (n n'l 2) Y p (2,3) (3,4)...(n,l) (2,3) (3,4) ... (n',l')
"j'i j j"=j

f9iii, [(1,2)'(I',2')-(I',2')'(1,2)]/pjI +(l<->2)+(l'<->2')+(l<->2,1'<->2')I (8)

Here we have introduced the following convenient notation:

P pj pj pi" pj (9)
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(1,2) =- a(qj, - qjz ), (1',2') = a(qj,, - qj2, ) and so on
, (10a)

(1,2)' -= a(q,, -

qj2 ), (1',2')' = a'(qj,, - qj2, ) and so on (10b)

The notation Q <-> 2) indicates a repetition of the same expression, with the indices

j, and j, exchanged; likewise (l' <-> 2'), for the indices "

d
"

d so on.A an J2 I
an

The product p, see (9), is clearly invariant under any exchange of summati n indi-

ces. Me product (2,3)(3,4)... (n,l) is invariant under the transformation

(I <-> 2, n <-> 3, n - 1 <-> 4,...), thanks to the even character of a(x) ,
see (2.1.16-1), which

entails, see (9), (1,2) = (2,1) and so on. Likewise the product (2',3) (3',4) (n',I') is

invariant under the transformation (1' <-> 2, n' <4 3', n' - 1 <-4 4,...) .
Hence

Ar

(p / pj,) (2,3) (3,4) - - - (n,l) (1, n') (n.1 n'- 1) ... (32')[T, T,,, 2 n n' 1]
j j,11'-jn,j ....I n'

Note that the transition from (8) to (11) has involved two steps: the elimination of the

3 additional terms inside the curly bracket (compensated by the replacement of the

factor (1/2) with 2 in front of the sum), and then the sum over the index j, (using the

Kronecker 5jj,, ). Of course the ratio (p / pj, ) is independent of pj, ,
see (9). Note

that, as indicated, now (and below) the sum operates on all the indices j, and j,' ex-

cept j, *

Let us now consider the following transformation, under which the product
(2,3)(3,4) ... (m,l)(1, m') (m,m- 1) - - - (3,2) is clearly invariant:

(2' <-> 2,3
"

+-> 3, ...,
1 +-> h,...) .

It is obvious how this transformation is identified, in

terms of the above mentioned product it leaves invariant; it is also obvious that this

transformation does not affect the ratio p / pjj ,
since it does not involve the index j, *

It would be easy to identify the integer h, namely the corresponding summation index

j,; but this identification is not needed in the following.

Using this transformation on the summation indices we get from (11)

N

[T, T,,, n n' (p / pj,, ) (2,3) (3,4) ... (n,l) (1, n') (n', n'- 1) ... (32')
jj--jn,j ""'jn"=

- [(1,2)'(1,2) - (1,2)'(1,2) + (h2)(h2) - (h2)(h2)] (12)

We now use the formula

[(1,2)'(1,2') - (1,2')(1,2) + (h2')'(h2) - (h2)(h2')] = (2,2') V12 + Ah +,812' +,# 2'1

(13)
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where

-

qjh ),,8,2 =-A (qj -qj2,),,82,, =-,8,(qj, -qj ).A2 =-,8, (qj, - qj2)1162h =-,82 (qj,
2

(14)

This formula, via (10), coincides with (3) with x = qj 
-

qj2, y = qj,
-

qj,,, z = -qjh + qj2

hence x + y + z = q -

-

qj, (recall that a(z) is even, see (2), hence a'(z) is odd,
Ji 2

a'(-z) = -a(z)).
The proof is now completed, since the sum in the right hand side of (12) with (13)

can be written as follows:

N

Y S. (15)[T, j, V12 +,82h + J8h2' +J8 2'1n n'
JIIJ2,---,JnIJ2n

j,fj,---Jn'j "- n"

with

Sj =(plpj,)(2,3)(3,4).-.(n,l)(l,n')(n',n'-I) ... (3'2') (2,2) (16)
1'..-JnJ ,...'jn

where of course p is defined by (9). Hence S
j j.

is symmetrical under the
n'

exchange of any two of the summation indices, while each of the 4 terms in the square

bracket in the right hand side of (15),A,,,82h 918h2" 182'1 ,
is antisymmetrical under the

exchange of its two summation indices, see (14) and (4): and this of course entails that

the sum vanishes.

The proof of Proposition 2.1.16.1-2 is easier. The left hand side of (3) with

(2.1.16-1) reads

(a/2)(1-sin(ax/2) + Msign(x)cos(ax/2)lfcos[a(x + y + z) /21

 Msign(x+ y + z) sin[a(x + y + z) /2] 1- f- sin[a(x + y + z) /2]

 Msip(x + y + z) cos[a(x + y + z) /211 fcos(ax/ 2) +Msign(x) sin(ax / 2)1

 f- sin(ay / 2) +Msign(y) cos(ay 2)1 fcos(az/2) +Msign(z) sin(az / 2)1

+ f- sin(az- / 2) +Msign(z) cos(az 2)1 Icos(ay / 2) +Msign(y) sin(ay / 2)j)

= (a12) M fMsin[a(y + z) /2] [sign(x) sign(x + y + z) + sign(y) sip(z)]

+ cos[a(y + z) /2] [sign(x) +sip(y) + sign(z) -sign(x + y + z)J I . (17)

To obtain this equality we used repeatedly the trigonometric identities

sin(A) cos(B) - cos(A) sin(B) = sin(A - B) ,

cos(A) cos(B) + sin(A) sin(B) = cos(A - B) .
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We now use the identity (proven below)

sign(x) sign(x + y + z)+ sign(y) sign(z)

=sip(y+z)[sip(x)+sip(y)+sign(z)-sip(x+y+z)] (18)

and the definition (2.1.16-1) of a(x), to rewrite the right hand side of (17) as follows:

(al2)Ma(y+z)[sigii(x)+sign(y)+sign(z)-sip(x+y+z)j (19)

which coincides, via (5), with the right-hand side of (3).

This completes the proof of Proposition 2.1.161-2, except that there remains to

ascertain the validity of the identity (18). This is a trivial task that can be left to the

reader, who needs to verify that (17) holds for any compatible choice of the sips of

x. y, z, y + z and x + y + z
.
There are 2' = 32 such choices, of which however only

20 are compatible: for instance if y and z are positive, y + z cannot be negative.

Moreover, there are two symmetries of (17) which lessen the burden of checking: this

identity is obviously invariant under the simultaneous change of sip of x,y and z
,
as

well as under the exchange of y and z .
Hence one can restrict attention only to cases

with, say, x > 0, and among those, one need consider, of the cases with y and z hav-

ing different signs, only those in which, say, y > 0, z < 0 : altogether 12 cases, of which

8 with x > 0, y < 0 and 4 with x > 0, y > 0, z < 0
.
Of these 12 cases, 4 are incompati-

ble, 5 yield the equality,0 = 0, 2 the equality - 2 = -2, and 1 the equality 2 = 2.

Let us end Sect. 2.1.16.1 by emphasizing that Proposition 2.1.16.1-1

entails that any one of the traces T defined by (2.1.16-14) with (2.1.14-

1), or, more generally, any nontrivial function of them, can be chosen as

the Hamiltonian of a system, which turns then out to be completely inte-

grable provided the even function a(x), see (2), satisfies the functional

equation (3) with odd fljx), see (4). Proposition 2.1.16.1-2 guarantees

that such a function is provided by (2.1.16-1,4) with p and a' arbitrary
constants, hence that the system characterized by the Hamiltonian

(2.1.16-12) is completely integrable: indeed this Hamiltonian is a linear

combination of T, and T,', see (2.1.16-16) and (2.1.16-15). The question
of the existence of other even functions a(x) which satisfy the functional

equation (3) with (4) is open.

Finally note that the Hamiltonian model treated in Sect. 2.1.16 and

2.1.16.1, see (2.1.16-12), has been shown to be completely integrable, but

has not been explicitly solved, in. contrast to the model (to which it re-

duces in the special case u'=0) treated in Sections 2.1.15, 2.1.15.1 and

2.1.15.2, see (2.1.15-16), which has instead been explicitly solved, see

(2.1.15.1-1).
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2.2 Another exactly solvable Hamiltonian problent

In Sect. 2.1.14, and in the sections following it, many-body models are

discussed which are characterized by Hamiltonians of type (2.1.14-6). In

particular, the solution is reported, see (2.1.15.1-1), of the model charac-

terized by the Hamiltonian (2.1.15-16). In Sect. 2.2 we report the explicit
solution of a somewhat analogous model, characterized by the Hamilto-

nian

IV

H = I (P" P")1/2 cos (q, - q,,)
n,m=l

Since this Hamiltonian is translation-invariant (i.e., invariant under
N

q,, --> q,, + q,, ), it commutes with the total momentum P =L p, Therefore this

n=1

quantity is a constant of the motion. Addition of a function g(P) to the Hamiltonian

(1) would only, trivially, add the term g(P) t to each of the canonical coordinates

qn W ,
with no effect on the canonical momenta Pn (t). We therefore forsake here

any such addition. Note moreover that we have introduced no constants in (1); of

course an arbitrary constant can be inserted by the trivial resealing transformation

q,, (t) --> a qn (t), while multiplication of the Hamiltonian by a amounts merely to an

analogous resealing, t -> u t, of time.

.

Hereafter we assume the momenta p. to be all positive,

P" > 0
, (2)

and we take the positive determination of the square roots, see (1). It is easily seen,

for instance directly from the equations ofmotion (3b), see below, that validity of this

condition, (2), at t = 0, guarantees its validity for all time t > 0.

The equations ofmotion entailed by (1) read

IV

=P-1/21 P112 cos[a (q,, - q.)], (3a)
n M

'V

'/21] 1/2

Pn =2aPn
-,

PM sin[a(qn-q.)j (3b)
M=1

159



The general solution ofthese equations ofmotion reads

q, (t) = q, (0) + arctan ( sin (N t 12) cos (q,, (0) -a -N t12)

I [sin(N t 12) sin(q,, (0) -a -Nt12) +   , (0)] 1/2

1b] I , (4a)

p,, (t) = p,, (0) + 2 b [p,, (0)]
""

sin(N t 12) sin[q,, (0) - a -Nt /21 + b2 Sin2 (N t / 2),

(4b)

with the two constants a and b given, in terms of the initial data, as fol-

lows:

1V

b=(2/N)f Y
1/2

(0) Y/2 =2H1/2
IN (4c)

,
 ,'(O)Pjo)] cos[q,,(O)-q,, ]

N
1/2

.'
[p,(O)]1/2cos[qn(O)11]a=arctan[JZ  #)] sin[q,(O)]j/fE (4d)

n=1 n=1

Note that the coordinates and momenta, qn (t) and & (t), of the n-th par-

ticle depend on the initial data of the other particles (namely, on the

q. (0)'s and p. (0)'s with m # n ) only via these two quantities, b and a.

Let us also emphasize that these formulas entail that the solutions, see (4),
are completely periodic with period T = 47c IN (of course the coordinates

qn (t) are defted mod(2)r), see (1)).

It is trivially easy to verify that (4) hold at t = 0. The diligent reader will verify
that (4) satisfy (3). We prefer to indicate below a route whereby the solution (4) is

obtained from (1).

The stating point of our treatment is the following canonical trans-

formation:

u. = (2 Pn)112 sin(qn) Vn = (2 p,, )
1 / 2

cos(q,, (5a)

P = 2+V2)(Un n
/2, qn = arctan(un I Vn (5b)

hi terms ofthe new variables un, Vn the Hamiltonian (1) reads

H=(U2+V2)/2 (6)

160



with

IV N

U=j U"' V=L V, (7)
n=1 n=1

and the corresponding equations ofmotion read

k = V)  n = -U (8)

entailing

&=NV, T =-NU, (9)

U (t) = B sin(N t + a), V(t)=Bcos(Nt+a) (10)

Un (t)=u,(O)+(2BIN)sin(Ntl2)cos(a+Ntl2) ,
(1 la)

Vn(t)=Vn(o)-(2BIN)sin(Ntl2)sin(a+Ntl2) . (1 lb)

Proof To verify that the transformation (5) is canonical one must check (see (1.2-

10)) the properties

[Un3Vn1=gnm JUn5Um]=[Vn3Vml=o (12)

(see (1.2-4)), and this is a trivial task. It is likewise trivial, from the definitions (7) and

(5a), using the trigonometric identity cos(qn ) cos(qm ) + sin(qn)Sin(q.) = cos(qn - qm),

to show the coincidence of the definitions (6) and (1) of the Hamiltonian H. The equa-

tions of motion (8) are then, again trivially, the Hamiltonian equations, see (1.2-1). en-

tailed by (6) and (7), and by summing them over n from 1 to N one immediately gets

(9) via (7). The verification that (10) satisfy (9) is trivial; moreover (10) imply

U (0) = B sin(a), V(O) = B cos(a) ,
(13a)

hence

B = UUM12 + [V(O)] 2 11/2 ,
a = arctan[U (0) / V (0)] .

(13b)

Via (7) and (5a) it is immediate to see that this definition of the constant a coincides

with (4d), and that

B = (2H)112 = 2-1/2Nb (13c)

with b defined by (4c).
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Finally, clearly (11) hold at t = 0
,
and to verify that they satisfy (8) with (10) one

may conveniently use, in the right-hand sides of (11), the trigonometric identities

sin(A) cos(B) [sin(A + B) + sin(A - B)II 2,
sin(A) sin(B) [- cos(A + B) + cos(A - B)II 2.

The last task is to show that (5) entail (4) via (11). Indeed, from the second ofthe

(5b) and (11) one gets, using (13c),

q,, (t) = arctan f [u,, (0) + 21/2 b sin(Nt / 2) cos(a +Nt / 2)]

/ [v,, (0) - 2-1/2 b sin(Nt/2) sin(a+Nt/2)]l , (14a)

hence, via (5a),

qn (t) :-- arctan f [sin[qn (0)] +b(0)]
-1/2

sin(N t / 2) cos(a +Nt / 2)]

/ [cos[qn (0)] - b  ,, (0)]-1/2 sin(Nt/2) sin(a + Nt12)]j . (14b)

We now use the trigonometric identity

arctanf[sin(,4)+C]/[cos(,4)+D]I=A+arctan(E) (15a)

E=[Ccos(A)-Dsin(A)]1[1+Csin(A)+Dcos(A)] (15b)

to get from (14b)

qn (t) = q,, (0) arctanj [b  " (0)] -1/2

sin(N t / 2) cos[q,, (0) - a -Nt/2]

1[1+b ,,(O)]-Il'sin(Ntl2)sin[qn(o)-a-Ntl2)]]I (14c)

which clearly coincides with (4a).
To get (4b) one starts from the first ofthe (5b) and gets, via (11),

p,, (t) = & (0) + 2 (B /N)
2 sin2(Ntl2)+(2BIN)[2Pn (0)]1/2 sin(N t / 2)

- f sin[q. (0)] cos(a +Nt / 2) - cos[q,, (0)] sin(a +Nt / 2)1 (15a)

which, via (13c), clearly yields (4b).
Note that (4b) can be rewritten in the form

p,, (t) = f [p,, (0)]
"'

+ b sin(N t / 2) sin[q. (0) - a - Nt /2] 12

+ b2sin2(Nt12) Cos2[q,,(O)-a-Ntl2] , (15b)

which displays the fact that p,, (t) is always positive.
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2.3 Many-body problems on the line related to the motion

of the zeros of solutions of linear partial differential

equations in 1 + 1 variables (space + time)

In Sect. 2.3, which contains several subsections, see below, the following
idea is exploited.

Let vf(x,t) be a function that satisfies a linear Partial Differential

Equation (PDE) in x and t; in particular, let us assume that

V(x, t) p, (x, t) is a (monic) polynomial of degree Nin x,

V*'0 =

P'V (x, 0 = X" + 11 C.W X' = 11 [X - X" (01 ,

M=1 n=1

that evolves in time according to a linear PDE, say

[ AO + AlX+ A2X2 + A3X3 ] Vf. +[ B, +Blx-2(]V-1) A3X2

+CVI,, +[ E-(N-1)D2 X ] Vf, +[ D, +D,x+D2X2

-[N(N-1)(A2-A3x)+NBI ]V=O . (2)

A polynomial is called "monic" if the coefficient of its term of highest degree is

unity.

Exercise 2.3-1. Verify that the evolution PDE (2) is satisfied by functions Vf(x, t)

that are (for all time) a monic polynomial ofdegreeNin x. Solution: see Sect. 2.3.3.

The formula (1) represents a monic polynomial of degree N in two

different ways: via its N coefficients cm, and via its N zeros xn. This en-

tails a bi-univocal (nonlinear) mapping among the two sets

C = I c., m = N I and X = f x,,, n = N 1; note however that the ele-

ments c. of the set C are uniquely defined, while the elements x,,- of the

set X are defined up to permutations. If the zeros x,, are all real, this am-

biguity might be lifted by an ordering convention, say

X1 :! X2 :! 
...

:! - x1v .
(3)

The nonlinear mapping among the two sets C and X is the main tool

for the developments discussed in Sect. 2.3 (including its subsections, see
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below). We will see that certain simple, linear time-evolutions of the co-

efficients c. (t) correspond to more complicated nonlinear time-

evolutions of the zeros x,, (t) .
We will moreover see that these latter time-

evolutions of the N zeros xn (t) are rather naturally interpretable as many-

body problems on the line (and, in some cases, via complexification, also

as many-body problems in the plane: see Chap. 4). This will open the

way to solving such many-body problems; hence this approach provides a

technique to identify solvable many-body problems, and then to study
their behavior.

2.3.1 A nonlinear transformation: relationships
between the coefficients and the zeros of a polynomial

Let p,, (x) be a monic polynomial of degree N in x,

N N

P,(X) = X, +I C" XN-m = 1-1 (X - X") - (1)
-I n=1

In Sect. 2.3.1 formulas are reported which exhibit some (well-known!)
expressions ofthe coefficients c. in terms ofthe zeros x,

Ar

CI = _Y Xn = _SI I (2a)
n=I

2
C

1
X (2b)2 nj XnZ = _(SI - SO

2 2

N

3-3s, +2S3) (2c)C3 XnI Xn2 Xn3 (SI S2
6

nj,n?,n3=1;nj#nZ,n2#n3,n3#nj
6

and so on, where

N

SP = I P

.,
(Xn ) p = 1,2,... ; (3)

-1

as well as

IV

C, X" (4)
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These expressions follow in an obvious way from (1). The inverse problem, to

express the zeros x,, of the polynomial p,(x) in terms of its coefficients c., can of

course be solved in explicit form only for N = 1, 2,3 and 4.

2.3.2 Some formulas for a polynomial and its derivatives,

in terms of its coefficients and its zeros

Let p, (x, t) be a monic polynomial of degree N in x, whose N coeffi-

cients c. (t) are time-dependent, as well as its Nzeros x,, (t)

N

V(X, t) = P" (X, t) = XII +I C. (t) XN, ,

M=1

V(X, 0 a P,(X, 0 = 1-1 [X - X, (01 -
(2)

n=1

In Sect. 2.3.2 we report several formulas that express the (partial) de-

rivatives of 0,(x, t) =- p, (x, t), first in terms of its coefficients c. (t), see

then in terms of its zeros x, (t) ,
see (2).

N-1

xVI.jx,t)=NxN+Y (N-m)c.(t)x" (3)
M=1

N-2

x2VIX,,(x,t)=N(N-l)xN+Y (N-m)(N-1-m)c.(t)x'v' (4)

and so on,

Ar

V, (X, 0 = Y, 6M (t) X" ,
(5)

-1

N

V" (X, 0 =Y EW X, ,
(6)

-1

and so on.

N

Vx (X-I 0 = V(XI 0 Ya [X - X (01-11 (7)
n=1
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N

Vf,(X,t)=Vf(x,t)I1 [X-X.(t)1-,f-i.(t)I ,

v

[x - x,, (t)]
-1 12 1]V.,. (X, 0 = Kx,0

,
[X,, (t) - X. (t)] -1 1 1

n=1 m=l,m#n

v,,, (X, 0 = V(X,0M -

N

-xM(0]-Ij , (10)[X-Xn(t)]-lf 1: I'n(t)+'Mt)1[Xn(t)
n=1 M=I'M--n

IV N

v,,t (X, 0 = Kx,0 Y - x,, (t)] (t) + 2 i,, (t) im (t) [x,, (t) - X. (t)] a 1)
,-.,

[x
n=1 m=I,m#n

x V,, (x, t) - N V(x, t) = V(x, t) 1X-X.(tT'fXn(t)I 1

n=1

IV
-1

f2 1] x,, (t) [xn (t) - xx vf"., (X, 0 = vf(x,0-, [x xn (01
n=1 m=l,m#n

N N

xV. (XI 0 = V*I0 1: [X - Xn (01
-1 f- 1: XnW [nW + 'm (t)][Xn (t)-x,,#)]'j,(14)

n=1 m=l,m--n

N N

x2Vf,,, (x, t) - N(N - 1) Vf(x, t) = Vf(x,t)x
-1 f2 1: [Xn (t)] 2[XnW - X. (011: [ - Xn (01

n=1 m=l,m#n

(15)

X[ X2 qf,,, (x, t) - 2(N - 1) x qf,, (x, t) + N(N- 1) Vf(x, t) ]

,v N

V(X,01: [X_Xn(t)]-lf2 1: [X"(t)]2XM(t)[Xn(t)_Xjt)]-Ij
n=1 m=l,m#n

x [x V, , (X, 0 - (IV - 1) V, (X, t)]

V,(X,0-, [x Xn(t)] - 1: Xn(t)[Xn(t)m(t)+Xm(t)n(t)][Xn(t)-Xm(t)I
n=I m=l,m#n

Proof The formulas (3, 4, 5, 6) follow immediately from (1). Likewise (7) and

(8) obtain immediately by differentiation of the logarithm of (2).
To obtain (9) one differentiates (7) with respect to x, and uses again (7). This

yields
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2
IV N

:-- V I -Xn) (18a)V. If (x - XJ - 1: (x1-1 1
n=1

N

(x-x.)-' (x-x.) , (18b)
n,m=l;m#n

N

V/ = V/ 1: (xn - X.)
-, [(x - XJ, - (x - X.)

-1 1 1
(18c)

n,m=l;m#n

IV IV

2 V/I (x - x,,)
-1 1

,
(x. - x.) (18d)

n=1 M=I'M#n

Exercise 2.3.1-1. Prove (10) and (11). Hint: proceed as above.

To prove (12), one starts from (7) multiplied by x:

IV N

xVfx =V/1] x(x-x,)-l =V N+2 x -Xn) (19)L n
(X

n=1 n=1
I

Exercise 2.3.2-2. Prove (13)-(17). Hint: to prove (13), multiply (9) by x and, in

the right hand side, replaces x with x - Xn + x,,; and so on for the other equations.

2.3.3 Manymbody problems on the line solvable via

the identification of their motions with those of the zeros

of a polynomial that evolves in time according to a linear

PDE in 2 variables (space and time)

It is now clear, by taldng a linear combinations of the formulas (2.3.2-
7 -- 17), that to the linear PDE (see (2.3-2))

AO +Alx+A2X2 +A3X3 ] Vfxx +[ BO +Blx-2(N-1)A3X2

+CV,, +[ E-(N-I)D2x ] V, +[ D, +Dlx+D2X2 ] Vx,

-[ N(M-1)(A,-A3x)+NB, ]yf =0

there corresponds the nonlinear "equations ofmotion7
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N

2
+B x, -2 (N-F,Ci,, + Ei,, = B

.,
(X,, - X.)

,
-

0 1 ,
IA, x + 1]

.=l,m#n

- [2 C, 
n _ m - (in +, j (D, + D,x,,) - D2 Xn (n Xm + 'm Xn)

+,4Xn+,4 X2+,4 3) ] .
+2 (A0 1 2  3 X11 (2)

The correspondence works obviously both ways: if the N "particle
coordinates" x,,(t) evolve according to the equations of motion (2), the

(monic) polynomial V(x, t) identified by the N zeros x,, (t), see (2.3.2-2),

satisfies the linear PDE (1); if a (monic) polynomial satisfies the PDE (1)
(which because of the way it has been obtained, is guaranteed to admit

such a polynomial solution), then its zeros x,, (t) evolve according to the

equations ofmotion (2).
The equations of motion (2) are naturally interpretable as the Newto-

nian equations of motion of a N -body problem on the line with one- and

two-body forces. In some cases, see below, these equations of motion are

Hamiltonian.

Before discussing the solvability of the equations of motion (2) let us inte ect
several remarks and an exercise.

Remark 2.3.3-1. The PDE (1), as well as the ODEs (2), feature linearly the I I

quantities CE,B,,B,,D,,Dl D2','40,'41"42"41; only 10 of these, however, play a

role, since any one (but only one!) of these 11 quantities could be replaced by unity,
by dividing (1) and/or (2) by it.

Remark 2.3.3-2. As implied by the way it has been established, the correspon-
dence among (1) and (2) does not require the 11 quantities
C, E, B0  B,  Do  D, y D2  AO 3'415'41, Al to be constant (time-independent); however, for

simplicity's sake, we hereafter assume these quantities to be indeed all constant.

Exercise 2.3.3-3. Verify that the simple change ofvariables

x,, (t) = a 5 ,, (r) + c, r = bt, (3)

with a, b, c arbitrary constants, when inserted in (2), yields a new system which has

the same form as (2) except for a redefinition of the constants, and evaluate the new

constants in terms of the old ones and of ab,c. Of course by taking advantage of

such transformations one can in some cases reduce a many-body problem of type (2)
to a somewhat simpler one, featuring fewer constants.
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Exercise 2.3.3-4. Find the special cases of (2), obtained by setting to zero some

of the 11 constants appearing in this equation, which are invariant in form under the

transformation (more general than (3))

x,, (t) = a Y,, (r) + c + vt, r = bt, (4)

that features the additional (relative to (3)) arbitrary constant v.

Remark 2.3.3-5. The above correspondence among a linear evolution PDE satis-

fied by the polynomial of degree N in x and the evolution equation of many-body

type satisfied by its zeros could be extended to linear PDEs containing x -derivatives

of order higher than 2, say up to the order M (of course with M:! N). The many-

body problems would then feature M-body forces. Indeed, for instance,

N N N

_xV. =V I (X ' -x.)-1 L Kx"' -X&I +(X. (5)
,
(X - X")

n=1 M=I'M# 

Hereafter we restrict for simplicity our consideration to PDEs of second order, hence

to many-body models involving only two-body, and one-body, forces.

Remark 2.3.3-6. Another extension of the approach described above includes in

the linear PDE higher powers in x than are featured by (1). It is indeed possible to

obtain in this manner more general many-body systems than (2), but one must then

also add some restrictions on the initial data.

Exercise 2.3.3-7. Explore this possibility by performing the relevant calculations,
and then check with the original literature <C78a>.

Exercise 2.3.3-8. Repeat the entire treatment given above, assuming that Vf(x, t) ,

rather than being a monic polynomial, also feature a time-dependent coefficient mul-

tiplying the term of highest (N-th) order in x, and then check with the original litera-

ture <C78a>.

Exercise 2.3.3-9. Rewrite (2) so that the summand in its right hand side be anti-

symmetric under exchange of the two indices n and m. Hint: use appropriately the

identity x,, = (x,, - xm ) + xn .

Let us now discuss the technique to solve the initial-value problem for

the Newtonian equations ofmotion (2).
Given, at the initial time t = 0, the initial positions and velocities of

the N particles, x, (o) and i, (0) ,
one computes the polynomial (of degree

N in x) V at t = 0, as well as its time-derivative (a polynomial of degree

N-1 in x):
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N

V*'0) = 11 Ix - X. (0)] , (6)
n=1

IV

V, (0) = -V(x'0) I -i" (0) [X - X. (0)] , (7)

(see (2.3.2-2) and (2.3.2-8), both evaluated at t = 0).
One then lets Vf evolve according to the linear PDE (1), and obtains

thereby V(xt). The zeros of this polynomial provide directly the coordi-

nates x,, (t) at time t, see (2.3.2-2).

In some cases the linear PDE (1) can be explicitly solved in closed

form, see examples below. Otherwise the natural technique of solution is

to follow the (linear!) evolution of the coefficients c.(t), see (2.3.2-1),

which is clearly given by the following equations (implied by (1), see for

instance (2.3.2-1, 3, 4, 5, 6)):

CE.+(N+ 1 - m) D, 6.-, + [(N - m) D, + E] mD2 6m+l

+(N+l-m)(N+2-m)AOC,-2+(N+l-m)[(N-m)A, +B,] c,j

-m[(2N-m-I)A2+B I ] c. + m (m + 1) A3cm+j = 0
,
m = I,-,N . (8)

These N equations must of course be supplemented by the prescriptions

c -, = co = cN+j = 0. The consistency of (2.3.2.4) with (1) is of course entailed by the

consistency of (8) with the prescription that c. vanish if m < 1 or m > N.

The solution of (8) can be reduced to a purely algebraic task in the

standard manner, but we do not elaborate on this aspect at this stage,
since all the specific examples we treat below allow a simpler treatment

than that appropriate to the general case (8).

Let us however note that the system (8) becomes triangular if

A0 = A, = B0 = Do = 0, or if A3 =D2= 0. Moreover, if A, = D, = D, = D2 =0
I
this

system, (8), can be replaced by a much simpler, easily solvable, one, by appropriately
modifying the ansatz (2.3.2-1): see Exercise 2.3.3-13 below.

170



Of course the solution of (8) must be supplemented by the initial data

c,, (0), 6. (0), which are given, in terms of the initial data x,, (o) , i,, (o) , by

the standard formulas (see (2.3.1-2))

Ar

C (0) = -11 X" (0) ,
(9a)

n=1

Ar

C2 (0) = - E Xnj (0) Xn2(0) 9
(9b)

2
nl,n,=I;nl#nz

I
IV

C3(0) = -
6

E Xnj (0) Xn2 (0) Xnjo) i (9c)
nj,n2n3=1;n #n2,n2#n3,n3#nj

and so on, as well as

Ar

(10a)  (0) = -1] i., (0) ,

n=1

IV

62 (0) = Y '. (0) Xn, (0) 1
(10b)

#n,

-

1
(10c) 3 (0) =

2
n,,nzn

I 'n, (0) Xn2 (0) Xn3 (0)
3 =Inl #n,,n, #n,,n3 #nj

and so on.

Exercise 2.3.3-10. Show that the solution of the following generaliza-
tion ofthe Newtonian equations ofmotion (2),

M

C' n + Ein = B0 + B, Xn - 2 (N - 1) A3 xn2 + YAj (Xn - Xm )
-1

*

m=I,m_-n

* [2 C' n -m - (n + i.) (D, + D,Xn) - D2 Xn ("n Xm + 'm Xn)

N

+2 (A, +'41X?Z + A2X2 +A3X3)] - h(xn, t) 11 (X" - XM)
'

, (11)
n n

M=1,M#n

where h(xt) is an arbitrarily assigned (possibly time-dependent) poly-

nomial in x of degree less than N, is given by the N zeros of the

(monic) polynomial V(x,t), see (2.3.2-1,2), satisBjing the following gen-

eralized version of the PDE (1):
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[ A'. + A'X + A'X2 + A'XI ] V,,, +B, +B,x -2(N - 1) Ax2

+ C Vf, + [ E - (N - 1) D2X ] Vf, +D, +Djx + D,x
2 1 VXt

-[N(N-1)(A,-A,x)+NB, ]Vf=h(x,t) . (12)

Hint: set x = x, (t) in (12), and use the formulas that obtain from (2.3.2-

7 -- 17) by setting thereX = Xn Q) and using (2.3.2-2), which of course en-

tails

IV N

V(XI 0
,

[X _X. wl- H [X" (t) - X. (ol -11 (13)
-I

I
X=x, (t) m=l,m#n

Exercise 2.3.3-11. Write the generalized version of (8) which, via

(2.3.2-2), corresponds to (12). Hint.- insert the expression of h(x,t) as a

(given!) polynomial (of degree less than N) in x, as well as the analo-

gous expression (2.3.2-1) of V(xt) in (12), and equate the coefficients of

the powers of x (from 0 to N - 1 ).

Exercise 2.3.3-12. Repeat the treatment given in Sect. 2.3.3, but tak-

ing as starting point a more general linear evolution equation than (2.3.3-
2) or (2.3.3-12), say

Q, R' Q R N

CV,,(X,t)+l XIV_A,,vIt(y'x+z',t)+L I AqvI(y,x+z,,t)+L h,,,
q

q=1 r=I q=1 r=I M=1

Q P

IV
=X g1: E Aqr Yq 5 (14)

q=1 r=1

with Aq',,Aqr,Yqyz',y,,zr,h. arbitrary constants and Q,R',Q,R arbitrary
r

positive integers. Hint: insert (2.3-1) in (14). Solution: see <C85e>.

Exercise 2.3.3-13. Verify that, if

A, =D, =D, =D2 =0
 (15)

the problem of solving the linear PDE (1) can be simplified by replacing
the ansatz (2.3.2- 1) with the following one:
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N

Vf(x, t) a. (t) P,("., ') (y) (16a)
M=0

where P(",,) (y) is a Jacobi polynomial in y of degree n <E53>,

ao = 2
N
N! (N + a, + a-)! / (2N+ a+ + a-)!

= Tv N! F(l +N+a+ + a-) / F(I + 2N + a+ + a-) (16b)

(to guarantee that Vf(x, t) is monic),

a+ = -1 + [B, /(2 A,)] R I (b, / A) - [B, /(2 A,)] (16c)

I A2 ) 1/2R=(1-4A,A2 I (16d)

y = (1 +2xA, IAJ R (16e)

(here we are assuming for simplicity that R is real, namely

A0 A2 < (A1/2)2, and moreover that a > -1, which requires, as necessary

but not sufficient condition, B, / A2 > 2). Indeed insertion of (16) in (1)

with (15) yields the uncoupled system of linear ODEs

Cd +E6. =m[(2N-m-1)A, +Bl]a. (17a)

entailing

a. (t) = exp[- Etl (2 C)] ta. (0) cosh(A,,, t) + [,i. (0) + a. (0) El (2 C)] X-,'sinh(A. t) 1,
(17b)

/j. = J[E / (2 C)] 2+m[(2N-M-')A2 +Bj IICI112 (17c)

Hint: use the second-order linear ODE satisfied by Jacobi polynomials
<E53>.

Exercise 2.3.3-14. Repeat the treatment of the preceding Exercise

2.3.3-13, but with appropriate, more stringent, restrictions on the con-

stants than (15), so that the role of the Jacobi polynomials, see (16a), is

taken over by other classical polynomials (Gegenbauer, Legendre,

Laguerre, Hermite). Hint: use the relevant second order linear ODEs sat-

isfied by the classical polynomials (see, for instance, <E53>).
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2.3.4 Examples

The class of solvable many-body models introduced in the preceding
Sect. 2.3.3 is rather large, due to the presence of 11 arbitrary constants in

(2.3.3-2). In Sect. 2.3.4, and especially in Sects. 2.3.4.1 and 2.3.4.2, we
discuss some representative examples, obtained by setting to zero several

of the constants appearing in (2.3.3-2). We then introduce certain tech-

niques ("tricks"), and certain findings, associated with such systems; the

alert reader will pursue these approaches by applying them in more gen-
eral cases than those reported below.

In Sect. 2.3.4.1 we treat some systems characterized by evolution

equations which are offirst order in time, in particular the two systems
characterized by the evolution equations

IV

I

i,, = -ax,, + b I (x,, - x.)
-

, (1)
M=I'M#n

2

i,, =-ax,, +cx, I (X. - X.) (2)n

M=1,.#n

In Sect. 2.3.4.2 we treat some systems characterized by second-order

("Newtonian") equations of motion, in particular the four systems char-

acterized by the equations ofmotion

Ar

i" = -X,, + 1]
_,

(1+2i,,im)1(x,,-xj (3)
M=1,M#n

V

- n = ai,, + 2 'n 'm / (Xn - Xm (4)

N

'n = [2i i. -CO (-n +im)xn I(xn -Xm) (5)

N

+ 1] +,UX2- n =ain +,fl Xn
,

[2i i. +'4' +-.)Xn nll(Xn -Xm) - (6)

Generalizations, which however generally feature N -body contribu-

tions, of these systems are also presented (see the exercises in the fol-

lowing two Sects. 2.3.4.1 and 2.3.4.2).
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2.3.4.1 First-order systems

In Sect. 2.3.4.1 we consider two models whose time evolution is deter-

mined by "equations of motion" offirst order in time (see (2.3.4-1,2)).
Additional models are then introduced via the exercises. The alert reader

will invent and investigate many others.

The first model obtains by setting in (2.3.3-2) E = 1, A0 = b / 2, B, = -a

and all other constants to zero. Hence its equations ofmotion read

N

i,, = -ax,, +b (x. -x.)
m=l,m#n

The corresponding PDE, see (2.3.3-1), reads

Vt +
1
(bV,,,-2axV,,+2aNVI)=O (2)

2

By appropriate rescalings of the independent variable t and ofthe dependent vari-

ables x,, (t) one could transform to unity both constants, a and b. We prefer to keep

them visible.

The structure of the PDE (2) suggests the introduction of a new repre-

sentation for the polynomial V(x, t) whose zeros x,, (t) are the solutions of

the equations ofmotion (1), namely

V

V/ (x, t) = Tv (b / a)Nl'HN [(a / b)112+ b. (t) H,,, [(a / b)112X] (3)
M=1

where Hjz) is the ("Hermite"; see Appendix Q polynomial of degree n

in z that satisfies the ODE

H"(z)-2zH'(z)+2nHjz)=0 (4)
n n

and whose normalization is fixed by the (standard; see Appendix Q con-

dition

lim[(2Z)-nHn(Z)I=l - (5)
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The definition (3), together with the (standard) normalization (5) of Hermite

polynomials, guarantees that the polynomial (3) is monic, consistently with the origi-
nal definition (2.3.2-1).

The advantage in the present context of the representation (3) over the

representation (2.3.2-1) is due to the structure of (2), since (4) entails the

formula

I[b(dldX)2 -2ax (dldx)+2aN] H,-j(a1b)112X] == am H,,-. [(a / b)112X] .(6)
2

Hence, see (2), (3) and (6), the coefficients bm(t) evolve according to the

simple (decoupled !) evolution equations

 . (t) = -amb. (t) , (7)

which can be immediately solved:

bm (t) = b. (0) exp (-am t) . (8)

As for the initial data bm (0), they must of course be evinced, in terms

ofthe initial data x. (0), from the polynomial equation

N N

2N (bla)
N12 H,[(al b)112X]+ 1] b. (0)H,2 rI -X (0)

-m
[(a / b)" x] =[X

"
] (9)

M=1 n=1

which is entailed by (3) and (2.3.2-2).
In conclusion we see that the solution xn (t) of the evolution equations

(1) is provided by the Nzeros of the polynomial (3) with (8).
Let us now introduce several remarks, which are related to this

model, but illustrate techniques more generally applicable.

Remark 2.3.4.1-1. The model (1) admits clearly the equilibrium con-

figuration

XnW = rn I 'nW = 0
1 (10)

with (see (1))
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ar, =b

m=l,m#n

Let us set

-1/2

r,, (b / a) Z ' (12)

so that (11) becomes

N

Zn = I (Zn - Z.)-1 (13)
m=l,m#n

The corresponding solution for the coefficients bm(t) must of course also

be time-independent, hence, see (7), they must all vanish,

b,n (t) = b(0) = 0
__ (14)

Via (9), this entails (see (10) and (12)) that the quantities Znwhich satisfy

(13) are the Nzeros of the Hermite polynomial of order N:

H,(z,)",:=O , (15)

Exercise 2.3.4.1-2. Prove this result directly from (4). Hint: write for the Hermite

polynomial H,, (z) the analogs of (2.3.2-9, 12).

Remark 2.3.4.1-3. Let us consider the behavior of the system (1) in

the neighborhood of its equilibrium configuration (10), via the position

XnW =: rn + 6  nW 1 (16)

where e is a small parameter. One thus gets

N

e,, = -a [ +I Mnm  m (17)
M=1

with

M'. = g. Y (Z - ZJ
-,
- (1 -5'.) (Z" - Z.)

-2

. (18)
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Proof From (1) and (16)

N

-a r,, - a s,  + b [r,, - r. + (19)

Expanding the right hand side in c and using (11) one gets, up to corrections of order

2

(20)
M=I'M#n

and, via (11), this yields (17) with (18).

From (17) one infers that, at least for small t, the behavior of   (t)

must be ofthe following type:

N

4 W cmv(m)exp[-a(l+,um)t] (21)
n

M=1

where the quantities v(-)
n

respectively a. are the components of the ei-

genvectors v(-) respectively the eigenvalues of the (N x N)-matrix M

N

(m)
- g

"m
JV(n)ME ='UmE(.)5 1: I[Mnm Pn M

1=0 . (22)
M=1

But a comparison of (21) with (8) (via (16) and the property

V[x,, (t), t] = 0
,
see (3)) entails that the N numbers I +,a. must coincide

with the Nintegers m = 1, 2,...' N. Hence the following

Proposition 2.3.4.1-4. The N eigenvalues a. of the (NxN)-matTix

M (see (18), and recall that the N numbers Zn are the N zeros of the

Hermite polynomial of order N, see (15)) coincide with the first N

nonnegative integers,

y. = m - 1, m = 1, 2,...' N (23)

Exercise 2.3.4.1-5. Prove that, for the N zeros Zn of the Hermite

polynomial of order N, see (15), there holds the sum rule
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N

2 (z,, -z.)-2 = N(N-1)12 (24)
n,m=l;n;,m

Hint: consider the trace of the matrix (18), with the eigenvalues (23).

Remark 2.3.4.1-6 From (1) there obtain the following second-order

"equations of motions" (with velocity-independent forces) for the quanti-
ties x,, (t) :

N

J 
2

X 
-3

=a -2b2 (Xn - X.) (25)
m=l,m#n

Proof Time-differentiation of (1) yields

N

' n=ai,,-b 1] -1
(, (26)

.,
(Xn - Xm ) i" -i.) -

m=l,m#n

Using (1) this yields

1V IV

i,, =a
2

X"+ab I (xn-xj-1-ab L (X,,-X.)'
M=I'M#n m=l,m#n

-b
2 -2

-XI) (27a)I (Xn -XJ J(Xn -XI) - L(xm

,V

i,,=a2x,,-2b2 I (Xn-Xm)
-3
-b

2

Zn ) (27b)
m=l,m#n

where

IV

Z,, X.)-2 -1
- XXI (28a)

,
(Xn I [ (Xn - X) - (Xm I -

m=l,m#n 1=1,1#m,n

To prove (25) we must show that Zn vanishes. Indeed, using the identity

(Xn - XXI - (Xm - XX1 = -(Xn - XJ (X. - XX' (X. - X0
-1

, ,

N

zn =- Y,(Xn -XJ-1 (Xn -Xl)-'(Xm -XY' I (28b)
mj=1;.#nj# ,1#M

and this entails the vanishing of Zn, because in the double sum in the right hand side

the summand is antisymmetrical under the exchange ofthe dummy indices I and in.
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Note that this result,

Z" =0 , (29)

with Z,, defined by (28), is an identity, namely it does not require any restriction on

the N numbers x,, (other that they be different among themselves, so that the right

hand side of (28) is well defined). The diligent reader will check following the treat-

ment given above and below, that this fact entails that the N zeros z,, ofthe Hermite

polynomial of order N, see (15), besides being characterized by the nonlinear equa-

tions (13), also satisfies the nonlinear equations

,V

z,,=2 11 n- .)-3 (30)
.,
(Z Z

M=1,M# 

Ifwe now set

a=isco
, b=isg ,

S2 = Sf2 = 1 (31)

we see that the equations of motion (25) -coincide with (2.1.3.3-1). Hence
these latter equations of motion, (2.1.3.3-1), can also be solved by the

present technique; but only for a set of initial data consistent with (1),
namely such that

,V

4,,(O)=-iscoq,,(O)+isfg [q,,(O)-qm(O)] (32)
M=I,.# 

with s' = s" = 1. Note that, to a real choice of the initial positions q,, (0),

there correspond via (32) imaginary values for the initial velocities 4. (0) ;

hence the motion in this case becomes necessarily complex. It is, of

course, periodic, see (8) and (3 1).

The diligent reader will, at this point, pause to compare the findings reported so

far with those of Sect. 2.1.3.3, including in particular the discussion there of the be-

havior ofthe many-body system in the neighborhood ofits equilibrium configuration.

Remark 2.3.4.1- 7. The evolution equations (1) possess the "similarity
solution"

X"W = At) r" , (33)
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with the (constant) quantities r,, defined by (11) (see also (12), (13) and

(15)), and

f(O=g(at) (34a)

g(r) =[I +Cexp (_2 T)] 1/2

, (34b)

where c is an arbitrary constant.

Proof Insertion of (33) into (1) yields

,V

j(t)r =-af(t)r,,+b[f(t)J_' -r.)- (35)

and, using (11), this yields

!=a[-f+f-'] , (36)

which is clearly satisfied by (34).

Remark 2.3.4.1-8. Time-differentiation of (36) yields (using again
(36))

 =a' [f _f-3] (37)

consistently with the fact that the similarity solution (33) provides as well

a solution to (25) (see (12) and (30)).

Exercise 2.3.4.1-9. Find the most general "similarity solutioW' oftype (33) ofthe

second-order "equations of motion" (25) (and of (2.1.3.3- 1), see (3 1)), and discuss its

behavior.

The second model we consider in Sect. 2.3.4. 1. is characterized by the

equations ofmotion

N

a x,, + c x,'
, 1] .)-1 .-,(Xn _X (38)
m=l,m#n
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It corresponds to (2.3.3-2) with E = 1, B, =a and A2 = c / 2, hence it

yields, in place of (2.3.3-1),

V, +
1Cx2

V,,, +axor., -N[a+(N-l)c12j Vf = 0 (39)
2

The corresponding equations of evolution for the coefficients c, (t), see

(2.3.3-8), read simply

6. =m[c(2N-m-1)12+a]'c. (40)

and can therefore be immediately integrated:

c,,(t)=c.(O)expfm[c(2N-m-1)12+a]tI . (41)

The evolution equations (38) are not invariant under translation, but they are

clearly invariant under the rescaling transformation x, (t) -> 3 ,, (t) = cx (t) with c an

arbitrary constant. Hence one can obtain from them translation-invariant equations via

the following change of (dependent) variables:
_

x,, (t) = exp [b q,, (t)] (42)

Indeed insertion ofthis position in (38) yields

N

=a+c 1]
-1

..,
11-exp[b(q. -q,, )]1 (43)

M=I'M#n

Time-differentiation of (38) yields the following second-order

"Newtonian equations ofmotion":

,V N

a2 x -x.)-'-2C2 (X X.)
2

(Xn _ XM)-3+ c (c + 2 a) x,2, 1: (xn
M=l,m#. M=1,M#n

N

2 X?3 -xOAX" -X.)
-1

.
+C

1 1: (X. (44)
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Proof

-1
-C X2

n Z (X - XJ-2 (n -

-,
(Xn - X.) (45a)i,, = ai,, + 2 c x,.i, 1] i

M
) ,

m=l,m#n m=l,m#n

N

2

Xn
2

'n =a +2acXn I (Xn -Xm)

iv

CZ 3
+2 xn I (x,, - X. )

,

I (x,, - X, )
m=l,m#n 1=1,&n

N N IV

2 X.2 Y -1 2

L (XM - XXI I I (45b)-C 1: (xn - Xm) Xn L (Xn -XI) -Xm
m=l,m#n f=l,f#n 1=1,e#M

N N

2

x1t X2 -2

i. =a +2aC
n 1: (xn -xm)-l +2c2 x,,3 1]

_,
(Xn - Xm

m=I,m#n m=l,m--n

Ar

_CZ Xj-3 (X2 + X2 ) + yXn L (Xn n M
(45c)

m=l,m#n

IV

Yn = 2 C2 Xn3 Ya (Xn - Xt )
-1

(Xn Xm)
-1

22 )-1 _ 2

(Xm _ )-I-C2 Xn (Xn -Xm)-2[ Xn (Xn (46a)xf xM xt
9,m=I;&m,&n,m#n

,v

2

Xn +C -C)X2 -x.)-+4C2 Xn3 I (Xn _ Xm)-2'n =a (2a
n 1: (xn
.=l,m#n M=1

N

C2 X4 -3
+y (45d)-2

n L (xn -xm) n
,

M=1

(45a) follows from (38) by t-differentiation. (45b) follows from (45a) via (38). (45d)

follows from (45c) using the identity xm2 = X2 -2(xn -Xm)Xn + (Xn -Xm)2
n

We now use the identity

-1
- (Xm

-1

n
-Xt)-I(xm -Xt)-I[xn(xm -xd-xt

mXn2
i
(Xn - Xd - Xm7 -Xt) =(Xn -Xm)(x x

inside the second sum in the right hand side of (46a), getting thereby

N

y =C2 Xn3 (Xn -Xe) (xn -xm) +Zn (46b)
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IV

Z =C2 X., I (X" _X.)_I (X'I _XI)_I (X. _XXI X, X. . (47)
I,",=I;I#m,t#n""#'

But Z,, clearly vanishes, because the summand in the right hand side of (47) is anti-

symmetrical under the exchange of the dummy indices  and m. Hence (46b) and

(45d) yield

,V

i,,=a2x,,+c(2a-c)x,,' I
.,

(x,, -XX
m=l,m#n

IV

+4c'- X 3 (Xn _Xm)-2 -2 C2 X4 Y .)-3
n .,

(Xn _X
M=1,.# 

N

+C2 X3 -X,)-'(X,,-X.)'(x,, (48a)

or equivalently

n

N

[c(2a-c)(x,, _XM)2 +4C2 (X, _ XM) Xn C2 Xn2 ] (X" _ Xj-3in = a2 x,, +X2 1 -2

M=I,M# 

,V

+C2 3 -1

(XnXn Yj (Xn _Xd - XM) (48b)
 ,m=i; #m, #n,m#n

It is now easily seen that

c(2a-c)(x,, -xm)' +4 -2C
2

=c(c+2a)(x XM )2 -2 C2 XmZ,C2 (Xn _Xm)Xn
2

Xn

(49)

and via this identity clearly (48b) yields (44), which is thereby proven.

We have therefore seen that the N-body problem characterized by the

Newtonian equations of motion (44) (which feature one-, two- and three-

body velocity-independent forces) is partially solvable: it can be solved

for the subset of initial data which satisfy (38) (this entails, for instance,
the possibility to assign arbitrarily the initial positions Xn'(0) of all N

particles, but to forsake any freedom in assigning the initial velocities

i,, (0), which are then fixed by (38) at t = 0 ).

It is likewise seen that the translation-invariant "Newtonian equations
ofmotion"

IV
-3

4n=a _-q{1+exp[b(q J ]j{1-exp[b(q.-qj]j
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N

-a exp[b(q,, -q,) ] -exp[b(q. -q,)] I fl-exp[b(q. -q,,) ]r

.11-exp[b(qn-q,)]-exp[b(qm-q,)]+exp[b(qn+qm-2q,)]Y' (50a)

a=c'lb
, (50b)

featuring velocity-independent two- and three-body forces are as well

partially solvable, since they follow by time-differentiation from (43).
Note that the constant a, see (43), is not present in (50).

Exercise 2.3.4. 1-10. Verify that (50) follows from (43).

Let us end Sect. 2.3.4. 1. devoted to first-order systems with a rather

trivial remark, and an interesting set of exercises (the alert reader is urged
to invent other, analogous, ones).

Remark 2.3.4. 1-11. The first-order system

i" = g" UX (51)

is Hamiltonian for any choice of the N functions g,, Ox ,
since the equa-

tions of motion (5 1) are just the (first set of) Hamiltonian equations
yielded by the Hamiltonian ftmction

'V

H(x, )=J] 4 g"Ux (52)
n=1

Exercise 2.3.4.1-12. Show that the solution of the first-order system

'V

14 (Xn - X. )
_'

Ih(x,,) (53)
-I'm# 

where h(x) is an arbitrary (time-independent) polynomial in x of degree
less than AT, is given by the N roots of the polynomial equation of degree
N in x

N

fl [x - x. (0)] = h(x) t, (54a)
M=1
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namely there holds the polynomial equation

N IV

11 [x-x.(t)]=fl [x-x.(O)]-h(x)t. (54b)
M=1 M=1

Hint: set h(x, t) = h(x), E = -1 and all other constants to zero in (2.3.3-11)

respectively (2.3.3-12), getting thereby (53) respectively

Vf, (X, t) = -h(x) , (55a)

which entails

V(x, t) = V/(x,O) - h(x) t. (55b)

Then use (2.3.2-2).

Exercise 2.3.4.1-13. Show that all solutions x,, (t) of the first-order

system (53) satisfy the second-order system

i,, = 2 (x, - x.) . (56)
M=I'M#n

Hint: time-differentiate the logarithm of (53), use the identity (valid for

any Polynomial of degree less than N, and for N arbitrary (distinct)
numbers x,,: see (2.4.1-9)

h'(x,,) = bn UxI D.Ux [bm Ux] -'h(x.) , (57)

with

bn Ux = f-I (x" -x) , (58)
m=l,m#n

v

D.Ux = J. (X
11
-XI)

-1
+ (I - (5nm) (Xn - X.) (59)

and eliminate h(xn) and h(xm) using (53) and (58), namely

h(x,, bn (x) -i,, (60)
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Exercise 2.3.4.1-14. Show, using (53), that the solutions xjt) of the

second-order system (56) are the roots ofthe following equation in x

Ar

i"(O)1[X-X"(O&I1t (61)
n=I

Hint: consider (53) at t 0,

IV

h[Xn (0)1:-: - n (0) fj [Xn (0) - Xm (0)] 9
(62)

M=I'M#n

and note that these relations entail, for all values of x
,

IV IV

h(x) =I in (0) 11 [x - x. (0)] (63)
n=1 M=I'M#n

(indeed, two polynomials of degree less than N that take equal values at

AT distinct points are identical). Then insert this expression of h(x) in

(54a).

Exercise 2.3.4.1-15. Compare the findings of the last two exercises

with those of Sect. 2.1.10. Hint: compare (56) respectively (61) with

(2.1.10-1) respectively (2.1.10.2-13) (note that this comparison entails

that this latter equation, (2.1.10.2-13), is now proven; it is proven again

below, see (2.3.4.2-21)).

Exercise 2.3.4.1-16. Show that (53) and (56) entail, via (2.3.2-1),

 n = 0
3

(64)

thereby confirming again the findings of Sect. 2.1.10.2, see (2.1.10.2-

1,2,3). Hint: (55a) entails

VItt = 0
.

(65)

Then use (2.3.2-6).

Exercise 2.3.4.1-17. Discuss the behavior of the solutions of the

equations of motion (56), noting the important role played by the (rela-

tive) signs of the initial velocities ' n (0) in distinguishing whether or not,

at any time(s) throughout the motion, two particles collide, thereby caus-

ing a singularity in the right hand side of (56) (prove in particular that this
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does not happen if all the initial velocities have the same sip, and ana-

lyze completely the motion in this case). Hint: focus on (61), drawing a

graph of its left hand side as a function of x.

Exercise 2.3.4.1-18. Show that, for N > 2, the Newtonian equations of

motion (44) cannot be obtained from a normal Hamiltonian,

N

H(x, =(I/ 2)J] ,
+ VUx '2 (66)

Hint.- the Newtonian equations of motion yielded by the normal Hamilto-

nian (66),

Y. = fn UX (67)

fn (_X) = _'317W / axn
, (68)

feature conservative forces f, Ux that have the property (entailed by (68))

' Xm = afm UX / 0'k
.

afnUX /0 (69)

Exercise 2.3.4.1-19. Formulate and solve an exercise analogous to

thatjust given, Exercise 2.3.4.1-18, with (44) replaced by (50).

2.3.4.2 Second-order systems (Newtonian equations of motion)

In Sect. 2.3.4.2 we consider four models whose time evolution is deter-

mined by Newtonian equations of motion (second-order in time: see

(2.3.4-3,4,5,6)). Other models, which however generally feature N -body
forces, are introduced via the exercises, see below. The alert reader will

easily introduce and investigate many more.

The first model obtains by setting in (2.3.3-2) C = 1, A, = 1/ 2, B, = -1

and all other constants equal to zero. Hence its equations ofmotion read

IV

(1+2i" = -X" + 1] 1" i.) /(X" - X.) .

The corresponding PDE, see (2.3.3-1), reads

Vf"
+1 (Vf_-2xVf,,+2NV)=O (2)
2
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By rescaling the independent variable t and the dependent variables x" (t)

  (r)=,Oxjt), t=ar, (3)

the equations ofmotion (1) can be recast in the form

N

-a
2

4 + (a
2 )q2 (4)

where of course the primes denote differentiations with respect to z-
,
In the following

we stick for simplicity to the simpler form (1).

In analogy to the treatment of the previous Sect. 2.3.4.1 (see in par-

ticular (2.3.4.1-3)) we now set

N

V (x, t) = 2vH, (x) + b. Q) H, (5)
,

(X) ,

M=1

again with H. (x) being the Hermite polynomial of order n, see (2.3.4. 1-

4,5) (and Appendix C).
Insertion of this representation of the monic polynomial Vf (x,t) in (2)

yields for the coefficients b (t) the simple (decoupled!) evolution equa-

tions

 .(t)+mb (t)=O (6)

whose solution reads

b. (t) = b. (O)COS(MI12 t) + .(O)M-1/2 sin (MI/2 0 . (7)

Let us recall that the particle positions x, (t) ,
see (1), are the N zeros

of the (time-dependent) polynomial (5) with (7). As for the 2N quantities
b (0) and  ,,,(O) in (5), they are related to the initial positions x,,(O) and

velocities i,, (0) of the N particles by the polynomial equations

IV IV

2-'v H, (x) + bm (0) Hn *10) = fj [X - Xn (0)] 1-.(x) = V (8a)
M=1 n=1
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Ar N

(0) H,, -or (XO) L i,, (0) / [X -X (0)_.
(X) = V, (XO) =

"
I (8b)

-I n=1

(see (5), (2.3.2-2), and (2.3.2-8)).
1Clearly the system (1) admits the equilibrium configuration

XnW = Zn 1 ' nW = 0 (9)

where the quantities Zn are the N zeros of the Hermite polynomial of or-

der N, see (2.3.4.1-13) and (2.3.4.1-15). This corresponds, for the coeffi-

cients b. (t), see (7), to the trivial solution b. (t) = 0.

Clearly the system behaves generally as a ldnd of (one-dimensional)
crystal, with every particle oscillating around its equilibrium position. If

the oscillations are too large, adjacent particles collide, causing a singu-
larity ofthe equations ofmotion (1).

After every collision the two zeros of the polynomial (5). that have collided be-

come complex. This suggests that the proper setting to analyze the motion is the com-

plex plane rather than the real line. Cases in which such an extension can be profita-
bly done without loosing contact with "physics" are discussed in Chap. 4.

It is also clear from (7) that all solutions of (1) (namely, the time

evolution of the zeros xjt) of the polynomial (5) with (7)) are multiply

periodic: indeed, they are algebraic (nonlinear) functions of the V pen-
odic functions b. (t), see (7), themselves featuring the N periods

-1/2

Tm =2)r m (10)

There exist special solutions of (1) which are periodic; they correspond to

the special solutions of (7) with all coefficients b. (t) vanishing except

one (or a few, for instance b, (t) and b, (t) ,
see (10)). Indeed if only b, Q)

does not vanish, the particle positions xn (t) are the N zeros of the poly-
nomial

2-NH,(x)+b,(t)H,_,(x) , (1 la)

which is periodic in t with period T, = 2 7c M-112, see (10), while if, say,

only b,(t) and b,,(t) do not vanish, the particle positions x,,(t) coincide

with the N zeros ofthe polynomial
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2-," H, (x) + b, (t) H., (x) + b4WHAr-4W I (11b)

which is clearly periodic with period T4 =;r (since T, = 2T,, see (10)).

An amusing case is that with b. (t) = 0 for m = 1, 2,..., N - 1. Then (since

H, (x) = 1, see Appendix C) the particle positions xJt) are the N roots of the equa-

tion

HIv (x) = -2y b, (t) =B, COS (NI12 t + '8V (12)

see (7), hence their time-evolution is neatly visualizable via the following construc-

tion. Draw first of all the graph of the Hermite polynomial of order N, Hjx), as a

fanction of x. Consider then a horizontal straight line which oscillates periodically up
and down with period T, = 2 7c N-112

.
The particle coordinates x,, (t) are thenjust the

abscissas of the points at which the orizontal straight line cuts the graph of H,(x). It

is therefore quite evident, in this case, how the particles oscillates periodically about

their equilibrium positions (the zeros of Hv(x)) and also the limitations on the am-

plitude of the oscillations of b,(t), hence on the initial data (see (7), (8) and (12)),

which are required to avoid the occurrence ofparticle collisions.

Exercise 2.3.4.2-1. Perform the analogous graphical analysis of the behavior of

the special solution of (1) corresponding to the case when all coefficients b. (t) van-

ish except b, (t) (recall that HI (x) = 2 x, see Appendix Q.

The "equations of motion" (6) are clearly Hamiltonian, corresponding
to the Hamiltonian function

H(b
1

2) (13)
.,

(p2 +mbp) = -1] M M

2
m=1

On the other hand the transformation among the N "canonical coordi-

nates" b. (t) and the N "particle coordinates" x,, (t) entailed by the relation

Ar IV

2-'v H. (x) + 1: b. (t) H,, (x) = 11 [x - x,, (t)] , (14)
-I n=1

see (5), can certainly be interpreted as part of a canonical transformation

(since it does not involve the canonical momenta). Hence the Newtonian

equations of motion (1) are also Hamiltonian (for a discussion of the cor-

responding Hamiltonian function see <CF97>).
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The one-dimensional many-body system defined by the Hamiltonian of normal

type

Ar

(P2 2)+
N

H(q, p)
n +mqn log (q., - q.) (15)

2 2
m,n=l;m#n

yields the Newtonian equations ofmotion

A'

4,, = -qn + I - q.)_I (16)(qn

Hence it has the same equilibrium configuration, see (9) and (2.3.4.1-15), as the sys-

tem (1), and moreover its behavior around equilibrium differs little from that of (1)
(only by quadratic terms, see (1) and (16)).

Exercise 2.3.4.2-2. Perform the standard analysis of the behavior of the systems
(1) and (16) around their (common) equilibrium configuration, and recover thereby
the results reported above as Remark 2.3.4.1-3.

The second many-body system we consider is characterized by the

equations ofmotions

Ar

i,,=ai,,+2 ji.i.1(x.-x.) . (17)
M=I'M#n

It is the special case of (2.3.3-2) with C = 1, E = a and all other con-

stants equal to zero. Hence in this case (2.3.3-1) reads simply

Vf,,-aVf,=O , (18)

so that its general solution reads

Vf (x, t) = V(xO) + Vf, (x,O) [ exp(a t) - 1 ]/ a . (19)

Hence, using (2.3.3-6) and (2.3.3-7), we conclude that the particle coor-

dinates xjt), solutions of the equations of motion (17) with initial data

x,, (0) and i,, (0) ,
are the N roots of the equation in x

IV

ji,,(O)1[x-xjO)]=a1[exp(at)-1 (20)
-I
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In particular, if the constant a = i co is imaginary the right hand side of this

equation is periodic with period T = 27c / co, hence its roots, namely all so-

lutions of (17), are in this case (in which, however, the motion occurs in

the complex plane, see Chap. 4) completelyperiodic.

Remark 2.3.4.2-3. For a = 0 the equations ofmotion (17) coincide (up to a trivial

notational change) with (2. 1. 10-1), while (20) reads

Ar

I-i.(O)1[X-X"(O)I=l1t , (21)
n=1

namely (up to the same notational change) it coincides with (2.1.10.2-13). Moreover

(18) entails, via (2.3-1),

E,,-a6.=O , (22)

hence, for a = 0, it implies (2.1.10.2-3).
The statement made at the end of Sect. 2.1.10.2 is thereby proven again (it was

previously proven in Sect. 2.3.4. 1, see Exercises 2.3.4.1-13,14).

Remark 2.3.4.2-4. The complete periodicity of all the solutions of (17) with

a = i co purely imaginary is merely a special case of the findings discussed in Sects.

2.1.12.3 and 2.1.12.4 (the diligent reader will profitably elaborate on these connec-

tions).

The third example we consider obtains by setting C = 1, D, = i CO and

all other constants equal to zero, in (2.3.3-1) and (2.3.3-2), so that they
read

VI"+iCOxVf"=O (23)

IV

(24)

The corresponding equations for the coefficients c.(t), see (23) and

(2.3-1) (or, more directly, (2.3.3-8)), read

E.+ico(N-m)6m=0 , (25)

so that their solutions read

c.(t)=c.(O)+i6.(O)Iexp[-ico(N-m)t]-Ill[co(N-m)] (26)
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Hence, if co is real, all these coefficients are periodic with period
T = 21rlco, hence VI(xt), as well as all its zeros xjt), see (2.3-1), are also

periodic. One can therefore conclude that, for co real and nonvanishing,
all solutions ofthe (complex) many -body problem (24) are periodic.

These equations of motion, (24), as well as the equations of motion

(17), feature forces which vanish if the particles do not move. Hence any

configuration,

X"W = Y" ,
(27)

where the N quantities y,, are arbitrary constants, is an equilibrium con-

figuration for the system (24) (as well as (17)). Let us thenconsider the

behavior of the system (24) in the neighborhood of such an equilibrium
configuration. To this end we set

X"W=Y"+C  W , (28)

where - is a small parameter. Insertion of this ansatz in (24) yields, up to

corrections of order

N

+ iCOE MnM em = 0 (29)
M=1

with

N

Mnm=8nmYn J:(Yn_YX1+G_(5nm)Yn(Yn_Ym)
-1 (30)

M,f*n

A comparison of (29) with (25) suggests that the (,v x N) -matrix (30),

constructed with the N arbitrary quantities Yn, have the first nonnegative

integers (N -m with m = 1, 2,..., N) as eigenvalues. This is proved below

(see Sect. 2.4.5. 1).

Exercise 2.3.4.2-5. Show that the following nonlinear system of N coupled
PDEs in S -dimensional space,

N

+ A V = 2 Vj - ( 7 V.)]l (V,, - Vfm) (31)
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where Vf', -= Vf,, (F, t) , V,,,, -= a Vf,, (F, t) I a t
,

F is a vector in S -dimensional space

and ' respectively A =' -' are the gradient respectively the Laplacian in S -

dimensional space, is linearized via the following prescription:

IV N

11 [Y/ _ V.(F, VN +I (0.(j;, t) ,Ar-m (32)
n=1 M=1

i  9." (7, t) + A (PM (7, t) = 0 (33)

Note that (3 1) is rotation-invariant in S -dimensional space, that the relation between

the N functions V,, (F, t) and the N functions (o. (F, t) is identical to that between the

N zeros of a monic polynomial of degree N in the variable V and the N coeffi-

cients of the same polynomial in V, see (32), and that the functions  qm (F, t) satisfy

the linear Schroedinger equation in S -dimensional space, see (33). Discuss, on the

basis of these results, the solution of the initial-value problem for the nonlinear PDE

(31). Write other nonlinear PDEs in S -dimensional space that can be solved by

analogous techniques. Hint: see (2.3.2-9), (2.3.2-11) and <C94>.

The fourth model we consider in Sect. 2.3.4.2 obtains by setting in

(2.3.3-2) C = 1, E =-a, B, =,8, D, = -2, A2 2 and all other constants

to zero. Hence its equations ofmotion read

i,, = a i,, +,8 +,aX2 ]/ _XM) 'Xn+ 1: [2' n' m+' (in+'Wxn (Xn (34)
m=l,m#n

Note that this model is invariant under the rescaling transformation

Xn _+ 3 n = CXn 1
6 = 0

*

The corresponding PDE, see (2.3.3-1), reads

V,, -AxVfx, -aV, +(1/2)f'U X2 V")c +2,8xVf,,-N[(N-I)1i+2,8]Vj=O , (35)

and the equations for the coefficients c. (t), see (2.3- 1) and (2.3.3-8), read

 .=[a+A(N-m)]6.+(ml2)[(2N-m-1),u+2fllcm . (36)

Note that they are decoupled, hence their solutions can be immediately

exhibited:

c. (t) = c(+) exp[ v(+) t ]+ c(-) exp[ v(-) t (37a)
M M M

with v(:) the 2 roots of the following second-order equation in vm:
M
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v'.-=[a+A(N-m)lv.+(ml2)[(2N-m-I)P+2,flI (37b)

entailing

v.()=[a+A(N-m)Am]12 (37c)

Y. =[a+ A(N _M)]2+2m [(2N-m-I)p+2,fl] (37d)

Exercise 2.3.4.2-6 Study the behavior of this system, see (34). Hint:

allow for all quantities to be complex. Solution: see Sect. 4.2.

Exercise 2.3.4.2-7. Show that the Newtonian equations ofmotion (34)
are invariant under the following transformation,

xjt) = Yjt) exp(at), (38)

where a is an arbitrary constant, in the sense that the "new coordinates"

Y,, (t) obey analogous equations to (34), except for the replacement of the

"coupling constants" a,,6,A,,u by the following "new coupling constants":

ii = a -2aN, =,6 + a[a -A(N -1)1-a2 (2N-1),,X = A + 2a,P =p +2Aa+ 2a2.

(39)

We end Sect. 2.3.4.2 with a set of interesting exercises (again, the

alert reader is urged to invent additional ones).

Exercise 2.3.4.2-8. Neither the equations of motion (17), nor the

equations of motion (24), are invariant under translations

(x,,(t)-*Y,,(t)+c,6=0); but they are both invariant under rescaling

(x,, (t) -> c Y,, (t), 6 = 0). Obtain from them equations of motion which are

invariant under translations. Hint: see (2.3.4.1-42).

Exercise 2.3.4.2-9. Study the solvable many-body problem (with
many-body forces) characterized by the following Newtonian equations
ofmotion:

N N

Y,, =-a x,, + 1] - x.) + h(x,,) 1-1 (x,, - x.)
-'

, (40)(b + 2 i,,' J / (Xn
m=l,.#n
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with a and b arbitrary (positive) constants and h(x) an arbitrarily as-

signed (time-indepcndent) polynomial of degree less than N; in particu-
lar, find conditions on this polynomial, h(x), which are necessary and suf-

ficient in order that this many-body model, see (40), possess some peri-
odic solutions. flint: see Exercise 2.3.3-10 and (1 +4), and express h(x) as

a superposition of (appropriately chosen) Hermite polynomials.

Exercise 2.3.4.2-10. Show that the solutions of the Newtonian equa-

tions ofmotion

Ar IV

, ,, = ai,, + 2 E in i/ (x,, - x.) + h(x,,) fj (x,, - x.)
'

, (41)

where a is an arbitrary constant and h(x) is a polynomial in x of degree

less than Ar
,
are the N roots of the following polynomial equation of

degree N in x :

N N

+ a' [1 - exp(at)] 1] i. (0) [x - x. (0)] _' fj [x - Xn (0)]
M=1 n=1

a-2 h(x) [exp(at) - 1 - a t] (42)

Hint: see Exercise 2.3.3-10.

Exercise 2.3.4.2-11. Find necessary and sufficient conditions on the

time-dependent polynomial h(x,t), of degree less than N in x
,
such that

all solutions of the (complex) system

IV N

in coi,, = 2 'n 'Cm 1 (Xn - x. ) + h(x,,, t) I(xn -xm)-' (43)
m=l,m#n m=l,m#n

are completely periodic (co being a real nonvanishing constant). Hint:

follow the same procedure used to solve the preceding Exercise 2.3.4.2-

10.

2.3.5 Trigonometric extension

In Sect. 2.3.5 we consider the extension of the treatment of Sects. 2.3.1,

2.3.2 and 2.3.3 that emerges if, instead of the ansatz (2.3-1), we set
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Ar

VI(x,t)=a-'vjjsinfa[x-xjt)]j
n=1

For a = 0 this expression coincides with (2.3-1), hence the results of Sect.

2.3.5 reduce, for a = 0
,
to those obtained and discussed above.

The ansatz (1) entails the following formulas:

Ar

v ,(x,t)=v(x,t)alcotanta[x-xn(t)lI (2)
n=1

v,(x,t)=v(x,t)aEcotanta[x-Xn(t)lll--'n(t)I (3)
n=1

V"" (X, 0 = V/ (X, 0 -

J_N2 2
a +aEcotanfa[x-x,,(t)jj[2a Ecotanfa[x,,(t)-x.(t)1j1j (4)

VXt (X., t) = Vf (X3, t) fN2a2k(t)

'V IV

+a cotanja[x-x.(t)]j[-a E -im (t)] cotanf a [xn (t) - xm (t)] (5)E
'

I'nW
n=1 m=l,m#n

N

,
(X, t) (X, t) f_N2a2 [ (0]2 + alcotanja [x - xn (t)]V/'

n=1

N

(t) + 2 ai,, (t) (t) cotanja [x, (t) - x.Q (6)

where, in the last two equations (as well as below), Y(t) is the mean coor-

dinate,

IV

IVj (t) = I
.

-1 1X.W (7)
n=1

Proofs. Logarithmic differentiation of (1) with respect to x respectively t yields
directly (2) and (3). Differentiation of (2) with respect to x yields (after using (2))

'V IV

vf,,, = v/ f (alcotan[a(x-XJI )2 _J: (asin[a(x-x,,)])-j , (8a)
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V..,:--Vf-Na'+a' Jcotan[a(x-x.)Jcotan[a(x-xJD . (8b)
m,n=l;m#n

We now use the trigonometric identity

cotan(a) cotan(,8) = -1 - [cotan(a) - cotan(,8)] cotan(a -,8) (9)

obtaining thereby

N

N' a' + a
2

cotan[a (x - x,,)]- cotan[a (x -xJ I cotan[a (Xn -XmA I I

m,n=l;.#n

(10)

which coincides with (4).

Exercise 2.3.5-1. Prove (5) and (6). Hint: see the proofs of (2), (3) and (4), as just

given.

We assume now (tentatively, see below) that the function VI(x,t) sat-

isfy the linear partial differential equation

AVfxx+BV ,+CVf,+DVIx,+EVI,+FVf=O ,
(11)

where the quantities A, B, C, D,E and F are independent of x, but might

depend on t (see below). Then, via the above formulas (from (1) to (7))
one concludes that the "particle coordinates" x,, (t) evolve according to

the equations ofmotion

N

Ci,,+Ein=B+a 1:[2A-D(i,,+i.)+2Ci,,i.]cotan[a(xn-x.)] , (12)
m=l,m#n

with the additional equation

--I--

F=N2a2(A-DX +Cx2) (13)

The compatibility of the two assumptions made above, namely (i) that Vf(x, t) be

represented by the ansatz (1) and (H) that V(x, t) satisfy the linear PDE (11) (with

A, B, C, D,E and F independent of x) is a crucial, nontrivial, point, on which our

entire development hinges. It does follow from the formulas (1) -1-- (7), since they

clearly imply that, given (1), the validity of (12) and (13) is necessary and sufficient
to guarantee the validity of (11). Such compatibility could not be generally guaranteed
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if one assumed a different ansatz, of type (1) but with a different function f(z) tak-

ing the role of sin(az). Note in this connection the role played by the fimctional

equation (9), that is crucial to yield the formulas (4) +(7), which are then instrumental

(unless A = C = D = 0 ) to imply the compatibility of (1) with (11). See, however, the

following Sect. 2.3.6, where a generalization of the kind outlined here is actually in-

troduced.

We now sum (12) over n from 1 to N and thereby get, via (7) (and
taking advantage of the vanishing of the double sum in the right-hand
side due to the antisymmetry of the summand under exchange of the two

dummy indices in and n)

CXI-*+Ex:"=B
, (14)

entailing

5E(t)=Y(O)+(BIE)t+(CIE)[3 (0)-(BIE)1[1-exp(-EtIC)I (15)

Hence from (13) and (15) one gets

F(t) = N2a2 [a +,8 exp (-E t Q +,v exp(-2E t / C)] (16a)

a=A-BDIE+C(BIE)2 (16b)

,8=[2(BC1E)-D][k(0)-B1E] (16c)

r=C[ (0)-BlEf . (16d)

One therefore concludes that the solution of the many-body problem
characterized by the Newtonian equations of motion (12), where

A,B,C,D and E are 5 arbitrary constants (an assumption we hereafter

make, for the sake of simplicity; but see Exercise 2.3.5-9 below), can be

reduced to solving the linear partial differential equation (11) with (16)
and with the initial conditions

IV

v(x,O) = a-N 11 sinfa [x - x,, (0)] 1 , (17a)
-1

'V

v,(x,O)=-v(x,O)aya- n(O)cotanfa[x-x,,(O)]I (17b)
n=1
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lied by (1) and (3). The particle coordinates x, (t) are then identified

with the zeros of VI(x, t) ,
see (1).

The most convenient route to solve the linear partial differential

equation (11) for the class of functions of interest to us, namely those

admitting the representation (1), is via the position

N

,,
(t) exp(i am x) ,

(18)V(X,t)= jr,
M=-N

which entails, via (11), for the coefficients v,,,, (t) the following set of de-

coupled ODEs:

C . +(E+imaD) . +(F+imaB _M2 a2A),v.=O ,
m=O,l,...,N.(19)

Hereafter we restrict attention to the case with

B=E=O
,

(20)

which entails that F is time-independent,

F=N2a2fA -D x "(O) +C[ (O)]21 . (21)

1,

This formula, (21), is entailed by (13) and (20), which yields, via (14) Y(t) = 0

hence k(t) = k(O). Note however that, even when (20) does not hold, for the special

initial condition such that x(O) = B / E, F is time-independent, see (16).

In this case, with (20) and (2 1), the evolution equations (19) are easily
solved:

(+) exp[fl (+) d+7H expIflH tj (22)'V. (t) = rM M M M

where )6(  )
are the two solutions of the algebraic equation of second de-

gree

2 2
C,8m2+imaD,8m+F-M a A=O (23a.)

fl(: )
M

=(-imaDS.)1(2C) (23b)
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8. = [(4AC-D2)a2M2 -4CF]1/2

. (23c)

The constants r(+) and YI-)
,
see (22), are easily expressed in terms of the

M M

initial values r. (0) and  . (0), since (22) imply

H
+ (24a)(0)

+,BM(-) H
 . (0) = ik+ 7. rM I; (24b)

and the initial values Ym (0) and  m (0) are related to the initial positions

x,,(0) and velocities i,(O) of the particles via the relations (see (17) and

(18))

IV Ar

1] r. (0) expQam x) = a' rl sinj a [x - x,, (0)] 1 = v(x,o) , (25a)
n=1

N IV

1]  . (0) expQamx) = -vf(xO) a 1] i,, (0) cotanj a [x - x,, (0)] 1 = V, (xO) . (25b)
m-IV n=1

Remark 2.3.5-2. If the particle positions x,, (t) are real, and the constant a is also

real (or imaginary, see below), the function Vf(x, t) is real, see (1), hence the coeffi-

cients rm (t) satisfy the conditions

m = 0, N
. (26)

Clearly these conditions, (26), are compatible with the time evolution (19): indeed if

A, B, C, D, E,F are all real, these equations, (19), are equally affected by the operation
ofcomplex conjugation and by the change m --> -m.

I

Remark 2.3.5-3. The treatment applies equally (including the considerations

about reality, see Remark 2.3.5-2 above) if the constant a is replaced everywhere by
i a, entailing the replacement oftrigonometric functions by hyperbolic functions. The

behavior ofthe solutions is of course nontrividUy affected by such a change.

Exercise 2.3.5-4. Discuss the behavior ofthe solutions ofthe many-body problem
(12), with particular attention to the case (20). Under which conditions are all motions

confined ? Or periodic ? Are there some periodic trajectories even in the cases when

not all the motions are periodic ? Hint: see (23).

Exercise 2.3.5-5. Show that, and explain in which sense, the many-body systems
characterizedby the foflowing Newtonian equations ofmotion,
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N

i,, =-8a3A2f E [fsin[a(x,,-xjjj-3 cos[a(x,, -x.)]
m=l,m#n

- (N - 2) f sin[2a(x,, - x.)] 1-1

N

-x.)]I-'cotan[a(xn -x,)]cotan[2a(x. -x,)Il (27)sin[2a(Xn

is partially solvable. Note that this model features velocity-independent two- and

three-body forces. Hint.- consider the first-order system that obtains by setting
C = D 0, E = I in (12), time-differentiate, use (9).

Exercise 2.3.5-6. Show that the system (12) with B = 0 possesses the equilibrium

configuration

x n,T I(Na) (28)

What can one learn by comparing the behavior of this system near equilibrium with

the exact behavior, see (22) ? Hint.- see <CP78a> and <CP79> as well as Sect. 15.823

of<GRJ94>.

Exercise 2.3.5-7. Obtain the equations of motion (12) from the translation-

invariant version of (2.3.3-2) (characterized by B, = D, = D2 = A, = A2 = A3 = 0 ),

via the infinite duplication technique described in Sect. 2.1.7 and 2.1.13. Hint.- see

(2.1.7-49) and (2.1.13-13).

Exercise 2.3.5-8. Obtain the extension of the model (12) characterized by the

presence of two different types of particles, via the technique of Sect. 2.1.7. Hint: see

(2.1.7-30).

Exercise 2.3.5-9. Repeat the entire treatment forsaldng, completely or partially,
the assumption that the 5 constants A, B, C, D,E are time-independent.

2.3.6 Further extension

In Sect. 2.3.6 and in its subsections we consider the extension of the

treabnent of Sects. 2.3.3 and 2.3.5 that obtains by replacing the ansaetze

(2.1-1) and (2.3.5-1) with the following, more general, one:

1 ft G [x -  ,, (z-)] . (1)V(x, T) =eXPP V (-r)l92
n=1

Here we keep open the choice of the fanctions V(r) and G(z). We then

show, in Sect. 2.3.6.1, that in order to relate a linear PDE satisfied by
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V(x, r) to a system of evolution ODEs for the quantities   (r), we must

require G(z), or rather its logarithmic derivative g(z),

g(z) = G'(z) / G (z) , (2)

to satisfy the (new)functionat equation

g(x)g(y)=-f(x-y)[g(x)-g(y)]+h(x-y)+,V(x)+,v(y) (3a)

Here f(z) and h (z) (as well as g(z)) are two a priori arbitrary functions,

except that the first ofthem must be odd,

f(-Z) = -f (Z) , (3b)

and the second ofthem must be even,

h(-z) = h (z) . (3c)

Note the consistency of these parity requirements with (3a). Moreover, in

(3a) and below,

-

1
[gr(z) +g2 (z)]r(z) =

2
(3d)

This functional equation is then investigated in Sect. 2.3.6.2. Its solu-

tions include of course the simple assignment

G(z)=z, g(z)=f(z)=11z, h(z)=r(z)=o , (4)

which entails that (1) (with  o (r) = 0) corresponds to (2.3-1), as well as

G (z) = a-'sin (a z), g(z) = f(z) = acotan (a z), r (z) = -a2l2,h(z)=O , (5)

which entails that (1) (again with  o (r) = 0) corresponds to (2.3.5-1).

Exercise 2.3.6-1. Verify that (4) and (5) satisfy (3). Hint: for (5), use

the trigonometric identity (2.3.5-9).

These two cases, (4) respectively (5), reproduce the treatments of

Sect. 2.3.3 respectively 2.3.5. In Sect. 2.3.6.2 we show that the most gen-
eral solution ofthe functional equation (3a) reads
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g(z)=f(z)=a (az)+Az (6a)

2 [, +  ,2 z2h(z)=Ia  "(az) , (az)]+A[az (az) - (6b)
2 2

entailing

r (z) = h (z) +A (6c)
2

G(z)=a-'o-(az)eXP(Az212) (6d)

Here  (Y) _=, (Yl co, co') respectively a (y) - a(yj co, co') are the Weierstrass

66zeta7' respectively "sigma7l functions, see Appendix A.

As shown in Sect. 2.3.6. 1, this opens the possibility to solve the

Newtonian equations of motions

N

i, = 2 f(x, - x.) (7)
M=I'M#n

with f (x) defined by (6a). Here, as usual, x,, =_ x,, (t) are N particle coor-

dinates, and the superimposed dots denote differentiations with respect to

the time t. Note however that in (1) we introduced a different time-like

variable, r
,
as well as the coordinates   =-  , (r) (rather than x,, =- x, (t)).

The reason for doing so are explained in Sect. 2.3.6. 1.

Finally, in Sect. 2.3.6.3, we focus on the Newtonian equations ofmo-

tion (7) with (6a) and A = 0 (the general case with A:# 0 is also treated at

the end of that section); namely, we focus mainly on the N -body problem
characterized by the Newtonian equations ofmotion

N

(8)i = 2 1] i,, i.  (x,, - x.) ,

M=I'.# 

and we provide a fairly explicit and straightforward technique to solve the

initial-value problem for this N -body system, a technique which is appli-
cable whenever the initial data satisfy the single restriction

IV

(9a)Z i"(0)=0 -

n=1

Note that, due to the odd character of the zeta function, 4(-z) = -, (z), the

equations ofmotion (8) entail that the center-of-mass,
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AF

Y(t) = N-'Y x,, (t) (10)
n=1

moves uniformly,

x xx (t) = 0, (0)

Hence the condition (9a) amounts to the simple requirement that the cen-

ter of mass not move initially, hence neither throughout the subsequent
evolution of the system,

XW=X(O)=O (9b)

namely to the property

Ar Al

11 illW =

,
i" (0) = 0

.Y (90
n=1 n=1

We already saw in the preceding Sect. 2.3.5 that such a restriction, (9a),
entailed a significant simplification of the technique of solution for the

"trigonometric" N -body problem considered there.

After treating in detail the problem (8), which corresponds to (7) with

(6a) and A = 0
,
we show, at the end of Sect. 2.3.6.3, how the results can

be generalized to treat (7) with (6a) and arbitrary z. indeed we show

there quite generally, namely for any problem of type (7) with arbitraq
(odd!) f (x), that the addition of a term Ax to f (x) can always be taken

care of by an appropriate change of the independent Ctime") variable,

provided attention is restricted to initial conditions satisfying the con-

straint (9a), hence entailing (9c). Note that this finding also applies to the

RS many-body models of Sect. 2.1.12. Let us, however, emphasize that

the problem treated herein, namely (7) with (6a), does not belong to the

RS class, see Sect. 2.1.12.

At the end of Sect. 2.3.6.3 we also remind the reader that: (i) a simple
(compleZ,) deformation of (7) (or, more generally, of (8) with (6a)) has

the remarkable property to only feature periodic trajectories; (h) the

equations of motion (7) with (3b) are Hamiltonian.

In the following we continue to reserve the notation with superim-
posed dots to denote differentiations with respect to the time t, while we

use appended primes to denote differentiations with respect to r- or in-

deed, more generally, with respect to the argument of the function the

primes are appended to (as we already did in (2), (3d), (6b)).
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2.3.6.1 New solvable many-body problems
via a new functional equation

Clearly the ansatz (2.3.6-1) entails, via logarithmic differentiation, see

(2.3.6-2),

IV

YX (X2 1  *-' I
A..d

9[x -  n (Z (1)
n=1

V/ 7 (X"r) = V(x' Z-) I- (OV-) + 1: 9[X -  n (1 (2)
2

n=1

Assume now that g (z) satisfy thefunctional equation (2.3.6-3). There

then hold the following (additional) relations:

N N

V,,,, (x, -r) = Vf(x, z-) f 1] h [ . (z-) -  j (-r)] + 2NL v [x -  n (r)]
n=1

N

g [x -  n (r)] 2 (3)+Y f kn Or) I
n=1 m=l,.#n

+ hVx, (X, r) = V(X' I-) I -
1

1] -

2

IV

1: v [x -  n (r)I [(N - 1)  n' (r) + N
n=1

1V 1 N

-A f kn[X -  n (Z
'

W +  MW] fkn (T) -  MWl I 1 (4)9
A..J

n=1
2

m=l,m--n

1
2+V" (x, Z-) = V(x' -0 f-

1
 0'700 + 1]

2 4

N

+2N T)
n

IX -  nWl  rW
n=1

IV Ar

+I g [x -  n (z-)] + (o'(z-) + 2 L  jr)  m' (z-) f [ n (r) -  . (r)] I I .

n=1 m=l,m--n

(5)
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Here and below we denote by  (r) the mean value of the N coordinates

Ar

.'
  (r) - (6)

n=1

Proofs. Partial r -differentiation of (2) yields

1 N Ar

71P g (x +I [g, (x -
2

n=1 n=1

N
2

 7' + g+ [
2

n=1

(x  n  n (7a)

hence, via (2.3.6-3d),

N

rr

'V

1)2]+y+_( o)2+21:  n ( n 9 (x  n  n
2 4

n=1 n=1

+ E g(x- ') g(x- .)  "  .' I - (7b)
9'M=1;e#M

We now use, in the last term in the right hand side, thefunctional equation (2.3.6-
3), and we get (5), which is thereby proven.

Exercise 2.3.6.1-1. Prove (3) and (4). Hint: see the proof of (5), as given just
above.

Exercise 2.3.6.1-2. Obtain the analogs of (1), (3) and (4) (and observe that (2) and

(5) are essentially unchanged) if the ansatz (2.3.6-1) is replaced by the following,
more general, one:

N

or (x,Z.)=exp __ 0(X, 'r fl G [x -   (z-)] . (8)
2

n=1

Let us now assume that V(x, -r) satisfy the linear PDE

VX T V -rA (r) Vf,,, (x, z-) + B(r) Vfx (x, r) + C(z-) V/ , (x, r) +D (r) V ,
(x, r) +E( )

,
(x, )

+ F (r) V/ (x, r) = 0
. (9)
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Then (1)-(5) clearly imply that this assumption is compatible with the

ansatz (2.3.6-1) iff there hold the following equations:

2A=D ' (10a)

2NC '=(N-I)D (10b)

C
zj'_  ,)+Eq

N D
F=- -0'+ 1[21 0

4 2 2

(10c)

C,  " + (E - CV)

D IV

B - (p'+ Y (10d)
2

Here we have omitted, for notational simplicity, to indicate explicitly the

z7 -dependence of all quantities.
These findings open the prospect to solve the fairly general Newto-

nian equations ofmotion (10d), of course with the restrictions (10a,b,c) as

well as (2.3.6-3). Hereafter we focus on the simpler, yet quite interesting,
model that obtains by setting

A=B=D=E=F=O, C=1

as well as

 1(0 = 0 (12)

Clearly, with these restrictions, (10a) and (10b) are identically satis-

fled, (10c) yields the constraint

2= 2 (13)
2

while (10d) yields the Newtonian equations ofmotion

Ar

2 f( n (14)
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where the functions f(z) and h(z) are of course always characterized by
the requirement to satisfy the functional equation (2.3.6-3). Note that the

condition (12), which itself entails

RZ-) = RO) , (15)

is consistent with the equations of motion (14), since these clearly entail

(see (6) and (2.3.6-3b))

(16)

The conditions (11) entail that the PDE (9) take the simple form

V/' (x, -0 = 0
, (17a)

implying

V, (x, = V/' (x, 0) , (17b)

V(x' -0 V(x' 0) + r V, (x'0) (17c)

Hereafter we conveniently set

V(O)=O I (18a)

'P'(0) = 0
- (18b)

These initial conditions are consistent with (13), indeed they complement
this ODE, (13), satisfied by p(r), with the additional conditions required
to define this function, uniquely. Then (2.3.6-1) yields

N

f(X,O) =fj G[x (0)] (19a)V
n=1

and likewise (2) yields

1V

x'0) V(X'0) 1   ' (0) g [x -'f (0)] - (19b)(
n=1

Hence from (17c) we get
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V(x' I-) = V(x'0) 4 - rE   ' (0) g Ix -   (0)] 1 . (20)
n=1

Ifthe function G (z) Vanishes at z = 0,

G(O) = 0
, (21)

and has no other zeros, the ansatz (2.3.6-1) entails that the quantities
(r) are the N zeros of vf(x, r)

[ (T), d = 0
- (22)

Then, via (20), we conclude that the initial-value problem for the Newto-

nian equations of motion (14) is solved by the following neat prescrip-
tion:

Proposition 2.3.6.1-3. The N coordinates  n (r) are the N roots ofthe

following equation in x:

N

E (0) g [x -g (0)] = I / r - (23)
n=1

Note the neat way the initial conditions,  n (0) and  ,'(O), enter in this

equation. Of course the function g(z) is characterized by the functional

equation (2.3.6-3), and it has a pole at z = 0, consistently with (2.3.6-2)
and (2 1).

The equations of motion (14) are, however, still polluted by the pres-

ence of the (apriori unknown) function V (r), which is determined by the

ODE (13) complemented by the initial conditions (18). Since this ODE,

(13), contains in its right hand side the quantities   (r) and  n, (r), the

claim that the equations ofmotion (14) are solvable is moot, or rather, the

interest of these equations of motion is somewhat questionable. But, via

an appropriate (minor) modification of the ansatz (2.3.6-1), we indicate

below (see Sect. 2.3.6.3) a convenient way to bypass this difficulty,
namely to determine the function V (r) directlyftom the initial data.

Once the function (o (r) is known, the disturbing presence of V'(r) in

the equations of motion (14) can be easily gotten rid of, via an appropri-
ate change ofthe time-like variable. Indeed let us set

 n (T) '= Xn W) T = TW 1 (24)
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with the function r (t) characterized by the following properties:

1-(0) 0
,

(25a)

f(o) I
,

(25b)

j:( + 0 0r(T) [i. (0] 2
= 0 (25c)

It is then easily seen that (14), via (24) and (25), become

'V

i,, = 2 E i , i. f(x,, - x.) , (26)

while (25a) and (25b) entail, via (24),

(0) = X" (0) (27a)

(0) = ill (0) (27b)

On the other hand integration of (25c) yields, using (25a), (25b) and

(1 8a),

t(z-) = f d-rexp[,p (r')] (28)
0

which, up to a quadrature, provides an explicit relation among t and r.

Hence t(r), and by functional inversion r(t) as wen, can be considered

known ifthe function (o (z-) is known.

Proofs. From (24) one gets

.i" =  " i-
, (29a)

k =
u f2 + r

i:
-

"
 n 4 (29b)

hence, via (14),

2

(p' + f+ 2 i. f (x,, - x.) (30)

which clearly yields (26) via (25c).
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On the other hand (25c) yields

f(t) / f(t) = -(O,[,-(t)] f(t) , (31a)

hence, via (25a,b) and (18a)

logIf (t)] = -(Olz-(t)] (3 1b)

f(t) =,expI- V[z- (t) (31c)

namely

dt=drexp[,p(z-)] (3 1d)

whose integration, via (25a), clearly yields (28).

2.3.6.2 General solution of the new functional equation

The developments of the preceding two Sects. 2.3.6 and 2.3.6.1 hinge on

the assumption that thefunctional equation (2.3.6-3),

g(x)g(y)=-f(x-y)[g(x)-g(y)]+h(x-y)+,v(x)+y(y)
, (la)

7(Z)Ej[gI(Z)+g2(Z)] (lb)
2

possess nontrivial solutions. In Sect. 2.3.6.2 we confirm this hypothesis,
and we find the most general solution of (1), consistent with the parity
properties (2.3.6-3b,c),

f (-Z) = -f(Z) I (1c)

h (-z) = h (z). (1d)

Note that, via (lb), the functional equation (la) can also be rewritten in

the (completely equivalent) form

f(X-Y)[g(x)-g(Y)1=
1

f [g (X) _ g(y)] 2
+ gi (X) + gf (Y) I+h(x-y) .(le)

2

This version, (le), of the functional equation makes particularly evi-

dent the validity of the following
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Remark 2.3.62-1. If g (z), f (z) and h (z) satisfy the fanctional. equa-

tion (1), so do

k(z)=ag(az+b)+c, 7(z)=af(az), T(z)=a2h (z) (2)

with a, b, c three arbitrary constants.

In the following we take advantage of this invariance property to al-

ways write the solutions of the functional equation (1) in the simplest
form, on the understanding that a generalization of type (2) of the solu-

tion is always possible.

Exercise 2.3.6.2-2. Trace the effect that addition of a constant, say b
,
to g (z)

(see (2)), has on the ansatz (2.3.6-1). Hint: see (2.3.6-2).

The functional equation (1) possesses of course the, utterly uninteresting, trivial

solution g (z) = h (z) = 0
,
with arbitrary f(z) .

We ignore this solution hereafter.

There is another, somewhat more general, solution, that we also deem trivial, of

the functional equation (1), which also holds for arbitrary f(z) .
It reads:

g(Z)=AZ , (3a)

h(z) =A [Z f(Z) _1]_A2 Z2 /2 (3b)

with A an arbitrary constant. Hereafter we ignore this uninteresting solution as well.

Exercise 2.3.6.2-3. Verify that (3) satisfies (1).

Exercise 2.3.6.2-4. Understand why the solution (3) is of no help to solve the

Newtonian equations of motion (2.3.6.1-26) with arbitrary f (z). Hint: note that (3a)

yields, via (2.3.6-2),

G(z) = exp (AZ2 /2) (3c)

and that insertion ofthis function G(z) in the ansatz (2.3.6-1) yields an expression of

V (x, -r) that depends on the  , (r)s only via the 2 collective coordinates ) ,
r

IV

p = 1, 2, (4) P N 1]

(of course as deflned here, coincides with the center of mass  (r), see

(2.3.6.1-6)). Hence, even when V(x, Z-) is completely known, the individual  , (Z-)s

cannot, in this case, be recovered from it.
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Exercise 2.3.6.2-5. Verify that a nontrivial solution of the functional equation (1)
reads as follows:

g(z)=f(z)=llz (5a.)

h(z)=,v(z)=O . (5b)

As noted in Sect. 2.3.6, with this solution, (5), the treatment of Sect. 2.3.6.1 be-

comes closely analogous to that of Sect 2.3.3, since (5a), via (2.3.6-2), entails

G(z)=z (5c)

while (5b), via (2.3.6.1-13) with (2.3.6.1-18), entails

(0 (1-) = 0
- (5d)

Exercise 2.3.6.2-6 Verify that a nontrivial solution ofthefunctional equation (1)
reads as follows:

g (z) = f (z) cotan (z) (6a)

h(z)=O , (6b)

,v(z)=-1/2 (6c)

Hint: use the trigonometric identity (2.3.5-9).

Let us again remark that, as already noted in Sect. 2.3.6, with this solution the

treatment of Sect. 2.3.6.1 essentially reproduces that of Sect. 2.3.5, since (6a), via

(2.3.6-2), entails

G(z) = sin(z) , (6d)

while (6b), via (2.3.6.1-13) with (2.3.6.1-18), yields again (5d).

Proposition 2.3.62-7. The most general nontrivial solution of the

functional equation (1) reads (up to the transformation (2)):

g(z)=f(z)=' (z)+Az , (7a)

h(z) =
1

'(Z)+4-2(Z)]+ A [Z, (Z)_j]+ 1'eZ2 =,,(Z)_3 A
, (7b)

2 2 2
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where  (z) 4- (zi co, co) is the Weierstrass zeta function, see (A-39) (so

that  r +  2 Off / 07, where o- -= c (zI op, d) is the Weierstrass sigma fanc-

tion, see (A-38)), and A is an arbitrary constant.

Proof. We note first of all that, if f (0) is finite or vanishing (the latter being

indeed more in keeping with (2.3.6-3b)), (le) with y = x yields

g'(x) + h (0) = 0
,

(8)

entailing (3a) with A = -h (0). Hence we hereafter exclude the possibility that f (z)

not diverge at z = 0 (since we stipulated to ignore the trivial solution (3)).
It is on the other hand clear from (1) that, at least as long as we restrict our con-

sideration to analytic functions, as we hereafter do, f (z) can have at most a first-

order pole at z = 0. Hence we set, as z -> 0,

-
IZ+O(z3)

,
(9)f =fllz+f(Z) I

where we have taken account of (1c).
We then set, in (le),

Y=X-C ,
(10)

and let 6 -> 0. We thereby get

[f + f] 6 + 0 (63)] [gf(X) 6 g,(X) 12+
1
gmW63+0(64)]

2 6

62 [g,(X)]2 + g,(X) gff(x).6+
1
g(x) 62 + h(O) + 1h"(0) 62+0(,,3) (11)

2 2 4 2

where we used (1d). Hence, equating the terms of order 6
P with p = 0, 1, 2, we get

f g'(x) = g'(x) + h(O) ,
(12a)

f, g,(X)
1
g,(X) (12b)

2 2

1 1
[gj(X)]2 +

1
gry(X) +

1
f-, g,(X) + f, g,(X) = - (12c)

6 2 4 2

From (12a) and (12b) we get

f1=1 (13a)
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h(O) = 0
, (13b)

and using (13a) we then get, from (12c),

g'(x) + 6 [gi(X)]2 -l2fg'(x)+6h"(O)=O (14)

hence (see (A-40) and (A-24))

AX) =  (X) + A X (15)

with

A = -f, , (16a)

[ 2

g2 = 12 f - h(0)] (16b)

where we are using the notation of Appendix A (see in particular (A-24)), and we

have also simplified the expression of g(x) by taldng advantage of the freedom en-

tailed by the transformation (2), see the Remark 2.3.6.2-1 and the sentence following
it.

Since (14) is a consequence of (1), any solution of (1) must also satisfy (14);
hence (15) can now be considered as an ansatz that includes all possible solutions of

(1), although of course the fact that (15) satisfies (1) remains as yet unproven.
Hence we now insert (15), with A an apriori arbitrary constant, into (1), and we

thereby find that, up to the trivial solutions mentioned above, the most general solu-

tion of the functional equation (1) is indeed given by (15), or in fact, more specifi-
cally, by (7) (and, more generally, via (2), by (2.3.6-6)). Indeed the insertion of (15)
in (la) yields

(XMY)+ AX W+Ay (X)+'V XY =

f(x - y) [ '(x) -  (y) + A (x - y)] + h(x - y) + A +
1
A' (X' + Y')

2

+
1
[ t(X) +  2 (X) +  f(y) +  2 (y)] + A [X (X) + Y  (Y)] - (17)

2

We now use (A-59c) to eliminate the product  (x) 4(y) ,
and we thereby obtain

[f(x-y)-4'(x-y)-A(x-y)][  (x)+Ax- (y)-Ay ]=H(x-y) , (18a)

H(z) -= h(z) -
1
[ r(Z) +  2 (Z)] +,Z [1 _z  (Z)] -1'eZ2 . (18b)

2 2

Since the first factor in the left hand side, as well as the right hand side, of (18a) only
depend on the difference x - y, while the second factor in the left hand side of this

equation, (18a), does not depend only on this difference, x-y, it is necessary and

sufficient for the validity of (18) that there hold the two relations (7) (also recall
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(15)). It is thereby proven that (7) provides the most general solution of the functional

equation (1) (up to the trivial solutions mentioned above, and to the transformation

(2)).
A crucial role, in the proofwe have just given, is played by the key relation (A-

59c). Since we have been unable to locate this formula in the literature, we complete
our proof, as given above, by reporting a proof of (A-59b,c).

We take as starting point the formula (A-59a), that is well-known (see, for in-

stance, <WW27>, Sect. 20.41, example 1, p. 446):

 t +  P(Y) +  r +Y)+ , + )_ _Y)
2

W (X [ W (Y (X ] =0 (19a)

By performing the square, this can be rewritten as follows:

,;(X)  (Y) =  (X +AVW+ W]-7W-r(Y) -r (X +A - (19b)

Here and below we use the convenient short-hand notation

r(z) =
,
Vw+  ' (z)] =

,
C"'(Z) /UW - (19c)

2 2

(see (lb)). We now replace y with - y. Since  (z) is odd,  (-z) (z), see (A-

41), while clearly v(z) is even, r(-z) =y(z), we get

 (X)  (Y) = -' (X - Y) [ (X) - W]+AX) + r(Y) + Ax-A - (19d)

which coincides with (A-59c), that is thereby proven. And (A-59b) obtains by sub-

tracting (19b) from (19d).

Remark 2.3.62-8. (1) All nontrivial solutions of the functional equa-

tion (1) have the property (apriori far from obvious)

g(z) = Az) , (20)

(see (7a)). Note however that this relation, (20), is not preserved by the

transformation (2); hence it is possible to obtain, via (2), solutions of the

functional equation (1) which violate the rule (20). (H) Iff A = 0, the gen-

eral solution (7) has the property

h(z) =
1
[grW +g2W] =,V(Z) ; (21)

2

this property is also featured by the solution (5), which indeed corre-

sponds to the general solution (7) with A = 0 and  ; (z) completely degen-

erate, see (A-55b); it is not featured by the solution (6), which indeed
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corresponds to the general solution (7) with A = -1 / 3 and 4(z) degenerate

(see (A-54c), with a = i, a' = -1). (W) The 2 special solutions (5) and (6)

both feature a vanishing h (z), see (5b) and (6b); the general solution does

not,see (7b), except in the two special cases (5) and (6).

2.3.6.3 A new solvable many-body problem with elliptic-type
velocity-dependent forces

'

In Sect. 2.3.6.3 we focus on the iv -body problem

N

Y,, = 2 1 i. -t.  (x,, - x.) , (1)
M=1,M#n

where of course x. =- x,, (t), i', -= d x. (t) / d t and  (x) (xi CO, Co') is the

Weierstrass zeta fimction, see Appendix A. We show below how to solve

the initial-value problem for this system. The initial data consist of the N

initial positions, xjo), as well as the N initial velocities, i,,(O), and we

assume that the initial velocities satisfy,the single constraint

N

E i" (0) = 0
,

(2a)
n=1

entailing that the center-of-mass of the system (1) is initially at rest.

Since, due to the odd character of  (x),  (-x) (x), (1) entails

N

E i" (t) = 0 (3a)
n=1

hence

IV 'V

(3b)Y, inW= 11 i" (0) 1

n=1 n=1

the condition (2a), constraining the center-of-mass of the system to be

initially at rest, entails that it remains at rest throughout the motion,

Ar

i"W = 0. (2b)
n=1
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The motivation for restricting attention to the IV -body system (1) with

the constraint (2) ensues from the treatment of Sect. 2.3.6. 1; and the fol-

lowing developments are of course also closely related to that treatment,

although we try to make the presentation below as self-contained as it is

compatible with the avoidance of excessive repetition. At the end of Sect.

2.3.6.3, we extend the treatment to the more general equation of motion

(2.3.6.1-26) with (2.3.6.2-7a) (which reduce to (1) for A = 0).
To solve the problem (1) it is convenient to introduce new coordinates

(r) such that (see (2.3.6.1-24))

 " (Z-) = X"W ,
'r = rW ,t = 40 - (4)

We will choose below the function r(t) appropriately, with the properties

(see (2.3.6.1-25))

z-(O)=O, t(O)=O (5a)

f(O)=I, t'(O)=l (5b)

which clearly entail (see (2.3.6.1-27))

(0) = X" (0) (6a)

(0) = ill (0) (6b)

Here and below dots denote of course t -differentiations and primes r -

differentiations (or, more generally, differentiations with respect to the

argument of the function they are appended to). Note that, via (4), the

constraint (2) entails (see (3b))

IV N

'(O)=O (7a)1]  .' (r) =
,

4 '
n=1 n=1

hence also

N N

I  n (z-) '= E  n (0)=E Xn (0)  (7b)
n=1 n=1 n=1

with the first equality entailed by (7a) and the second by (6a).
We introduce now the convenient function
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V(X, -0 = 1 - rE i. (0) dX - X" (0)] - (8a)
n=1

This is a doubly-periodic elliptic function of the variable x; it has N

poles at x = x,, (0) with residues - ri,, (0), see (A-47); its double periodic-

ity is guaranteed by the constraint (2a) (see (A-45)); and evidently

V(X, 0) = 1
, (8b)

while the (partial) r -derivative of V/ (x, r),

N

V, (X, T) = Vf, (X, 0) = -1 i" (0) 'AX - X" (0)] = Vf( ' 1) - 1
, (8c)

n=1

is clearly as well a (r -independent!) doubly-periodic elliptic function of

x, with N poles at x = x,, (0) and residues -in (0) ; finally, it is obvious that

V'(X'0=0 - (8d)

We now introduce, in addition to. the above (standard) representation
of the doubly-periodic elliptic function (8a) via its poles and residues,
another (also standard) representation of this same doubly-periodic ellip-
tic function, via its poles and zeros:

1 IV

V (X, -C) = exp
2
(O(r) fl IO-1X-  (rA/C1X-X"(O)jI - (9)I

n=1

Here of course a (x) -= u (xj co, co') is the Weierstrass sigma function, see

Appendix A, and it is required that the sum of the poles equals the sum of

the zeros, a condition that is guaranteed by (7b).

The fact that any doubly periodic elliptic function admit, up to an additive re-

spectively multiplicative constant, a unique additive representation of type (8a) in

terms ofits poles and residues (with the condition that the sum ofthe residues vanish)
respectively a unique multiplicative representation oftype (9) in terms of its poles and

zeros (with the condition that the sum of the poles equals the -sum of the zeros) is a

well-known result (see for instance Sect. 20.5 of <WW27>). In our case we elimi-

nated the ambiguity associated with the choice of the (additive or multiplicative, as

the case may be) constant via (8a), and therefore the (apriori unknown) constant  9 is

introduced in (9) ( o is a constant inasmuch as it does not depend on x; it does, of

course, depend on r
,  9 =-  9 (r) ,

see (9)).
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Let us emphasize that the representation (9) does not quite coincide with the rep-

resentation (2.3.6-1) with

G (x) = o- (x) , (10a)

which ofcourse corresponds, in the notation of Sect. 2.3.6.1 and 2.3.6.2, to

fW = gW = ,,W , (10b)

see indeed (2.3.6-2) with (A-39) and compare (1) with (2.3.6.1-26). The difference

among (9) and (2.3.6-1) with (10a) is the z- -independent multiplicative factor
Ar

fo- [x - x,, (0)] r, which has little relevance as regards the equation (8d) (or

equivalently (2.3.6.1-17a)) which characterizes the time-evolution. But this represen-

tation, (9), is quite convenient to solve the initial-value problem for the N -body sys-

tem (1) with (2), as we now show.

Indeed we now equate (8a) and (9):

N

')]/ 07 [X - Xn (0)] 1  _ 1 - rE 'n (0) dX-Xn (0)] * (11)exp[- o(z)/2]IJ fo-[x- ,(z
..d

n=1 n=1

It is clear from this equation that the initial data, x,,(0) and in (0), which

characterize its right hand side, determine uniquely the N coordinates

(which are just the N zeros of VI(x,-r), see (8a)), as well as the

function  9 (r) ,
that feature in its left hand side; and this determination is

achieved, via this equation, (11), without having to integrate any differ-

ential equation. Note in particular that this equation, (11), or, equiva-
lently, (9) with (8b), entail, via (6a), that p (z-) vanishes at z- = 0,

,P(O)=O - (12a)

We now r -differentiate the logarithm of (9), using (A-39), and equate
the result to (8c):

N

(13a)
2

n=1

N Ar

- V'(T)- (13b)
2

n=I n=1
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Via (8b), (6a) and (6b) this formula, (13b), clearly entails that also the -r -

derivative of V (i) vanishes at z- = 0,

(0, (0) = 0
- (12b)

The z- -independence of the left hand side of (13b) (which is less than ob-

vious; but see the right hand side !) should moreover be noted.

The next step is to z- -differentiate (13a), and to use (8d). The relevant

computation was detailed in Sect. 2.3.6. 1, hence it is not repeated here.

The result reads

=  9'(z-) + 2 1  .' (-r)  [ (z-) -  . (r)] . (14)
m=l,m#n

This formula coincides with (2.3.6.1-14) via (10b).
Moreover, one gets (2.3.6.1-13) with (2.3.6.2-7b) (with A = 0

 Off_
1

P)2 (15a)00 = 2
2

R,M=l

h(z) =
I
[ I(Z) +  2 (Z)] = 1C"(Z) / C(Z) - (15b)

2 2

In (15a) we have omitted the requirement f # m in the sum, since (15b) implies
h (0) = 0, see (A-47) or (A-46). This ODE, (15a), together with (12), determines in

principle the function (9 (r) ,
if the quantities  , (i) and  '

,
(r) are known. But, as we

have seen above, V (r) is also obtainable, without solving any ODE, directly from the

initial data x, (0), i,, (0), via (11). Hence, in the context of the initial-value problem

for (1), we hereafter consider V (r) as a known fanction.

The final step, in the context of the solution of the initial-value prob-
lem for (1), is to relate the coordinate to the coordinate xn (t). The

equations to be compared are (14) and (1), with in addition (6). The link

is provided by (4), with (2.3.6.1-25); note in particular the coincidence of

(6) with (2.3.6.1-27); as for (2.3.6.1-25c) and (2.3.6.1-28), we refer for

their relevance and derivation to the treatment in Sect 2.3.6.1, without

reporting neither their expressions nor their derivations here.

In conclusion: we now see how the initial-value problem for (1) is

solved. Given the initial data, x,, (0) and i,, (0), via (11) one gets the N

coordinates  , (r) (the zeros of (11) !), as well as the function (o (z-) ; then,
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via (2.3.6.1-28), one gets t(r), hence, by functional inversion, r(t); and

finally from (4) one gets the "particle coordinates" x,, (t) that are entailed

by (1) with the assigned initial data x,, (0) and i,, (0).

Let us now show, as promised above, how the solution of the initial-

value problem for the (more general) N-body system characterized by
the equations ofmotion

,V

2 LAY, - Y.) + A (Y, -YA (16a)

with initial conditions satisfying the restriction

IV

Y,  ,, (0) = 0
, (16b)

n=1

can be generally reduced to solving the same problem, but with

A=O:

IV

- n= 2 1 i,, i. f(xn - x.) , (17a)
M=1,M#n

Ar

I -i" (0) = 0
- (17b)

-I

Namely, we now show how, from the solution of the initial value-

problem for (17), one can, simply via a change of the independent vari-

able, evince a solution of the initial-value problem for (16). Let us em-

phasize that, in (16a), A is an arbitrary constant, while the function f(z),

which appears in both (16a.) and (17a), is also, in the present context, ar-

bitrary, except for the restriction that it be odd,

A-Z) = -AZ) - (18)

Note that this restriction, together with the equations of motion (16a) re-

spectively (17a), entail that the restrictions (16b) respectively (17b) on

the initial conditions hold in fact for all time:

N

M0=0 (16c)

N

I &. (t) = 0 (17c)
n=I

224



Let us indeed relate the coordinateXn toy,, via the identification

X ('r)=YnW (19a)

with

N
2 _X'2(O)]jt f 0' dr'expj(A / 2)IXn (19b)

n=1

These relations clearly entail the identities

xn (0) = Yn (0)  (20a)

'n (0) =  n (0) * (20b)

Moreover, if x,, evolves according to (17a), Yn evolves according to

(16a); and viceversa. Hence to solve the initial-value problem for (16a)
one solves firstly the initial-value problem for (17a), with the same initial

data, see (20), and one then uses (19) to get Yn W; of Course to perform

the last step a quadrature, and a functional inversion, are generally re-

quired, to get r (t) from (19b).

Before delving into the proof of the above assertions, let us emphasize that the

change of the independent variable discussed here, from t to r and viceversa, see

(19), has nothing to do with the change of independent variable discussed above, see

(4), in spite of the similarity of the notations used (also there, from t to r, and

viceversa).

Proofs. From (19b) clearly

Z-(O) = 0
,

(21a)

[X2 (Z-) _ X2 (0)]i(t) = expj-(A / 2) 1 (22a)
.' n n

n=1

hence

f(O) = 1 (21b)

and

(T) xn (T) (22b)1: xn
n=1
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The prime in the right-hand side of (22b) denotes of course differentiation with re-

spect to r. Note that (21a) entails (20a) (via (19a)).
Next, from (19a) we get

 "W= XIII 00 f(t) (23)

which of course, via (21), entails (20b).
An additional differentiation yields

tr

=X (. ]2 + X"I (' f
 

1) [f(t) 0 W (24)W

and, via (17a) (which must now be seen with dots replaced by primes), as well as (23)
and (22b), one gets

'V 'V

 n = 2 f(y,, - y.) - 2 2 y. (25)
m=l,m#n M=1

But, thanks to (1 6c), the last term in the right-hand side can be rewritten as follows:

N Ar

- 2A  ', 1:  m y. = 2A 1:  ,,  . (y,, - y.) (26)
M=1 M=1

Moreover, the term with m = n can be omitted, in the sum in the right-hand side of

this last equation, since it vanishes. It is thus seen that (25) coincides with (16a), and

this completes the proof ofthe assertions made above.

Let us end Sect. 2.3.6.3 by emphasizing that the N -body system
solved herein, see (1), is Hamiltonian. The corresponding Hamiltonian

function reads

IV N

H(p,q)=E exp(spj rj [a(qn-q.)] (27)
n=I m=l,m#n

with s an arbitrary constant and a(q) o- (qj co, co') the Weierstrass sigma

function, see Appendix A.

Exercise 2.3.63-1. Verify that the Hamiltonian equations entailed by
(27) yield the Newtonian equations of motion (1), of course via the iden-

tification q,, (t) = x,, (t) .
Hint: see the treatment of Sect. 2.1.12. 1, and use

(A-39).

Remark 2.3.6.3-2. The solvable Ar -body model (1) does not belong to

the RS class treated in Sect. 2.1.12 and the subsections following Sect.

2.1.12.
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Remark 2.3.6 3-3. The solvable N -body model (1) admits the (com-

plex) extension characterized by the Hamiltonian (compare with (27))

N IV N

1( ' (Q/ S)I  L +I exp(spo rI [0-a,-4A (28a)
n=1 n=1 M=I'M--n

and by the Newtonian equations ofmotion (compare with (1))

N

Xn -'0 3 n = 2 L Yn Y.JY,, - Y.) , (28b)
M=I'M#n

which obtain from the Hamiltonian equations of motion entailed by (28a)
via the identification 4 (t) = Y,, (t). Here we denote by n an arbitrary real

(nonvanishing) constant (we use the capital letter n to avoid any confa-

sion with the semiperiods, co and co', associated with the Weierstrass zeta

function  (x) -=, (xj co, co') ).

Exercise 2.3.6.3-4.Verify that (28b) follows from (28a).

Remark 2.3.63-5. Set

YnW = Xn rt(01 (29a)

with

'7(t)=[exp(iC2t)-I]/(if2) . (29b)

Then clearly

(29c)Yn (0) Xn (0)  

'ZI

Xn (0) = -,,
(0) 1

(29c)

and moreover, if Xn (t) evolves according to (1), 5 ,, (t) evolves according

to (28b), and viceversa. Hence the solutions of the initial-value problem
for (28b) can be obtained simply by replacing t with T(t), see (29b), in

the solutions of the initial-value problem (with the same initial data) for

(1). This clearly entails that all solutions of the Newtonian equations of

motion (28b), corresponding to the Hamiltonian (28a), are completely

periodic, with period T = 2;r /0 (or a multiple of it; see, for instance, Sect.

4.5).
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Exercise 2.3.6.3-6. Verify by explicit computation the validity of the

above assertions, and review all previous analogous findings. Hint: see

Sects. 2.1.12.3, 2.1.12.4 and 2.1.13,

Exercise 2.3.63-7. Generalize the Hamiltonian (27) so that it yields,
rather than (1), the equations of motion (16a) (with f (z) = jz)). Hint: see

Sect. 2.1.12. 1.

Exercise 2.3.63-8. Formulate and solve analogous exercises to those

written above, but for the more general Hamiltonian introduced in (the
immediately preceding) Exercise 2.3.6.3-7 and, correspondingly, for the

equations ofmotion (16a) (with f(z) = jz)).

2.4 Finite-dimensional representations of differential

operators, Lagrangian interpolation, and all that

In previous sections certain remarkable matrices emerged (see for in-

stance the discussion preceding (2.1.3.3-46), that leading to (2.3.4.1-23),
the statement following (2.3.4.2-30)): they were defined in a neat manner

in terms of the zeros of Hermite polynomials or in terms of N arbitrary
distinct numbers, and they possessed only integer eigenvalues. Clearly
such findings have a (purely mathematical !) interest of their own, inde-

pendent of the investigation of many-body problems. In Sect. 2.4 we

tersely review certain developments on Lagrangian interpolation, finite-

dimensional (matrix) representations of differential operators and all that:

these classical mathematical results provide an appropriate context to

prove and extend the findings about remarkable matrices mentioned

above. They also provide tools to manufacture many-body problems
amenable to exact treatments; but such developments are mainly post-
poned to the next Chap. 3, where they are treated on the basis of a some-

what more general formulation of Lagrangian interpolation than that pre-
sented here, which is restricted to a one-dimensional context and to poly-
nomial interpolation.

Before delving, in the next subsections of Sect. 2.4, into the substan-

tive topics indicated by the titles of Sect. 2.4 and of the following subsec-

tions, let us again specify the notation which is used below. N is a (fixed
but arbitrary) positive integer, generally larger than unity; an indices

(n,m,l,j,k.... ) run, unless otherwise indicated, from 1 to Y; (N x N) -

matrices are denoted by underlined upper-case letters, N -vectors are de-

noted by underlined lower-case letters, and the standard rules are used for
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matrix-vector algebra: thus the N -vector v has the IV components v, the

matrix M has the NI elements M,,., the N -vectors

W=M.V, U=V.M (la)

have the IV components

IV N

Wn M. V. M V, (1b)Un =J: Mn

M=1

and the scalar product among the two N -vectors v and u is defined in

the standard manner,

IV

U'V=Y*!i=Z UnVn (2)
n=1

In the following the dot, in equations such as (1 a) and (2), will be omitted

whenever this is unlikely to cause any misunderstanding.

Finally, in the following, unless otherwise indicated, by the notation

x,, (or Yn or
... ) we denote N arbitrary distinct numbers (possibly com-

plex); namely, the properties of the (N x N) -matrices which are defined

below in terms of the N numbers x,, (or y. or
... ) hold for any arbitrary

choice ofthese numbers, except for the restriction that they be different,

X ' :"- X. if n#m
,

(3)

which is hereafter assumed to hold (actually most of the formulas written

below remain valid, perhaps in modified forms obtained via appropriate

limiting processes, even if (3) does not hold; but for simplicity we ex-

clude this possibility hereafter).

2.4.1 Finite-dimensional matrix representations
of differential operators

In Sect. 2.4.1 we report the main formulas which provide a convenient

finite-dimensional matrix representation of differential operators, exactly

applicable in the functional space of the polynomials of degree less than

N
.

Let the matrices X and D be defined as follows, in terms of N ar-

bitrary (but distinct, see (2.4-3)) numbers x,,:
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X = diag(x,,), X". = 15""' X" , (1)

'V

-1

D_ = D_ ( ) =.5. 1 (X. - X')' +G -J.'.) (X" - X.) .

Let us moreover introduce, for notational convenience, the two N-

vectors d and b, and the (Nx N) -matrix A, also defined in terms ofthe N

arbitrary numbers x, as follows:

IV

d,, = d,, Ux = E -X.)- ,,
(X" (3)

m=l,m#n

Al

b,, -= bnUX (Xn -Xm) (4a)
M=I'M#n

A =- AUx = diag (b,,) B. 5,,. b,, (4b)

Note that (2) and (3) entail

D. = d,, (5a.)

N

D. = 2d,, (5b)
M=1

N

D. =0 (5c)
M=1

Ar

(D
2

)
"M
= i5nm [dn 2 -2

(Xn -X J+ (1 2 [d,, (x,, - x.)
-1

-(Xn -xm)-2],(5d)

while (4a) entails

b,, = p' (xn) , (6a)

where p. (x) is the monic polynomial of degree N in x having the Nnumbers x,, as

its zeros,

N

PN(X)=Il (X-xn) (6b)
n=1

The proof ofthese formulas is plain; the diligent reader might want to work it out

in Rill detail.
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The two (N x N) -matrices X respectively D provide faithful repre-

sentations of the (multiplicative) operator x respectively of the (differen-
tial) operator dldx, in the N-dimensional functional space of the poly-
nomials in x of degree less than N. A more precise formulation of this

statement reads as the following

Lemma 2.4.1-1. Let f (x) be an arbitrary polynomial of degree less

than N,

'V N

f (x) = I an-I Xn-I =I C, XN- , (7a)
n=1 n=1

and f
()

(x) its r-th derivative

N

f(r) (x) = (dl dX)r f (X) =I a Xn-I-r
.

.., n-I (7b)
n=r+l

Now associate to f(x) respectively f(r) (x) the N-vectors f respectively

f
(r) via the following prescriptions: the n-th component of the N-vectors

f respectively f
(r)

are the values that the functions f(x) respectively

f(r) (x) take at the point xn:

fn W
n

= Axn)  (8a)

f(r)
= Q

(r)
)n = f(r) (Xn) (8b)n

There holds then the following N-vector formula:

f BDrB-'f = (A:pA-I)r f ,
r (9)

This important formula demonstrates that, up to the similarity transformation

induced by the matrix B, the matrix D, given in terms of the N arbitrary numbers

xn by the neat definition (2), provides a representation of the differential operator

d I dx. In the following two Sects. 2.4.2 and 2.4.3 we will look at this result from

other angles, and in so doing we will also prove it (in Sect. 2.4.2). This should not

prevent the diligent reader from trying and proving (9) forthwith.

Note that, since clearly (see (7))

f(N) =0
, (10)
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(9) entails that the matrix D is nilpotent,

N
D = 0

The diligent reader is also advised to try and prove now this nontrivial. property of the

matrix D, see (2).

The Lemma 2.4. 1-1 stated above entails the following important

Proposition 2.4. 1-2. Let A be an arbitrary linear differential operator
written as follows:

A=Y a,(x)(dldx)' (12)
-0

and let

Af(x) = F(x) (13)

f(x) being a polynomial in x of degree less than N, see (7a.) (but note:

no such condition on F(x) ). There then holds the N-vector equation

Af(Dv=FUX v (14)

with

A=Y a, 0 D' (15)
-0

and (see (5))

v = B-'u
, (16a)

where u is the N-vector having all components equal to unity,

U" =1
,  (17)

so that (see (4))

IV

1

v,, = b = rl (X - X.) (16b)
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This result provides a simple rule to transform any linear differential

equation (including non homogeneous ones), valid for a polynomial f(x)

of degree less than N, into a corresponding N-vector equation, via the re-

placement of the variable x with the diagonal (N x N) -matrix X, see (1),
and of the operator of differentiation d /dx with the (N x N) -matrix D

,

see (2).
There clearly moreover hold the following two Corollaries.

Corollary 2.4.1-3. If for the differential operator A, see (12), there

holds the equation

Af(x)=O , (18)

f (x) being a polynomial in x of degree less than N, see (7a), then the

(N x N) -matrix A, see (15), has vanishing determinant

det [A] = 0 (19)

Corollary 2.4.1-4. If the differential operator A, see (12), has the ei-

genvalue a,

Af.(x)=af,(x) (20)

and the corresponding eigenfunction, f. (i), is a polynomial in x of de-

gree less than N, see (7a), then the matrix A, see (15), also has the eigen-
value a,

A W(a) =aw(a) (21)

and the corresponding eigenvector w() is given by the following simple

rule:

W(a) =f  D V (22)aC

with v defmed by (16) (and of course X defmed by (1)).
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Proofs. The Proposition 2.4.1-2 is an immediate consequence of the Lemma

2.4. 1-1. Indeed, by setting x = x,, in (13), one gets

ar (X,,) f()
(x,,) = F(x,,) (23a)

r=O

hence, via (1), (8b), (9) and (17),

B F(XDU (23b)

where moreover, see (17), (8a.) and (1),

f =AD U
- (24)

Insertion of (24) in (23) yields, after multiplication from the left by B_' (and using

the commutativity of the diagonal matrices X and B), precisely (14) with (15) and

(16). The Proposition 2.4.1-2 is thereby proven.
The Corollary 2.4.1-4 is just the special case of the Proposition 2.4.1-2 with

a
(x) and F(x) = aff(x) =f "(X).

As for the Corollary 2.4.1-3, (19) is immediately entailed by the formula

AfUX V=O
, (25)

which corresponds to (14) with F(XD = 0, as indeed (18) corresponds to (13) wift

F(x) = 0.

Exercise 2.4.1-5. Prove the identities

Ar

LDr),,. bm-1 =6,0 bn, r = 0, 1,, 2,... (26)
M=1

with D respectively b. defined, in terms of the N arbitrary (distinct) numbers x,

by (2) respectively (4a). Hint: set f(x) = 1 in (9).

Exercise 2.4.1-6. Prove the identities

,
(x,,-x.)-(b-+b-)=O, (27)n M

m=l,m#n

with b. defined, in terms of the N arbitrary (distinct) numbers x, by (4a). Hint. set

r = I in (26) and use (2).
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2.4.2 Connection with Lagrangian interpolation

In Sect. 2.4.2 we tersely indicate how the findings reported in the pre-

ceding Sect. 2.4.1 fit in the context of the standard theory of Lagrangian
(one-dimensional, polynomial) interpolation, and in so doing we also

provide a proof ofthe Lemma 2.4. 1-1.

Let x,, be N arbitrary distinct numbers, see (2.1-3), and f be N as-

signed values. The problem of Lagrangian (polynomial) interpolation is

to construct the (unique !) polynomial f (x), of degree less thanN(gener-

ally, of degree N-1), that takes the assigned values f at the Npoints x,

Ax") =4 (1)

Note the analogy of this formula, (1), with (2.4.1-8a). Also note that, via (2.4.1-
7a) (which merely reflects the property of f (x) to be a polynomial of degree less

than N), (1) becomes

IV

Z a, (x,,)
m'

= f, - (2)
M=1

This is a system of N linear equations for the N unknowns a,,-, .
A necessary and

sufficient condition to guarantee that this system admit a unique solution is that the

determinant ofthe (N x N) -matrix with (nm) -element (x,,)'-' not vanish,

det [(X,,)M1#0 . (3)

But the Vandermonde identity,

N

det[(xjm-$ 11 (Xn-X.) 1 (4)
n,m=l;n>m

guarantees that (3) holds (since thexn's are, by assumption, distinct, see (2.4-3)).

The standard way to construct explicitly the polynomial f (x) goes as

follows. Introduce the N interpolational polynomials, all of them of de-

gree N - 1,

N

(0 (X) = -xm)'(Xn _XJ 3qjv_j I I [(X (5)
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which clearly satisfy the property

(6)q1V_1 (X.)

It is then obvious that

.,
f, q(n) (x) . (7)AX) JV_1

n=1

Indeed, clearly f(x) ,
see (7), is a polynomial of degree (at most) N- 1 (hence,

less than N ), and, via (6), it satisfies (1).
The diligent reader will verify that the prescription (7) with (5) yields the same

result that obtains by solving (2) for the a,,'s and inserting the result in (2.4.1-7a).

It is now convenient to introduce the (x -dependent) N-vector q(x),

whose components are the interpolational polynomials:

[ q(x) ],, =- q,, (x) = q
(')

(x) . (8)Ar-1

Then the right hand side of (7) can be written, via (2.4.1-8a), as a scalar

product (see (2.4-2)):

f(x) = f - q(x) = q(x) - f , (9)

and moreover there holds the important N-vector formula

(d1dx)q(x)=q(x)-B.D.B_1 =q(x)BDB-l
, (10)

with the (N x N)-matrices B and D defined by (2.4.1-4,2).

Proof Via (8), (5) and (2.4.1-4a) we write the n-th component of q(x) as fol-

lows:
'V

q,, (x) = (b,,)-' fj (x - x,,,) . (11)

Hence

V 'V

(dldx) qn (x) = qn 1 11 (X - X.) (12a)'(X) = On)
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N N

'(x) fj(x - x.) (12b)E I(x-x.)(X-X,)rq,,

M=1
I

i=l, #n

q'(x) =
'v

b-1
Iv

- X.n I " 11(x )] [(X-X.)-'-(X-X,),](X.-X,) (12c)
e=l,e#n M=1

N

1[
N N

q'(x) I n fj (x - X.) - fjn _.,

b (x-x.) (X , -x,)' , (12d)
i=1,&n m=l,m#n M=1.m#R

,V

q'(x)= I b-1(xn-x,)-1[b,,q,,(x)-b,q,(x)] (12e)
M,&n

In the last step we used (11); the others were, we trust, clear enough.
It is now clear, via (2.4.1-4b) and (2.4.1-2), that (12e) can be written in the N -

vector form

q'(x) = A_'D
T
B q(x) (13)

where D7 is the transpose of D (note that the antisymmetry of the off-diagonal terms

in the right hand side of (2.4.1-2) takes thereby care of the minus sign in the right
hand side of (12e)).

Since the transpose of B-1 DT B is BDB-' (A being symmetrical, indeed di-

agonal, see (2.4.1-4b)), clearly (13) coincides with (10), which is therefore proven.

Clearly (10) can be iterated, yielding the more general formula

(d /dx)' q (x) = q(x) (B2A-I)r = q (X)BDrB-1 (14)

Hence from (9) we get

(dldX)r f (x) = q(x) BDrB-If
, (15)

which corresponds to the important formula (2.4.1-9), that. is 'therefore

now proven.

Indeed, by settingX = Xn in (15) we get, via (2.4.1-8b),
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(r)
=n' q(x,,)-BD'B-'f (16)f

and the scalar product in the right hand side coincides with the n -th component ofthe

N-vectorBD'B-1f since

q. (Xn)  gmn (17)

(see (8) and (6)).

Let us end Sect. 2.4.2 with some final remarks, which are perhaps
more notational than substantive, yet may be quite illuminating in con-

nection with the developments reported in subsequent sections.

The interpolational polynomials (5) are defined in terms of the N

numbers x, hence they might be conveniently redefined as follows:

'M

q,(n), Lx y) [(Y - Xm) / (xn - XJI 3

where of course the N x,s are the Ncomponents of the N-vector x. Then

of course (6) reads

(n)
q -I Cx, xm ) = 45nm (19)

and by setting in (7) f(x) = xm' one gets

N

q
(n) (x

-1 -1

,y)(x,,)m =ym , (20)I N-I

n=1

a formula where, for notational convenience, we have replaced x with y,

and which of course holds as usual for m = N.

In particular, if we now introduce the N arbitrary numbers y, and set

y = y,, in (20) we get

iv,

(Yn)M-1 q
(e) Cx (21)N-1 _, y.) (x,)

e=1

which can be then written as the following N N -vector equations:

(-1) m-'I
Y =Q(Y,-Xj X, (22)
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via the definitions

(M-1) 1-1 M-1 M-1
x (X M 3IX7 (23a)

(M-1)
= (YM-I M-I M-I

Y I IY2 I-.IYN (23b)

Q(y, x) q(') (x,yj (24a)

LQUI-X)Inm = rI ky. - X') / (xM - X01 - (24b)
9=1't#M

Note that (22) entails

Q(,X--X)=i (25)

1LQ(,x Y) =Q (Y' _X) , (26)

Q LxA Q(Y'D = Q(x,D - (27)

Finally note that (23) entail

X(O) =Y(0) = U (28)

where u is the N -vector with unit components,

(29)

as well as

X(M-I) = X(M-I) U (30a)

Y(.-I) = Y(M-1) U (30b)

with the diagonal (N x N) -matrices x and Y defined as follows:

X. = 9". X., Ynm = gnm Yn * (31)

Finally let us re-emphasize that all these formulas hold for an arbi-

trary choice of the 2N distinct numbers xn and y,, (and, in (27), as well
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of the N numbers zj, and for an arbitrary value of the indices, or expo-

nents, n, m,.,., provided they are in the range 1, 2,...,N (this latter restriction

is essential!).

Exercise 2.4.2-1. Prove the identities

Ar IV

I-,

rI [(x -1

X" -x x.)] = x' 1,2,..., N."') / (X" (32)
n=1 m=l,m#n

Hint: set f(x) = x-' in (7); or see (20).

2.4.3 Algebraic approach

In Sect. 2.4.3 we revisit the results of the two preceding Sections, 2.4.1

and 2.4.2, in a more algebraic setting.
The main formula of this approach is the matrix relation

LDXI=I-_J . (1)

Here of course D and X are the (N x N) -matrices defined, in terms of the

arbitrary N distinct numbers x,,, by (2.4.1-2) and (2.4. 1 - 1), while I is the

(N x N) -unit matrix,

-1". = 9. , (2)

and J is the matrix all ofwhose elements equal unity,

J. =1
. (3)

Let us also introduce the matrix

P=JIN
, (4)

the N- vector u with unit components (see (2.4.1-17) and (2.4.2-29)),

U" =1
, (5)

andNN-vectors v('),
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Vm) = Xm_1v = X"'-' B-l!i
,
m = 1,2,...,N , (6a)

with v = B-'u (see (2.4.1-16)), so that their components read as follows:

(M) m-1
/ b,

-1
m (6b)V = (Xn) (Xn)m (Xn - Xd

t=1,t#n
I I

see (2.4.1-4a) (note that this definition entails v v); and let us take

note ofthe following formulas:

2
P =P (7)

P-D=JD=O (8)

Pv
(n)

= jV(n) = 0 n=l,...,N-1 (9a)

Jv(,V)=U, Pv(lv)=ulN (9b)

PU=U
, (9c)

Dv
(n)
= (n_1) V(n-1) (10)

(n) (n+l)
Xv = V

, n=l,...,N-1

Proofs and comments. The proof of (1) is plain: since X is diagonal, see (2.4. 1-

1), the commutator in the left hand side of (1) has no diagonal part, and this is obvi-

ously also true of the right hand side, see (2) and (3). As for the off-diagonal part of

(1), it amounts via (2.4.1-1), (2.4.1-2), (2) and (3), to 'the identity

(x,, - x.)
-'

(x. -xJ = -1. The proof of (7), from (4) and (3), is trivial; note that it

qualifies P as a projector. The proof of (8) is also trivial; indeed, this formula coin-

cides essentially with (2.4.1-5c), via (3) and (4).
Note that (9a) only hold for n < N (see (9b)). It amounts via (3), (6) and (2.4. 1-

4a), to the sum rule (identity)

Ar V

I (xnY_1 I [ ]FJ (xn - xM)]  % S=L-' N-l * (12)
n=1 M=I'M#n

Indeed, consider the polynomial ofdegreeNin z, having theN x,,'s as its zeros,

N

P" (Z) = 11 (Z -XJ , (13)
n=1
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and the IV - 1 meromorphic functions

 9.' (Z) = z" / P'V (z), s=l,...,N-1 , (14)

whose (only) singularities in the complex z -plane are N simple poles at z = x, with

residues p,

Al =(X-)S-'IPAr(X,,)- (15)

Clearly (14) and (13) entail that, at large IzI,

'P., (Z) = Zs-I-N [1+ 0 (IZI-I)] (16)

Hence all these N - 1 functions, see (14), vanish at least as z

-2

when the modulus

IzI ofthe complex variable z diverges. This entails

(2zi)-l f dzps (z) = 0 (17)
C

if C is a circle of diverging radius in the complex z -plane. But by the residue theo-

rerri, see (15), this integral equals the sum in the left hand side of (12), since (13) en-

tails

N

PIV (X") = F1 (X" - X.) - (18)
M=I'M#n

Hence (17) entails (12) namely (9a), which is thereby proven.
To prove (9b) one repeats the previous argument, but now with s = N. Then, at

large IzI, via (13),

z(ON(Z) = Z'V-I /AV(Z) = Z-'[l+ 0(11 )] (19)

hence

(2;ri)-l f dzpv (z) (20)
C

and, proceeding as above, one gets now the sum rule (identity)

N N

' -1 /1(Xn)
N' ][I (Xn -XJJ (21)

n=I m=l,m#n

which, via (6), (2.1.4-4a) and (5), corresponds to (9b).
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Exercise 2.4.3-1. Verify, by direct computation, the validity of (9a.) and (9b) for

N=2 and N=3.

The proof of (9c) is trivial, from (3), (4) and (5). Note that this equation, (9c),
entails that u is the (right) eigenvector of P corresponding to its unit eigenvalue (f

of course also has the eigenvalue 0
,
with multiplicity N -1 ). Hence the action of the

projector P on any N-vector w is to yield the component of w in the direction of u
,

PW = Cu- - __W_) U - (22)

Note that (9b) entails that all the vectors v(") with n < N, see (6), are orthogonal to

U
I

U*V
(n)
= 0, n=l,...,N-1 (23)

There remain to prove (10) and (11). The latter is a trivial consequence of the

definitions of X, see (2.4.1-1) and of V(n), see (6). But note that this formula, (11),

only holds for n < N; indeed v(N+l) is not defined, since (6) only holds for

m = 1,...,N. Of course one might define y(m) for arbitrary values of m via (6), and

then (11) would trivially hold for arbitrary values of n; this would, however, not be

the case for (10), see below, and it is therefore preferable to limit the definition of the

vectors v
(n)

to the N values n N, since, in any case, there can only be N inde-

(n)
pendent N-vectors (indeed, as we see below, the N N-vectors v

,
n N, pro-

vide generally a complete basis in the finite-dimensional vector space ofN-vectors).
The simpler way to prove (10) is to note that it is merely a special case of (2.4. 1-

9) (which has been proven in the preceding Sect. 2.4.2).
Indeed for

f  9 ( ) = Xn-1x (24a)

-via (2.4.1-8a), (2.4.1-4b). and (6) one gets

B-1 f = v(n)
,

(24b)

as well as (using additionally (2.4.1-8b) with r = 1)

B
-1 f(i) =(n _ 1) V(n-1) (24c)

But then, multiplication of (2.4.1-9) (with r = 1) by A-' (from the left) yields, via

(24b) and (24c), precisely (10), which is thereby proven. Note that the condition

n = N, required for (10) to hold, corresponds precisely to the requirement that

f(x), see (24a), be a polynomial in x of degree less than N, which is essential for

the validity of (2.4.1-9).
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The two key formulas (10) and (11) correspond to the two elementary
relations

(d / dx)  o,, (x) = (n-(x) (25)

X (onW = (0n+1W 1 (26)

valid for the set of functions (simple powers)

 0"W= Xn-I, n = 1, 2,... . (27)

This underscores the correspondence among, on one side, the (NxN)-

matrices D respectively 1, and, on the other, the operators dldx re-

spectively x. Of course (25) and (26) hold for all positive integer values

of n, while, as we have seen, in the finite-dimensional framework of the
(n)N-vector space spanned by the NN-vectors v ,see (6), (10) indeed holds

for all values of n in the range from 1 to N, while (11) only holds for the

first N - 1 N. vectors y(n) with n = L...'N - 1, because the vector v(') is

not defted. Likewise, to the commutation relation

[dldx,xl=l , (28)

there corresponds, see (1) and (4), the (NxN)-maffix formula (see (1)
and (4))

LDX]=I-NP (29)

with the projector operator P, see (4), (3) and (7), characterized by the

properties (9).
To complement the interpretation of the N N-vectors v(') as a basis in

the fmite-dimensional N-vector space, let us introduce the N N-vectors

 (n) orthonormal to the NN-vectors v
(n)

 (n) .V
(M)

=gnm ' (30)

There hold then the following formulas:

IV

(n) =E r. X.-nU (3 la.)
m=n
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(N)
U =U (3 lb)

with u defined by (5) and the coefficients r. related to the x, Is via the

formula (see (2.4.1-6b))

N N

P,vW =H (x - X.) = L r. X,
- (31c)

n=1 M=0

Note that (3 1c) entails

r,v =1 , (3 ld)

and that (3 lb) is merely the special case of (3 1a) with n = N, see (5).

Let us now introduce the (Nx N)-matrices v and U via'the (stan-

dard) definitions

(n)
Vnm  Vn = (Xn ).-11 [ fj (Xn - XiA 1 (32)

(n
Unm =- UM) =I

.,
(33)

t=n

and let us then note the following formulas:

UV=VU=l
, (34)

N

det LV] =(_)IV(]V-I)/2 H (x,, - X. )
-1

, (35)
n,m=l;n>m

N

detM H
IV(N-1)12 (Xn-Xm), (36)

n,m=l;n>m

U( ) D = nU(n+1), n=l,...,N-1 (37a)

U(N)D=u.D=O (37b)

U(n) . X =X. U(n) = U
(n-1)

_rn-1 H, n = 2,...,N 9 (38a)

U(1).X=X.U(,)=-u (38b)
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(U (39)

(40a)

EID nAr= -rn-I (40b)

Proofs. The main result to be proven is the consistency of (31a) with (30),

namely validity ofthe sum rule

N Ar N

(41)
.'

"S (X, )
S-M-1 /[ Irf (X, - XjA= -5.. ,

,

f=1 s=n

(n) d V(m). thi,which corresponds to (30) via the definitions (3 la) and (6) of u an
-

To 9

end we exchange the order of the two sums in the left hand side of (41), and use as

main tool the identity

IV N

P /2: X,  fj (X, - Xj)] = g",-I, P=O,...,N-1 , (42)
 =I j=11j;4

which coincides with (12) (for p - 0,...,N-2) and (21) (for p = N-1). We note that

the exponent of x, in (41) ranges from m = 1 to N - 1 + in - n, and consider firstly

the case

n :m
. (43)

Then clearly (42) is applicable, and (41) becomes

Ar

lA.: oVs (5s,Ar+n-m = (5nm (44)
S=n

which is clearly satisfied (see (43) and (3 1d)). There remains to prove (41) for

n<m
. (45)

To this end we use the equality

Ar n-I

11 rs(x,), =-2: rs(x,), , (46a)
S=n S--O

which is implied by the definition (3 1c), namely by the fact that x, is a zero of the

polynomial p,(x),
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N

PN (Xd 71 (XI)5 = 0 (46b)
S=O

Via (46a), the formula that remains to be proven reads

n-1 Ar N

I r" I (X )-+M' I (XI - Xj)j = 0 (47)
S---O e=1

But this is implied by (42), since the exponent of x, in (47) ranges from the

value p.i,, = in - n - 1 (which is certainly in the range 0:! p.j , :: N - 2, see (45)) to

the maximum value p.. = in - 2 (which is also in the range 0:! p.. :! N - 2, see

(45)). Hence (3 1) is proven.
The definitions (32) and (33) are implied by (6) and (31) with (2.4.1-1) and (5);

and, via these definitions, (34) coincides with (30) (note that the commutativity of V

and U is entailed by their being each others inverse).
The validity of (35) is implied, via (32), by the Vandermonde identity (2.4.2-4),

together with the obvious identity

Ar N

11 (Xn _XM N(iV-1)12[ rl (Xn _XM )]2 (48)
n,m=l,n:#m n,m=l;n>m

The validity of (36) follows from (34) and (35).
The validity of (37a) is implied by the identity

(, (n) pj.V(m) =U(n).(,q.V(m) (49)

Indeed, via (10) and (30), its right hand side yields

(n) D.1 (m)) = (M ,(n) . V(m-1)U L
-

= n i5n,, (50a.)

For n = I,-,N I one can, using again (30), rewrite this formula as follows:

U(n) LD v(m)) = n U(n+1).V(M) (50b)

Hence, from (49) and (50b),

(,(n) -D-nu(n+1) )-y(m)=O, n=l,...,N-1 (51)

and this equation, which holds for the entire set of values of m, in N, entails

(37a), which is thereby proven.
As for (37b), it coincides, via (3 lb) and (5), with (2.4.1-5c).
The proofof(38a) is analogous: for in = N -1,

(,,(n) =U(n).LX.E(M)) =1,(n).V(M+1) =gjj'm+j =U(n-1).V(m) (52a)
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where the last step is only applicable for n 2,...,N .
Hence

U(n).X_U(n-1)).I (m)=O, M=, ... N_l (52b)C

If an N-vector is orthogonal to all the vectors y(m) except v(N)
,
it must, see (30), be

proportional to u(,V) = u (see (3 lb)). Hence

U X -

(n-1) -

,
n = 2,..., N (53)

-

! = rn-I H

To compute the scalar we take the scalar product of this equation with u. This

yields (see (5), (3 1a) and (2.4. 1-1))

-

(n-1) s-n+l S_+I I= Nrn-I (54)N7,,
-

V V

=ILu(n) -X-u rs XM JV, xM
M=1 S_ S_-I

Clearly (53) with (54) imply (38a), which is thereby proven.
The proof of (38b) is analogous, and is left as an exercise for the diligent reader.

Finally, (39) and (40) are immediate consequences of the definitions of the

(N x N) -matrices V and U in terms of the N-vectors v
(n) and u('), see (32) and

(33), of (10) and (11) (or, likewise, of (37) and (3 8)), and of (30).

It is also of interest to display some formulas involving the "number"

(or "counting") (N x N) -matrix N
,
defined as follows:

N=XD
, (55a)

,V

11 (X, - X
-1

. (55b)N,,. = 15nm Xn X + _'5n.) Xn (Xn-X.)

They read:

N y(") (n -1) V(n) (56)

U(n) N NTU(n)
= (n - 1) U

(n) (57)

U N U-1 = V-1 NV=UNV=diag(n-l;n=l,...,N) (58)

Proof (55b) follows from the definition (55a) and (2.4.1-1,2). (56) and (57) are

immediate consequences of the definition (55), and of (10) and (11). Likewise, (58)
follows from (56) and (34). Beware of a notational awkwardness:

N E(' ) = (n - 1) E( ), hence N v(N) = (N- 1) y(y) (note: N v(v) # NE(N)
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Note that (56), (57) and (58) entail that the (N x N) -matrix N has the

first nonnegative integers, 0, N - 1
,
as its eigenvalues. This is the

counterpart ofthe property ofthe operator

N=x(dldx) , (59)

to have the nonnegative integers as eigenvalues, and polynomials (indeed,
simple powers) as eigenfunctions,

N x '-= (n _ 1) Xn-I,n = 1, 2,... . (60)

Let us emphasize that this property of the (Nx N) -matrix N holds for

any arbitrary choice of the N distinct numbers xn. Hence any variation of

these numbers corresponds to an isospectral deformation of this matrix,
as displayed by the formula

X(Y) = E(Y' _X) EUx [W (Y' X)]-1 . (61)

Here we have introduced the two N-vectors x respectively y, of (arbi-

trary but distinct) components x,, respectively Yn I
we have indicated by

,  Ux respectively y(y) the (N x N) -matrices defined by (55) in terms of

the (N components of the ) N-vectors x respectively y, and we have

introduced the (N x N) -matrix W(y, x) defined in terms of the two N-

vectors x and y as follows:

W(y, _x) = L(Y)   Ux = L(Y) kUx ' = L(A-1   Ux - (62)

Let us also record the following formulas:

N

k(y, -x)L = I(Yn - Xn) 1 (Yn - X.)] fj I(Yn - XI) / (Yn -YA 1 (63)

k(Y,_xA-'=k(x_,Y)] (64)

W(,X-X)=i 1 (65)

WGX,A T(Y' __Z) = W (X_'D - (66)
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Proofs and comments. The eigenvalue equation (60) is a trivial consequence of

the defmition (59). Likewise, (61) is an immediate consequence of (62) and (58)

(which ought to be rewritten with U,N,V replaced by   Ux,, [(x),EUx respec-

tively   (y),X(y),E(y)).

The explicit expression (63) of the (N x N) -matrix W (,x y) in terms of the (N-

components of the) two N-vectors x and y is less trivial. To obtain it we note that

(62), (32) and (33) entail

N 'V N

Lw (-x-, Y)L = E (Yn)j_I [ fj (Yn - YA-1 1: 1 k (Xm)k-i 2 (67a)
j=1 9=1,1#n k=j

 rk Ox related to the N components of the N-vector x viawith the coefficients rk -

(3 1c). We now exchange the order ofthe two sums:

N N k

k (x-, YA. = [ 11 (Yn -YfWL rk (Xm)K-'L (Yn / Xm)j-l 9 (67b)
f=l, #n k=1 j__I

N

k _yk)l (XmLW (sA. = 111 (Yn - YA-1 1: rk (Xm
n

YJ (67c)K
e=I'e#n k=1

N N

(Y - Yf)]-1 1] _Xk) (67d)
_.'

rk (YkLW (x-,YL = I (Y,, - xm ) n M

e=I'f#n k=O

N N

IIE (X- Anm = [ (Yn - Xm) fj (Yn -YA
-1

fj (Yn - XI) * (67e)
1=1,e#n e=1

In the last step we used (3 Ic) (with x = y, and with x = xm which yields a vanishing

contribution). It is now clear that (67e) coincides with (63), which is thereby proven.
The other formulas, (64), (65) and (66), are immediate consequences of the defi-

nition (62); it is, however, far from trivial that they are satisfied by the (N x N) -

matrix whose elements are given by the explicit formula (63) in terms of the 2N ar-

bift-ary numbers x, Yn '

This formula, (63), as written, requires that all the numbers x,, and Yn be differ-

ent; it also holds, if this requirement is violated, provided appropriate care is taken to

treat the ratio ofvanishing factors.

Two limiting cases of (61) deserve explicit display:

X, M(k)UX (68a)XaNUxX 1aXA =[NUX
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with

k) Ux = (,6,,k -8,,.) (x. - xk)
-'
= (5, -JjDk; (68b)M.(M

k=[:Y,ml ,
(69a)

with

M=V6=4 U=diagLi-p]- kD (69b)

In (68), the (N x N) -matrices N M and D are constructed with the N

numbers x, see (55), (68b) and (2.4.1-2). Likewise, in (69) the (N x N) -

are constructed with the N components x,, of thematrices N M

N-vector x (see (55), (69b), (32), (33) with (3 1c) and (2.4.1-2)) which is

however now assumed to depend (in some arbitrary manner) on the pa-

rameter t, :1 =-:I(t); and the superimposed dot denotes of course differen-

tiation with respect to this parameter. Note the analogy of (69a) with a

Lax equation, see (2.1-2); this is elaborated upon in Sect. 2.4.5.3.

Proofs. To obtain (68) we set, in (63),

Yj = xi +,5j, dxj, (70a)

where k is a fixed integer in the range from 1 to N, while j takes all values in that

range, namely

YI =X0 Y2 =X21 ... ) Yk-I = Xk-I  Yk = Xk + dxk 5 Yk+I = Xk+1 5 '- YN = XN (70b)

It is then easily seen that

Wnm (Xj +'5jkdXk) = 15nm [15nk - (1 + 15nk) (Xn - Xk) / (Xn - Xk -dxk)]

+ (1 + gnm) 15nkdXk I(Xk -dXk -Xm)  
(71a)

hence, in the limit of infinitesimal dxk,

Wn.(Xj +Sjk dXk) = gnm 1'5nk +('+ '5J11+dXk I(Xn -Xk)1II

+ (1 - gnm)gnk dXk / (Xk - Xm) + 0[ (dXk )2 ] (71b)
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Wm +g dX )=g X (Xnn (xj jk k nm
+d

k Xk )-I [g
nm

(1 _ gnk (I _,5
nm
)gnk ]+0[ (dXk)2

(71c)

namely

Xk:g(k) UX +0[ (dXk)2 ], (72a)E(Xj + gjk dXk) d X

as well of course as

-1 M(k) ( ) + 0[ (dXk)2X[E(Xj+gjkdXk)] ':--I+dXk
-

(72b)

With M(k) UXx defined by (68b). Insertion of (72) into (61) yields clearly, in the limit

of infinitesimal d-rk, (68), which is thereby proven (the second equality in (68b) is of

course entailed by (2.4.1-2); note that only the off-diagonal terms of D enter in the

right hand side of (68b), since for m = k the factor 5,,. -,5, vanishes).

To prove (69), we set in (61)

: (t), y =: (t+dt) =: (t) +i(t) dt
. (73)

We assume of course dt to be infinitesimal, hence here and below we neglect con-

tributions of order (d t)2 or higher. It is then clear that, via (62), (61) yields (69a)
with

M=-P u (74a)

or equivalently, see (34)

M=VO
, (74b)

which correspond to the first two equalities in (69b). To get also the last, we t-

differentiate the definition (32) of V
, getting

T . = (m - 1) i,, (x,,)
"

/ b,, - ( ,, / b,,) V, (75a)

N

(75b)(M V (Xn - X1 IV..
e=l,bew

T nm 'n i - D ],, V
"M

(75c)

namely

T '=f,tD-diag[iD]jV (75d)
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To go from (75a) to (75b) we used (6) and (2.4.1-4a); from (75b) to (75c), we used

(10) and (2.4.1-2); from (75c) to (75d), we used (2.4.1-1). Insertion of (75d) in (74a)
yields, via (34), the last ofthe (69b), which is thereby proven.

The reader will ponder on the correspondence among (68) and (69). (Hint. set

dx =.idt).

Let us end Sect. 2.4.3 by noting that, while the results reported herein

have been described and proven self-consistently, they can just as well

(indeed, perhaps more easily) be obtained from the results reported in the

preceding Sect. 2.4.2. A key formula to establish the connection is the

relation

E(Y,- x)=LB(Y)1-1Q(Y,-x)A(-x) (76)

see (63), (2.4.2-24) and the definition (2.4.1-4) of the (N x N) -matrix

B Ux .
We urge the diligent reader to purse in some detail the connection

among the results reported in Sect. 2.4.3 and those reported in Sect. 2.4.2.

2.4.4 The finite-dimensional (matrix) algebra of raising
and lowering operators, and its realizations

In Sect. 2.4.4 we revisit tersely the results of previous Sections, and in

particular of the preceding Sect. 2.4.3, in the context of the well-known

formalism of raising and lowering operators.
Let v

(m) and u
() be two orthonormal sets ofX-vectors,

(-) (n)
=U .V (5n"'

Note that, for the moment, we are not committed to any particular reali-

zations of these N-vectors, although of course the main realization we

have in mind, see below, is that given in the preceding Sect. 2.4.3, see

(2.4.3-30).
Let us also introduce, as in the preceding Sect. 2.4.3 (see (2.4.3-

32,33), the two (NxN)-matrices V respectively U, associated with

these sets v
(n) respectively U

(n)

V- V (2a)

U U(n)
n M

(2b)
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so that, see (1),

UV=VU=I (3)

We then introduce the "lowering" (NxN)-matfix L, and the "rais-

ing" (N x N) -matrix R, via the following formulas:

L y(n) = (n - 1) v(n-1)
, (4a)

A Zn) = (1 - gnjV) V(n+I) (4b)

 
(n)
L = L

"

u = n (1 - U(n+1) (5a)

(n) T (n) (n-1)
 R=R u n (1 - u (5b)

The formulas (4) respectively specify how the (Nx N) -matrices L and R

act on the complete sets of vectors v
(n)

respectively H
(n)

; hence they provide com-

plete definitions ofthese (N xM -matrices. Note that L acts,ftom the left, as a low-

ering operator on the set ofX-vectors E
(n)

,
see (4a), but it acts, ftom the right, as a

(n)
raising operator on the set of N-vectors H ,

see (5a); hence its transpose LT acts,

ftom the left, as a raising operator on this set, see (5a). The converse is true for the

raising operator R and its transpose RT, see (4b) and (5b). Of course, in the special

case in which the two sets of orthonormal N-vectors coincide, u(n) =: v(n), there hold

the (equivalent) relations L = R
T

,
R=L

T

.

Exercise 2.4.4-1. Prove that (5) is consistent with (4). Hint: compute the scalar

products u(') - L. V(n) respectively !i(') - R . V(n) Using (1), (4) and (5).

Clearly the (N x N) -matrices L and R are given, in terms of the N-

vectors v
(n) and u

(n) by the formulas

Ar N

Lnm =E (j - 1) V(j U !) (j - 1) V",j, Uj. (6a)
j _2 j=2

N-1 N

R. VU+DUT =Y
"'j, Uj. (6b)

and they are nilpotent,
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L
N
= RN = 0

. (7)

It is also convenient to introduce the "counting" (Nx N) -matrix N,

N=R-L, (8)

as well as the "projector" (N x N) -matrix P(N)

(N V(N) (N)p
m n U, (9)

which, acting form the left respectively from the right, projects on the

highest vectors, V(N) respectively L11 (see (13a,b) below).

There hold then the following relations:

N v
(n)

=(n-1) V(n), (10a)

U(n) N = NTU(n) = (n - 1) u`); (10b)

N = V - diag (n - 1; n = N) - U, (1 la.)

U IV V = diag(n - 1; n N) (1 lb)

D. = n J,,., ,
(12a)

LU R D. =,5n,,,,,1 (12b)

p(N)V(n)_5 V(N)
- -

-

nN-
(13a)

(n) p(N) = p(N)TU (n) U(N).U
- - -

SnAr (13b)

p(N) ] 2 = p(N).
-

I
(13c)

p(N) L = R P(N) =0, (13d)

P(N) N = N P(N) = (N - 1) P(v); (13e)

[L,N]=L, (14a)

(14b)
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:L A =(N+Z)(1-P('v)) =I +N-NP(N)5 (14c)

[L,R]=I-NP(N) . (14d)

There moreover hold the following Propositions.

Proposition 2.4.4-2. The matrix M`),

- JV-1

M(L) =N+ esp LP Ns, (15a)
S=O P=I

has the same eigenvalues as the matrix N, namely the first Nnonnegative

integers:

M(L) V(L) (n)
=(n V(L) (n)

(15b)

with

(L)( ) (n) V(M) / (MV V + a. (15c)
M=1

The coefficients c,p in (15a) are arbitrary (except for the requirement

that the sums c,P(N-l)s converge), and the coefficients a(') in (15c)
S=,

are determined recursively by the triangular relations

(n-rn) a
(n) =(n-1)!j] Cs,n-m (,-l)sM

S=O

n-I

+ 11 a,(n)l cs,,-mV-l)s, m=n-l,n-2,..j. (15d)
e=M+1 S=O

Here, and always below, a sum vanishes if the lower limit exceeds the

upper limit.

Proposition 2.4.4-3. The matrix M`

- IV-1

M(') =N+j] csp RPNY (16a)
s--O P=I

has the same eigenvalues as the matrix N
, namely the firstNnonnegative

integers:
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(,R) (R) (n)
M V (n-1) V(R)(n) (16b)

with

IV

(R) (n)
=

(n) (n) (n)
V v + b. v (16c)

m=n+l

The coefficient cp in (16a) are again arbitrary (except for the require-

(n) inment that the sums -1)sc,p converge), and the coefficients bm
._.,

(N
S=,

(16c) are determined recursively by the triangular relations

M-1

(n-m) b (n) (n-I)s +I b(n) 1] CS'., V -1)S, m = n + 1, n + 2,..., N.I C ,m-n 9 _.,

S=O  =n+l S=O

(16d)

Proposition 2.4.4-4. The eigenvalues p of the generalized eigenvalue

equation

M(I) (0) ! (p) (0) =P M(2) (0) 2 (,u) (0) (17a)

are independent of 0, provided the two (N x N) -matrices M` (0) and

M(2) (0) are defined as follows:

- IV-1 IV-1

M(r) (0) = 1] C (17b)
Pq

eXp [i(P - q)O] LP R Ns, r = 1, 2
-,

1]
s=O p=O q=O

Here the coefficients Cspq are independent of 0, but otherwise arbitrary,

except for the requirement that the sums c(r) (N - 1)s converge.
Spq

Proofs and comments. (10) follows from (8) and (4), (5). (11) follow from (10)
and (2). (12) follows from (4), (5), (2) and (1). (13a, b, c) follow from (9) and (1);

(13d) follows from (4a) and (13a), which entail P(N) L V(n)= 0 for n N, and

likewise (13e) from (5b) and (13a), which entail U
(n)
R P(v) = 0 for n N.

(14a,b) follow from (4ab) and (10a); (14c) from (4b), (4a), (10a) and (13e); (14d)
from (8) and (14c).

The Propositions 2.4.4-2 and 2.4.4-3 are consequences of the "triangular" char-

acter of the operators M(L) respectively M(R), and the diligent reader will easily ver-

ify them, namely the validity of (15d) and (16d).
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Finally Proposition 2.4.4-4 is proven by setting in (17a),

N

y(') (0) = E 6,(1) exp(i n 0) y(')
, (18)

n=1

and then noting that, due to the structure (17b) of M(1) (0) and M(2) (0), insertion of

(18) into (I7a) yields for the coefficients 0 -independent (linear) equations.

Hence these coefficients are, as our notation indicates, themselves 0 -independent

and it is likewise 0 -independent the associated "secular equation!' (i.e., the condition

that the determinant of the coefficients of these linear equations for the 6.,(") vanish,

so that a nonvanishing determination ofthe coefficient fln(") exist). And it is of course

this "secular equation" that determines the Neigenvalues u of (17a), as the Nroots of

a polynomial in p of degree N.

A trivial representation of the matrix algebra of lowering and raising
operators reads as follows:

V
(n)
= U(n) gi7m (19a)

M M

V=U=I (19b)

L,,. = n R. = (5,,, (19c)

N = diag(n - 1; n N) . (19d)

All other representations can be obtained from this one via similarity
transformations (see (11) and (12)).

Less trivial is the representation, featuring N arbitrary parameters x,

that is yielded by the results of the preceding Sect. 2.4.3 via the identifi-

cation

L=D (20a)

R =X(I _ p(N)) (20b)

N=RL=XD (20c)

with D and x defined by (2.4.1-2, 1) and
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N

(N) W-1(1 )
=

,

P I
M

= Vn ,
/ rI (X,, -XA (21)X L

consistently, via (9), with (2.4.3-6) and (2.4.3-31b,5). Let us emphasize
that this entails validity of all the formulas written above, in Sect. 2.4.4,

of course with these definitions, (20), of the (N x N) -matrices L, R and

N as well as the definitions (2.4.3-6) respectively (2.4.3-31) of the N-

vectors v
(n) respectively U(n).

The diligent reader will ponder and verify, being aware of the difference among

the two projectors, P (see (2.4.3-4,3)) and p(N) (see (21)): although both annihilate

(n)

-

(acting from the left) all IV -vectors v with n < N,

Pv('=P")v(')=0, n=l,...,N-1 ,
(22)

and both satisfy the equation characterizing a projector, see (2.4.3-7) and (13c), they
(N)

generally act differently on the highest vector v

P V(1v) = N-lu
,

(23)

P(N)V(N)
=V

(IV) (24)

(see (2.4.3-9b) and (13a)), as well as on the vector u
(,V)

= u (see (2.4.375,3 lb)),

PU=U
,

(25a)

P(N)U=NV(N) (26)

(see (2.4.3-9c) and (21), (2.4.3-5)). Also note that, while clearly (see (21))

U(n) p(N) = p(N)T U(n) = g U(N)
nN

U
,

-
n1V - -

(27)

and ofcourse (see (25a), and note that P" = P
,
see (2.4.3-4,3))

UP=U
,

(25b)

there is no simple formula for P analogous to (27), namely displaying the effect of

P acting from the right on u
( )

(rather than only on u
(N)

ji, see (25b)). There are,

however, two simple formulas relating P and p(N):

p(IV) p = p(N) PP(') =P (28)
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as the diligent reader will verify directly from their definitions, (2.4.3-4,3) and (21),
using the identity (2.4.3-21). This last relation, (28), is indeed instrumental, as the

diligent reader wiU check, to verify, via (20), the consistency of the commutation re-

lations (14d) and (2.4.3-29).
The diligent reader wilI also verify the consistency of the two equalities in (20c),

as weU as the related identity

P('v) L = 0
, (29)

which is in fact essentially identical, via (9), (2.4.3-3 1b,5) and (20a), to (2.4.1-5c).

Exercise 2.4.4-5. Is there a special choice of the N numbers x,, which entails

P(N) = P ? Hint: see (2.4.5.1-2h).

Other convenient instances of (N x N) -matrices L and R satisfying
the algebra of lowering and raising operators can be associated with spe-

cial choices of the N numbers x, for instance according to the following

methodology.
Recall the standard relations satisfied by Hermite polynomials (see

Appendix Q,

[x(d / dx) -
1
(d / dX) 2]Hn, (x) = (n - 1) Hn-1W I (30a)

2

I
(d/ dx) H,,, (x) = (n - 1) H,,, (x) , (30b)

2

[2x-(dldx)]Hn-I(X)=Hn+l(x) (30c)

and define the set of N N -vectors v"I") via the following rule:

E(H)(') = H_1 0 v
, (31)

of course with X and v defined by (2.4. 1 - 1) and (2.4.1-16).
Now apply Proposition 2.4.1-2 and thereby get the following N -

vector counterparts of (30):

(X D-
1
D2) ,(H)(n) = (n_ 1) V(H)(n) (32)
2-

D v(H)( )=(n_j)V(H)(n-1) (33)
2--
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(2X-0 v
(H)(n) =V(H)(n+l)

,
n=l,...,N-1 ,

(34a)

(2X-P) Y(H)(N) =H,(X) v . (3 b)

The relations (30) are of course valid for all positive integer values of n,

n = 1, 2,...; the definition (3 1) applies instead only for n = N, and likewise (32)

and (33) hold for n = N, as implied by Proposition 2.4.1-2 and by (3 1). As for

(34a), it only holds, as indicated, for n = N - 1, and it is replaced, for n = N, by

(34b) (consistently with Proposition 2.4.1-2 and with the validity of the definition

(3 1) for n = N).

As implied by the treatment of Sect. 2.4. 1, all these formulas are valid

for any arbitrary choice of the N distinct numbers xn. Let us now assume

that these N numbers coincide with the N zeros x,(') of the Hermite

polynomial of order N,

(H)
Xn =Xn (35a)

(H)) 0HN (Xn (35b)

(Note that in Sect. 2.3.4.1 we denoted these numbers simply as z", see for

instance (2.3.4.1-15)). Then the right hand side of (34b) vanishes, see

(2.4. 1 - 1) and (35b), hence (34) can be replaced by

(2X p) V(H) (I
(H)(n)

_g (36)
nN)Y

It is then clear, by comparing (33), (36) respectively (32) with (4a),

(4b) respectively (10a), that the following identification becomes justi-

fied:

V
(n)
=V

(H)(n) (37a)

L =

I
D (37b)

2-

R=(2X-P) (37c)

1 2
N=XD-

2
D (37d)
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Note that, while we got (37d) by comparing (32) with (10a), this formula, (37d),
is also consistent with (37b), (37c) and (8).

In conclusion, all the results given above, including in particular
Proposition 2.4.4-2, 2.4.4-3 and 2.4.4-4, are now applicable with the as-

signments (37) of v(n) (with (3 1)), of L, of R and of N, of course with x

and D given by (2.4.1-1) and (2.4.1-2), the N numbers xn being now

uniquely identified (up to permutations) by the condition to coincide with

the N zeros x,(') of the N Ah Hermite polynomial H,(x), see (3 5). Recall

that these N numbers satisfy the N nonlinear equations (see (2.3.4.1-13))

N

X.(H) [X.(H) - (H) (38a)xM

hence they entail, see (2.4.1-2) and (2.4.1-3),

d = X(H) (38b)n

j.,(H) + [x,(,H) - x.(H) (38c)D.

b,, = 2v-' NHy (H)), (X"I (38d)

V(H)(m) =2"-N-IHM_j(X(H))1HN_j(X(H))
n n (38e)

(H) (H) _X(HT1-5 (38f)L. =

2
f (5nm Xn + (1

nm
) [Xn

M

R. = 5.,.x,(,H) - (1 - 5nj [ x,(,H) - x.(H) ]-1 (38g)

N=(N-I)I-M (38h)

(H) -2 (H) (H) -2
_(I_ gnm ) [Xn _

M
Mnm = gnm [X.,H x

t
x (38i)

Proofs. (38b) respectively (38c) are merely (2.4.1-3) and (2.4.1-2) with (35a) and

(38a). (38d) is implied by the following formulas:
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N

H,(x) = 2v fj [x -x ( )
n

]=2NpN(x) (39)
n=1

'V N

HN' (x) = 2
NY

,
fj (x-x.(H))=2'vpV(x) (40a)

n=1 m=l,m#n

N

H' (xn(H)) = 2
"' (H)

_x
(H) Pf (x(H)) =2N bn ,A' ][I [Xn 2N

N n
(40b)

m=l,m#n

HAr (X) = 2NH,_1 (x) . (40c)

The first of these, (39), is entailed by the normalization of Hermite polynomials and

by (35b) (see also (2.4.1-6b)); (40a) obtains by differentiation from (39), and (40b)
from (40a) (see also (2.4.1-6a)); (40c) is (30b) with n = N+ 1. And clearly (40b) and

(40c) entail (38d), via the definition (2.4.1-4b) of bn with (35a). (38e), (38f) respec-

tively (3 8g) are immediate consequences of (3 1) with (2.4.1-1), (35), (2.4.1-16) and

(38d), of (37b) with (38c),. respectively of (37c) with (2.4.1-1) and (37c). Finally
(38h) follows from (37d) and (2.4.1-5d) with (38b), (35a) and (38c), which entails

N. = lg".f[X(H)]2+
N

r_(H)_
x

(H) ] -2 (H)
_ x

(H)
-2

(41)
n L'n M

+ G - gnm) [Xn
M

2

This indeed yields (38h) with (3 8i) via the following additional formula,

r
(H) -2= f2 N (H) ] 2

_1)_ [Y [Xn x
M

x
n

1/3 (42)
m=l,m*n

valid for the zeros of Hermite polynomials, as proven below (and reported in Appen-
dix Q. Clearly (38a.) yields

(H) 2=
N

H)
-

(H) ] -1 r,(H) -1_X(H)]IX I [Xn x
n I M rn f (43a)

M'f=I;M#n'9#n

(H) 2=
N

r
(H) -2 r,(H) (H -1

r
(H)xv, - x + - x xk _x ]-' (43b)IX

n
I I L n M

I I t'n M
)I L n In

M=I'M#n m,t=I;m#n,I#n,&m

(H) Z=
N

(H)
_x

(H) ] -2[X
n

1 1: [Xn
M

m=l,m#n

N

r_(H) (H) ] I I
r

-1 -1
+ _ x

k _X(H)] _r_(H) _X(H)] (43c)rn I [Xn M I.-n
m,t=I;m_-n,t#n,&m

Iv
r

N N
r

(H) ] 2= 3 _X(H) ]-2+2 r_(H)
_ X

(H) ] -1 _X(H)]-lx, (43d)
n n n

IX 1: [ n M rn M
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N V

(H) ] 2 [ (H) _X(H [ (H)
_ X

(H) X(H)IX
n

=3 1 , m
)]-2+2 1 1 M

(43e)Xn Xn
M=I'M#n m=1,m_-n

N

(H) 2= (H)
_

(H) -2 (H) 2

(43f)IX
n

1 3 1, [X
n xM I -2(N-1)+2[x, ]

m=l,m#n

The steps to get (43b) and (43c) are plain; to get (43d), we exchanged the dummy
indices m and  in the last term; to get (43e) we used (38a); to get (430 we replaced,

X.(H) (Xm(H) X,,(H))+X in the last term in (43e), with (H) and used again (38a). Since

(43f) coincides with, (42), our proofis completed.

Exercise 2.4.4-6. Obtain analogous results involving the zeros of other classical

polynomials, for instance Laguerre or Jacobi instead ofHermite, or even some appro-

priate combinations of such polynomials. Hint: see <C8 1a>.

2.4.5 Remarkable matrices and identities

In Sect. 2.4.5, or rather in Sects. 2.4.5.1, 2.4.5.2, 2.4.5.3 and 2.4.5.4, we
obtain and report a number of formulas which follow from the results of

the preceding sections. These findings correspond to specific implemen-
tations of some of the relations written above, in which the relevant

(N x N) -matrices and IV -vectors are expressed either in terms of V arbi-

trary numbers or in terms of N specific numbers (say, the roots of certain

polynomials, see above and below).
There is clearly a large number of results of this kind that are implied

by the findings detailed above.' Our presentation below is rather terse; the

results we report are a small subset of those which can be easily obtained

by these techniques; the alert reader is welcome to derive others. We have

selected for presentation, in the first place, those results which reproduce
(and complete) findings that had previously emerged from the study of

integrable many-body problems on the line (mainly from their behavior

near their equilibrium configurations), as well as those which appeared
particularly neat (an aesthetic criterion). These results, in addition to their

intrinsic mathematical interest, are likely to have applicative relevance,
for instance to test the accuracy of computer programs to invert or di-

agonalize matrices, as well as didactic uses, for instance to concoct exer-

cises when teaching matrix algebra. This approach also yields many

identities, mainly in the nature of explicit evaluation of sums, or their

transformation into products. Again, only a representative selection of

such results are presented below, and the alert reader will have no diffi-

culty (indeed, some fim) in deriving others.
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Some of these findings, as well as others gleaned from the literature,

are also presented in user friendly form in Appendices C and D, in the

hope that they will be eventually taken over and included in compilations
of mathematical formulas such as, for instance, the standard reference

text by 1. S. Gradshteyn and 1. M. Ryzhik, now edited by Alan Jeffrey,
which has already made some progress in this direction (see Sect. 15.823

of <GRJ94>).

2.4.5.1 Matrices with known spectrum

In Sect. 2.4.5.1 we exemplify techniques to manufacture remarkable ma-

trices with known spectrum, and we exhibit some such matrices (see also

Sect. 2.4.5.4). Analogous results are reported, in user-frien&y form (but
without detailing their origin) in Appendix D.

Of course a technique to get such matrices is to start from a known

diagonal matrix and then undiagonalize it via a similarity transformation.

This, however, does not, as a rule, yield a remarkable matrix having a

neat expression in terms of several parameters, be they arbitrary numbers

or well-defined numbers characterized by some definite rule (for instance,

to be the N roots of a classical polynomial, or to satisfy some other alge-
braic equation, see below).

The prototype of remarkable matrices having a known spectrum is

given by the observation that the (N x N) -matrix N, explicitly defined in

terms of N distinct, but otherwise arbitrary, numbers x,, by the neat rule

(2.4.3-55b),

N

Nnm =AmX I (Xn _XXI +('-gnm)Xn (Xn _Xm)_I
e=I,e#n

has the first IV nonnegative integers, 0,1,...,N-1, as its eigenvalues, see

(2.4.3-56).
A more general result of this kind is entailed by Propositions 2.4.4-2

and 2.4.4-3 of Sect. 2.4.4, of course associated with the representation
(2.4.4-20) ofthe (N x N) -matrices L, R and D.

These results hold for any arbitrary choice of the N distinct numbers

x, For special choices of these numbers, one obtains additional results.

For instance, let

xn =exp(2i7rn1N) ,
(2a)
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entailhig

d,,
1
(N - 1) exp(-2 iT n / N) (2b)

2

Dn exp(-2iirnlN) (N - 1) 5,,. + G - (5nm)1 eXP[2'ir(m - n) N] (2C)
2

bn Nexp(-2i7enIN) (2d)

v,, N-1 exp(2 i)r n / N) (2e)

V(m)=N-'exp(2i)rmn1N) (2f)

U
(m) XAr-m U, u

(m) exp(-2i7rmnlN) (29)
- - n

E(N) P P,,(:) = N (2h)

L L,,m = exp(-2i;r n / N) (N - 1),5,,m + (1 -6,,j I - exp[2 i ir(m - n) N]
2

(2i)

R=X(I-f) Rnm =-(l-,Ynm)exp(2iirn1N) (21)

1
N,,m =

2
(N-1),6,,.+(l-,g,,.)fl-exp[2i;r(m-n)IN]I- (2m)

Proofs. The numbers (2a) are the N -th roots ofunity, hence

Al

PIW = 11 (X-Xn)=X'V-l (2n)
n=1

This entails

N-I
p,' (x) = Nx (2o)

hence, via (2.4.1-6a),

b,, =Nexp[2i;r(N-l)nlN] (2p)

which coincides with (2d), that is thereby proven. (2e) is then entailed by (2.4.1-16b),
(2f) by (2.4.3-6b) with (2a) and (2d), and (2h) by (2.4.4-21) with (2e) and (2.4.1-4,3).

We then note that (2.4.3-56) with (2.4.3-55), (2a) and (2f) entail the identity
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N

[exp(2iirnIN)-exp(2iir IN)][exp(2iirnmIN)+exp(2ig-n IN)]

=(n-1)exp[2i,Tm(n-l)/N]. (3)

which, for n = N, via (2a) and (2.4.1-3), yields (2b), that is thereby proven. Then (2c)
is entailed by (2.4.1-2), (2b) and (2a), likewise (2m) is entailed by (2.4.3-55), (2b) and

(2a), while (2i) is a simple copy of (2.4.4-20a), and (21) is entailed by (2.4.4-20b),
(2h) and (2a).

There finally remains to prove (2g). This is also easy, since a comparison of (2n)
with (2.4.3-3 1c) entails that all the coefficients v. vanish except for v, = -1 and

,v,v = 1 (see (2.4.3-3 1 d)), hence (2.4.3-3 1 a) yields (2g), which is thereby proven.

We now set

A = (N - 1) 1 - 2X_' NX (4a)

and, from (2m) and (2a), we get for this (N x N) -matrix the neat expres-

sion

A. = (I - J,,.) f 1 + i cotan[(n - m) 7c / NJ I (4b)

Proof From (4a), (2m) and (2a) one gets

A,,,,,=-2(1-,5',,.)exp[-2iir(n-m)IN]II-exp[2i;r(n-m)IN]I-1 (5a)

A,. exp[-iT(n-m)1N] fexp[i)r(n-m)IN]-exp[-i7c(n.-m)IN] 1-1
(5b)

A,,m =i(l-,5,,,n)fcos[,T(n-m)IN]-isin[,T(n-m)l;r]llsin[ir(n.-m)IN] (5c)

and this clearly entails (4b).

Since the matrix N has the N eigenvalues 0, IV - 1, it follows from

(4a) that the matrix A, defined by the neat formula (4b), has the N ei-

genvalues - (N- 1), -(N - 3),..., (N - 3), (N - 1). The diligent reader will write

out the corresponding eigenvectors, and will also note the identities en-

tailed by the insertion of the explicit expressions (2) in, say, the formulas

from (2.4.4-10a) to (2.4.4-14d).
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Two other (N x N) -matrices which both possess the first N

nonnegative integers, n = 0, L..., N - 1, as their eigenvalues, are defined in

terms of the N zeros x,',H) of the Hermite polynomial H,,(x), see (2.4.4-

35), as follows:

N =g [ (H)]2 + 1_gm)X(H) I
r

(H) _X(H)] (6)
nm nm

X
n n P.

'V
r , ,) -x(H) -2_ (I _gnj Xn(H) / r_(H) _ X (H) -2

MKM nml (7)rn M

e=l,[#n

The matrix (6) coincides, via (2.4.4-38a), with (2.4.3-55); the corresponding ei-

genvalue equation is (2.4.3-56), with (2.4.3-6) and (2.4.4-35).
The matrix (7) coincides with (2.4.4-38i); its eigenvectors are easily obtainable

from (2.4.4-38h), (2.4.4-38e) and (2.4.4-10a).
Both these matrices, (6) and (7), can be written in other, equivalent, forms, by

using (2.4.4-38a) and (2.4.4-42).

Exercise 2.4.5. 1-1. Obtain analogous results in terms of the zeros of other classical

polynomials, for instance Lagaerre and Jacobi, instead of Hermite. Hint: see <C81a>.

Exercise 2.4.5.1-2. Obtain more general results by taking advantage of the three

Propositions 2.4.4-2,3,4.

2.4.5.2 Matrices with known inverse

In Sect. 2.4.5.2 we point out that the results reported above provide the

possibility to manufacture remarkable matrices whose inverses can be

exhibited in explicit form. Such matrices might be useful for didactic

purposes or to test the numerical accuracy of computer routines to invert

(N x N) -matrices, a task which is far from trivial for large N. In this brief

Sect. 2.4.5.2 we merely focus on the prototypical example given by the

(AT x N) -matrix E(y, x), see (2.4.3 -63). A variation on this same theme is

provided in Sect. 2.4.5.4. Analogous results are displayed, in user friendly
form (but without detailing their origin) in Appendix D.

The (N x N) -matrix E(y' X), and its inverse, are defined by the for-

mulas

T(Y' __X) + a (Y. - X.) / (Y X.)I W" (Y' __X) , (1a)

[ T(Y' X) [ X Z)] = + (I (Y" - x") / (Y"' - x")] W" (XTCX, _,y),(lb)
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where

W" (Y' _X) (Y" - X.) / (Y. -YA - (1c)
m=l,m#n

Here the 2N numbers x,,,y,, are arbitrary.

For instance for N = 2

Y1 _X2 Y1 -Xi

E(Y' _X) =
Y, - Y2 YI _Y2

=(YI _Y2)_I
YI _X2 Y1 -XI

(2a.)
Y2 _X2 Y2 _XI

(X2
- Y2 XI

_Y2)
IY2 _Y1 Y2 _YI

X1 _Y2 Xi -YI

E(Y,_X) ]-1=
XI _X2 XI _X2

=(XI _x2)-1
X1 _Y2 X1 -Y1

(2b)
X2 _Y2 X2 _YI

 Y2
- X2 YI

_X2)
 X2 -XI X2 -XI)

Exercise 2.4.5.2-1. Verify that the product of (2a) and (2b) yields the unit matrix.

Exercise 2.4.5.2-2. Write explicitly the matrices W y) and E(y, x for 3,EXI N

and verify that their product yields the unit matrix.

2.4.5.3 A remarkable matrix,
and some related trigonometric identities

In Sect. 2.4.5.3 we display some formulas associated with a specific
(N x N) -matrix, which is merely another avatar of the (Nx N) -matrix dis-

cussed in the preceding Sect. 2.4.5.2 and features a known spectrum as

well as a known inverse, and moreover entails several nontrivial trigono-
metric identities. These results are displayed, in user friendly form (but
without detailing their origin) in Appendix D.

Let the (N x N) -Matrix g( o,q) be defined by the neat formula

Y

R,,,,, (V,0) = rl [sin(g, - 0,) / sin(O,,, - 0,)] , (1)
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the (Nx N) -matrix :U(,O a) be defined by the formulas

A(,Oa) =,&(o + a,9) (2a)

Ar

B,,.LO a) = 1-1 [sin(O,, - 01 + a) /sin(O. -0,)l (2b)
e=1,f#M

and the N N -vectors r(n) (D be defined by the simple rule

r,,(-)O=exp[i(2m-N-1)0,,] . (3)

(Beware: do not confase this matrix A( q,q) with the "raising" matrix in-

troduced in Sect. 2.4.4).
There hold then the following formulas:

ELO0) =I 1 (4)

AV, 77) A(77,D = AV,2) (5a.)

(;0,17(l)) A77(i),77(2))A(77(2),,7(3)) ...A(77(P),P)p (5b)6R

1-1 = ALO, (0) , (5c)

A(V,p) r
(,)
g,m N (6)

ATI 0) = 1
1 (7)

A(O 0,8) = A(,OB) A(O 0 a +,8),a) AC ,a) AL (8a)

A(,Oa) A(O, a,) ... A(,Oap)=AGOal+a,+...+ap) (8b)

LBCO,a) '=ACO,-a) (8c)

,a)r(m)O=Am(a)r(-)UO m=l,...,N (9a)A(O

A.(a)=exp[i(2m-N-1)a] (9b)

tracekCo-, a)l= sin(Na) /sin(a) (10a)

,a,) A(Oa,) ...M9a,) sin(
P

aj /sin(Eptrace[ACO IVE
_..,
aj, p 1,2,..., (10b)

s=I s=1
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det[A(P'a)J=1 . (11)

The eigenvalue equation (9) entails that the N eigenvalues Aja) of

ff(O,a) are independent of 0, see (9b), while its IV eigenvectors r(n)o
are independent of a, see (3). Hence any change of the vector 0 entails

for ALOa) an isospectral deformation, as detailed by the following iden-

tities:

A(v,a) = A(p, DA(O R(p;!q) ' (12),a&

By writing out some of the matrix or vector equations written above

one gets nontrivial trigonometric identities, such as:

IV IV

I fj [sin(O,, - 0. + a) / sin(On - 0,J] = shi(Na) / sin(a), (13a)
n=1 m=l,m#n

P N 'V

fjI fj [sin(O,,_ -0m, +aj/sin(o, -0.)II
S=1 n,=l m,=I,m,,#n,,

P P

=sin(NE a,)/sin(E aj no =nPj p = 1, 2,3,... (13b)
S=1 S=1

N N

E cos[s (On --Om + a) fj [sin(o,, - 0, + a) /sin(O. -0,)] = 1
,

M=1

(14a)

N

Y sin[s (0,, - o. + a)i fj [sin(O. - Oe + a)lsin(O. -0,)] = 0

M=1

s=N-1,N-3,N-5,...,lorO;n=l,...,N;(14b)

I 'r A'

1] fj [sin( 9n --- Oj) /sin(o, - 0j)]f j fj [sin(o, - (p,) /sin( om -Vk)] ] = 15-1
k=l,k#m

n N; m N (15)

: 1-1 [Sn(97n - 17,) IS'n(17, - 77j)]f t[S QhkI k 0 Isin(Vn -Ok 11
11=1 -Ilj#e k=l,k#m

n N; in N (16)
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The identity (13a) features the AT arbitrary numbers 0,,; the (more

general) identities (13b), of which there is one for each positive integer
value of p, feature the N arbitrary numbers on and the p arbitrary num-

bers a,; the identities (14a) and (14b), of which there are altogether

AT(N + 1) if N is odd and N2 if IV is even, feature the N+ 1 arbitrary nuin-

bers 0,, and a; the N' identities (15) feature the 2N arbitrary numbers

on!49n; the N' identities (16) feature the 3N arbitrary numbers 0,,,V,,,77,,.

While all these identities, as well as the other formulas written above,

hold for any choice of the arbitrary numbers they feature, they may re-

quire an appropriate interpretation of ambiguous expressions (of type

0/0) if some ofthese arbitrary numbers coincide.

Proofs. The (NxN)-matrix &(o,q) and the N-vectors r(')(9), L(')(v) are

related to the (N x N) -matrix Q(y, x) and the N -vectors :I(M-1)
I
Y"), see (2.4.2-24)

and (2.4.2-23), by setting

x,, =exp(2i0j, Yn*=exp(2i oj ,
(17a)

which entail, as the diligent reader will readily verify, the simple relations

R ((o, 0) = Y_(N-')" Q(y,x) X(IV-1)12
,

(17b)

r
W
(o = x-(Ar-l)/2 X(m-1), r(M) ((0) =j-(N-1)/2 Y(M-1) (17c)

with the diagonal (Nx N) -matrices X and Y defined by (2.4.2-3 1).

It is then immediately seen that (4), (5c) respectively (5a) correspond to (2.4.2-

25), (2.4.2-26) respectively (2.4.2-27) (with Zn = exp(2ii7j, see (17a)), and that (6)

corresponds to (2.4.2-22).
Then (5b) follows trivially from (5a); (7), (8) and (12) follows, via (2a) ,

from (4)
and (5); (9) follows from (6) and the identity

L(') (0 + a) = A. (a) !:(') (q) (18)

entailed by the definitions (3) and (9b); (10) and (11) follow from (9).
As for the identities, they correspond merely, via (1), (2) and (3), to the explicit

expressions of some of the matrix and vector equations written above: (13ab) corre-

spond to (IOab), (14ab) to (9a,b), (15) to (5c), (16) to (5a).
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2.4.5.4 Matrices satisfying "fake" Lax equations

In Sect. 2.4.5.4 we mainly call attention to the identity (2.4.3-69), that we

rewrite here in the "Lax form"

i = [-L,M]

with

IV

Lnm = g..Xn 1 1 (2)
t=l, #n

N

Mnm =5n. E " (Xn - XXI - (1 - 15nm) 'n (Xn - XJ-1 (3)
t=U#n

Clearly here we assume the AT arbitrary quantities xn to depend (ar-

bitrarily!) on a parameter t, x,, -= xn (t) ,
and the superimposed dot denotes

of course differentiation with respect to this parameter t. (Beware: do not

confase this matrix L with the "lowering" matrix of Sect. 2.4.4).
Let us recall that the (AT x N) -matrix L, see (2) and (2.4.5. 1 - 1), has the

first AT nonnegative integers as its eigenvalues; it is therefore automati-

cally isospectral with respect to any change of the parameters x. that de-

fine it. Hence it is not at all surprising that it satisfy a Lax equation, see

(1): indeed any matrix satisfying a Lax equation, see (1), is isospectral (its
eigenvalues do not depend on the parameter t), and if a matrix L is iso-

spectral (namely, if its spectrum does not depend on a parameter t), then

one can always associate to it a Lax equation, see (1).
Let us re-emphasize that (1) with (2) and (3) is an identity, hence cer-

tainly devoid ofany "dynamical" content.

It is however easy to manufacture a Lax equation which is only satis-

fied if the quantities x,, (t) evolve in some definite manner. Indeed con-

sider the Lax equation (1) with (2) but with, instead of (3),

IV

Mnm = gnm E V (_X) (Xn - X&I - (1 - gnm) Vn UX (Xn - XJ-1 1 (4)
f=1,e_-n

where the AT -vector v (x) is some assigned AT -vector-valued function of

the AT-vector x of components xn. It is then clear, see (3) and (4), that

validity of the Lax equation (1) with (2) and (4) corresponds to validity
of the "equation ofmotion7'

273



1C = VUX
-

-X .
(5)

The Lax equation has thereby acquired a dynamical content! But it would

of course be silly to expect that the (completely arbitrary!) equations of

motion (5) be integrable, because one can associate to them the Lax equa-

tion (1) with (2) and (4). Indeed the spectrum of L does provide N con-

stant of the motion, but these are merely numbers (the first N nonnegative

integers!), rather than nontrivial fanctions of the quantities x,

2.4.5.5 Determinantal representations of polynomials
defined by ODEs or by recurrence relations

In Sect. 2.4.5.5 we outline techniques based on the results of previous

Sections, whereby determinantal representations are exhibited of poly-
nomials defined by ODEs or by recurrence relations.

The first type of results is exemplified by the following

Proposition 2.4.5.5-1. Let the polynomial Pjx), of degree p:! N,

satisfy the ODE

A P'(X) = 0

with

A=I a,(x) (dldx)' .
(2)

r--O

There holds then the formula

P, (x) Q,-, (x) = det [CX - x) A+1] ,
(3)

with Q,-, (x) a polynomial of degree N - p and the (Nx N) -matrices A

and A' defined as follows:

P

arUX D
r (4)

P

'4'= raCK)Dr-1 (5)
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where x and D are the (N x N) -matdces defined by (2.4.1-1,2) in terms

ofthe N arbitrary numbers x, -

Corollary 2.4.5.5-2. Any polynomial P,(x), of degree N in x, that

satisfies the linear ODE (1) with (2), admits the determinantal represen-

tation

P, (x) = c,, det[(I- x) -4 +A'1 , (6)

with X, A and A' defined as above.

Proofs. Let z be a zero of P, (x),

 'W=o 1 (7)

and define thepolynomial, of degree p - 1,

Pp,W = P,W/(x - Z) , (8a)

so that

,
W = (x - Z)P"W , (8b)

hence

(dldx)rP,,(x)=[(x-z)(dldr)r+r(dldr)r-I ]p (X) . (8c)

To the ODE, (1) with (2), satisfied by Pp (x), there therefore corresponds the follow-

ing ODE satisfied by PP, (x) :

[(x-z)A+A']P_l(x)=O ,P
(9)

with A defined by (2) and

P

A'=I r ar (x) (d / dX)
r-I

. (10)
r=1

Hence, via Corollary 2.4.1-3, one concludes that

det[(X-z)A+X]=O (11)
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The left hand side ofthis equation is a polynomial of degree N in z, and we just

proved that it has the property to vanish whenever z is a zero of the polynomial

P, (x), see (7). This entails (3). The Proposition 2.4.5.5-1 is thereby proven.

As for the Corollary 2.4.5.5-2, it is merely the special case of Proposition

2.4.5.5-1 with p = N.

Let us now consider a set of polynomials PP (x) characterized by re-

cursion relations of the following type:

Pp,(x)=[a(p)x+fi(p)]Pp(x)-Pr(P)Pp-,(x) p = 1, 2,..., (12a)

P,(x)=l ,
(12b)

P,W = a (0) X +'8 (0) - (12c)

We moreover assume, for definiteness (but this is hardly relevant), that

the coefficients a (p), 6 (p) and r (p) are polynomials in p .

Our restriction here to three-term recurrence relations of this type, see (12), is

motivated by the well-known fact that an sets of orthogonal polynomials satisfy (in-

deed, are characterized by) such recurrence relations. It is left for the diligent reader to

extend the method outlined below to sets of polynomials characterized by more gen-

eral recursion relations.

There holds then the following

Proposition 2.4.5.5-3. Let z be one of the N zeros of the polynomial
of degree N, P, (x), determined by the recursion relations (12):

PI(Z)=O - (13)

Then z is an eigenvalue ofthe generalized eigenvalue equation

LM(1)
(0) _ Z M

(2) 1 ! '_ (0) = 0
, (14)

where

At(')(O)=exp(-iO)L-,8CLV)+exp(iO),v(N)R (15a)
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M(2) =alNl , (15b)

and the three (N x N) -matrices L, R, N satisfy the algebra of "lowering",
"raising" and "counting" operators, see Sect. 2.4.4. The eigenvector E(O),

see (14), is given by the formula

IV

PE(O) =I exp(i n0)  _I (Z) 1 (n) l(n-l)! . (16)
n=1

Here, above and below 0 is an arbitrary parameter, and the N -vectors

V(n) are those that provide the basis for the action of L, R and N, see

(2.4.4-4) and (2.4.4-1).

Proof To prove Proposition 2.4.5.5-3 it is sufficient to verify that the N -vector

(16) satisfy the generalized eigenvalue equation (14) with the definitions (15) of

M(') (0) and M(2). Indeed, via (2.4.4-4) and (2.4.4-10a), the left hand side of (14)
yields

N

I exp(i n 0) P, (z) f exp(-i 0) (n - 1) V(n-1)
n=1

_,g(n _ 1) ,(n) + exp(i 0) An) (1 _ g,".) ,(n+l) -z a(n-1) v(n) I/ (n - 1)!

Ar

-1: ([exp(inO) ,(n) l(n-l)!]fPn(z)-V(n-l)+za(n-l)]Pn-,(z)
n=1

+(n-I)y(n-l)P,,-,(z)l)-[exp(iNO)v('v)I(N-1)!]P,(z) (17)

and this clearly vanishes thanks to (12) and (13).

Corollary 2.4.5.5-4. The polynomial P,(x), characterized by the re-

cursion relations (12) (with p N - 1), admits the determinantal repre-

sentation

P, (x) = c, det [:M(l) (0) - xM(2)] , (18)

with the (IV x N) -matrices M(11 (0) and At(2) defined by (15) in terms ofthe

"lowering", "raising", respectively "counting" (N x N) -matrices L, R re-

spectively N, and ofthe arbitrary "angle" 0.
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Proof. It is analogous to that ofProposition 2.4.5.5-1: the right hand side of (18)
is a polynomial of degree N in x, and Proposition 2.4.5.5-3 (see in particular (14)),

together with Corollary 2.4.1-2, entail that this polynomial vanishes whenever its

argument, x, coincides with a zero, z
,
of the polynomial P, (x), see (13). Hence this

polynomial, up to a (nonvanishing) multiplicative constant, coincides with P, (x), see

(18).

To implement the Propositions and Corollaries given above any rep-

resentation can be used for the (N x N) -matrices X and D, as well as L,

R and N. In particular, one can use the representations of these (Nx N) -

matrices in terms of N arbitrary numbers x, see (2.4.4-20) with (2.4.1-

2,1) as well as the representations that correspond to special choices of

these N numbers, see for instance (2.4.4-38).

Exercise 2.4.5.5-5. Obtain explicit representations for the classical polynomials

(Hermite, Laguerre, Legendre, Gegenbauer, Jacobi), as implementations of Corollar-

ies 2.4.5.5-2 and 2.4.5.5-4. Hint: see <C84b>, <C85a> and <C85d>.

Exercise 2.4.5.5-6. Prove the neat formula

H, (x) = 2v det [x -M((p)] (19a)

COS ) (H)
+

(H) -1X(H) (19b)x?] sin( XnMnm(0 = gnm gn V

Here x,(,H) are the N zeros of tile Hermite polynomial of order N, see (2.4.4-35b,

38a). Hint: see (18), and use the representation (2.4.4-38) of L
,
R and N

.
Note that

this formula, (19), is trivial for (p = 0, but nontrivial for (o # 0 mod(;r): indeed the

fact that the eigenvalues of the matrix M(V) coincide, for all values of 'p, with the

N zeros x
(N) of the Hernfite polynomial of order N, is a nontrivial finding origi-
n

nally discovered as a by-product of the study of certain integrable many-body prob-
lems on the line, see Exercise 2.1.3.3-5.
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2.5 Many-body problems on the line solvable

via techniques of exact Lagrangian interpolation

The main idea underlying the approach pursued in Sect 2.3 and in its

subsections, in particular in Sects. 2.3.3 and 2.3.4, is based on the nonlin-

ear mapping relating the N coefficients c,, (t) of a (monic, time-

dependent) polynomial of degree N in x, to its N zeros x,, (t), see (2.3-

1). In Sect. 2.5 we outline an extension of this approach, that follows

naturally from the techniques of exact Lagrangian interpolation described

in Sect. 2.4 and in its subsections. The new idea is to exploit the (nonlin-
ear) mapping that relates the coefficients of a (monic, time-dependent)
polynomial of degree N in x to the values that this polynomial takes at

N points x,, (t). The same kind of idea is exploited, in a more general

context (nonpolynomial, multidimensional), in the next Chap. 3; hence

the presentation given here is mainly an introduction (which indeed cor-

responds to the chronological unfolding of these developments) to the

treatment given in the following Chap. 3.

For definiteness let us consider again a (monic, time-dependent)
polynomial of degree N in x,

IV

IV V-m

V(X,t)=X +E C. (t) X (1)
M=1

that satisfies the linear PDE (2.3-2). As noted above, the time evolution

of this polynomial, namely the time evolution of its IV coefficients cm (t),

is solvable via purely algebraic operations; indeed, as we saw in Sects.

2.3.4.1 and 2.3.4.2, in some subcases of the linear PDE (2.3-2), charac-

terized by the vanishing of some of the I I constants it features, this time

evolution can be exhibited in explicit form;,otherwise to get it one must

solve the system of N linear ODEs with constants coefficients (2.3.3-8),
which amounts to the purely algebraic task of diagonalizing and inverting
an (N x N) -matrix.

Let now x,, (t) indicate N (a priori arbitrary) points, and f, (t) the N

values that the polynomial V (x, t) takes at these N points x, (t):

f" (t) = V/ [X" (t), d - (2)

It is then convenient to introduce the following polynomial:

Ar

f(X't)=V(X't)-fj [X-X"(t)] (3)
n=1
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It is clear that this polynomial in x is of degree less than AT(see (1) and

(3)), and that there holds for it the relation (see (2) and (3))

f [X" (t), d = f" (t) - (4)

The fact that f (x, t) is a polynomial of degree less than N entails the applica-

bility (see (4) and (2.4.1.8a)) of the (exact) Lagrangian interpolation formalism of

Sect. 2.4, which shall indeed be exploited below. In that formalism the choice of the

,,,
is arbitrary. Here these quantitiesN points x,,, as well as that of the N values f

depend on t, x,, -= x,, (t), (t), but this of course is no impediment to the use

ofthe Lagrangian interpolation formalism.

In the following, for notational simplicity, we often omit to indicate explicitly the

t -dependence of x,, and f,

Let us emphasize the difference of the present approach from that of Sect. 2.3.

Clearly the new treatment given herein reduces to the previous one for the special
assignment

f" (t) = 0. (5)

The requirement that the polynomial (1) satisfy the linear PDE (2.3-2)
entails V relations, among the 2N quantities x,, and f, and their time-

derivatives, that can be written in explicit, and fairly compact, form, as

we show below. The structure of this system of N coupled ODEs looks

as follows:

N

(1) UX + Mn(2) UX I ICfln +, [Mn f
M=1

AF

M(3) UX (4)0 (5) U+[Mn X
IM

+ Mn X+
M

f im
M

IV 'V

+.i" 6)UX 7) U
m
+M,(I [M,(,.

.
X ",

n +I M,('MI), UX f, i. I
",

X

M=1

Ar

+ M'(") Ux +I M.(.10) UX fm = 0
- (6)

M=1

The 10 quantities M, variously decorated with superscripted and sub-

scripted indices, are nonlinear functions of the IV coordinates x,,, as indi-

cated by our notation, see (6); their explicit form is given below (see
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(16)), after we complete this preliminary outline of the new approach
used in Sect. 2.5.

This system of N ODEs, (6), is of course insufficient to characterize

the time evolution of the 2N quantities f, x,,; to determine this evolu-

tion completely, N additional relations among these 2N quantities must

be posited. The choice of these relations remains our privilege; it opens

the possibility to manufacture a large collection of dynamical systems.

Only some of these are discussed below; the alert reader is welcome to

consider other possibilities. Of course, as noted above, the particularly

simple prescription (5) reproduces the class of models discussed in Sect.

2.3 and in its subsections.

According to the nature of these additional relations, introduced to

completely determine the 2N quantities f, (t) and x,, (t), one obtains a

dynamical system characterized by equations of motion that are solvable,

or one that features equations of motion which lack complete solvability,

yet are amenable to a treatment that significantly facilitates their study.
Let us outline two examples, one of each kind.

Consider firstly the assignment

f,, (t) =  on Lx (t)] ,
(7)

where  9n are N (arbitrarily) chosen functions of the N "particle coordi-

nates" x, Insertion of (7) into (6) yields a system of N second-order

ODEs, which can be easily solved for the "accelerations" i,, (being linear

in these quantities), so that it take the Newtonian form

X (8)' n = Fn ( ,3 '

in this manner one manufactures solvable N -body problems (generally

featuring many-body forces, see below), the solution of which can indeed

be achieved, via purely algebraic operations, by inserting (7) into (2).
A different technique to manufacture Newtonian equations of motion

for the "particle coordinates" Xn sets C = 0 in (6), so that this become a

system offirst-order time-evolution ODEs for the N particle coordinates

x, Then one recovers a set of second-order time-evolution ODEs, which

can again be easily cast in the Newtonian form (8), for the "particle coor-

dinates" xn, by supplementing (6) with relations, say, of the following

kind:

LW = 0. kW I 'kn (01 * (9)
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The (arbitrarily chosen) function 0,, depends now on the "'particle coordi-

nate" x
,,

and also on the corresponding "velocity" i, One has thereby

manufactured again an V -body problem, see (8), the solution of which,
while not being now reducible to a purely- algebraic task is nevertheless

much simplified, compared to the task of solving the Newtonian equa-

tions (8) (a system of N nonlinear coupled second-order ODEs), since it

is reduced, via the insertion of (9) into (2), to solving N decoupledfirst-
order ODEs (however, these ODEs are generally neither linear nor

autonomous, hence generally they are not integrable). Below we will also

consider certain cases in which the fanction 0,, in the right hand side of

(9) is chosen to depend (appropriately!) on all the coordinates x. (t) rather

than only on x, (t) , 0,, -= 0,, (:gt), i,, (t)) .

To summarize: the idea is again to consider N quantities, for instance

the N coefficients c,, (t), see (1) and (2.3-2), the time evolution ofwhich

is determined by easily solvable (linear) equations, and to then introduce

via a nonlinear mapping, for instance that induced by (2) and (7) or (9)
with the N fanctions Vn or 0,, assigned according to our choice, N "par-

ticle coordinates" xn (t), whose time-evolution is then nonlinear yet solv-

able or at least to some extent treatable. It is remarkable that, via this

procedure, one obtains time-evolutions, for the N "particle coordinates"

x,, (t), which are characterized by a system of nonlinear ODEs that can be

explicitly displayed and can be fairly naturally interpreted as the Newto-

nian equations ofmotion of an N -body problem.
Let us now implement the scheme we just outlined. To this end we

need a more explicit version of (6). This requires a straightforward, if te-

dious, calculation, whose starting point are the N relations that obtain by
evaluating the PDE (2.3-2) at the N points x,,:

CV,(x,,,t)+[ E-(N-I)D2Xn ]V,(x,,t)+[DO+Dlxn+D2x
H n, t)2 (x

+[ A, +A, x,, +A2 x. n
2 + A, x' ] V, , (xn, t) + [ B, + B, xn -2(N- 1) A, x.2 I Vx (x,,, t)

-[N(N-l)(A,-A,xJ+NB, ]Vf(x,,,t)=O . (10)

The task is now to express all the quantities that appear in these N

equations, whose significance we trust to be self-evident, in terms of the

2N quantities f., x. and their time derivatives, taking as starting point

the N relations (2), as well as the fact that the function f (xt), being a

polynomial of degree less than N in x, can be expressed, together with

its x -derivatives, in terms of the N values, f ,
it takes at the N points

n
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x, see (2) and (4), via the (exact) formulas that emerge from the Lagran-

gian interpolation technique, as reviewed in the preceding Sect. 2.4.

The relevant formulas read as follows:

V/ (X"' 0 = f., ,
(11a)

V/,, (x,,, t) = b,, + (1 lb)

X.)-I + f, [2]
Vf., (x,,, t) = 2 b,, E (1 1c)

..'
(Xn

m=l,m#n

Vf, (x,,,.t) b,, in + j,, -1,, (1 ld)

IV

Vx,(x,,t)=-b,, ya R n+- J*n -XM) I+!,,"' - "n f 2' , (1 le)
m=l,m#n

V, (x,,, t) = b,, [ ' n ' n
n

X 2 in 1 'I + i,,2 f 21 .(11f)- +2 (X A+In
m=l,m#n

Here we have introduced the two quantities f '] and fn[21 via the conven-

ient definitions

b,, D (12a)
n.

bM
M=1

'V

I CD
2 21 = b

-.' _

). b-1 f. (12b)f
n M

M=1

where of course the N -vector b bUx and the (N x N) -matrix D  DW

are defined by (2.4.1-2,3,4):

IV

bn = 11 (Xn - Xm) I
(13a.)

M=1,M#n

Dnm = (5,,m (x -xt)-1+0_15nm* -XmY (13b)
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Proofs. (1 la) coincides with (2). To prove (I lb) we x -differentiate (3), getting

'V N

VX (X, 0 = f, (X, 0 +21
.'
H (X - X"') (14a)

n=1 m=l,m#n

we then set x = x, and use (2.4.1-9,8b) (with r = 1) and (2.4.1-4a) or (13a).

We then note that Vfjx,t) is a polynomial of degree less than N, hence, via

(2.4.1-9) with r = 1,

Vf,,, (x, t) = b,, I D. bmi V., (X., t) . (14b)
-1

We then insert (1 lb) in this formula, and use (2.4.1-5b), getting thereby (I 1c).
We then t -differentiate (11 a), getting thereby

Vt(Xn't)+inVx(Xn9t)=!n ; (14c)

via (I lb) this yields (I ld).
Likewise, t -differentiation of (1 lb) yields

Vxt (Xn 1 0 + 'n V- (Xn 1 0 = k + - 'l - (14d)

We now use (1 1c), as well as the formula

'V

b (i,, - i.) / (x,, - xm) (15)

which is clearly implied (via logarithmic t -differentiation) by (13a). There thus ob-

tains (11 e), which is thereby proven.
Finally, t -differentiation of (11 d) yields

Vtt (Xn 2 0 + in Vxt (Xn 9 0 = in - i,, [bn + f I']
n
]-'n [k +  n"I - (14e)

Via (11e) and (15) this yields (11 f), which is thereby proven.

Insertion of (11) into (10) yields the following formula,
which provides the more explicit realization of (6) we need:

'V

b,, I C [-i, + 2 i, i. / (x,, - xj]- Ein + BO + B, Xn - 2 (N - 1) A, xn2
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IV

(x,, - x.)
-1 [-(i,, + i.) (D, + D, x,,) - D, x,, (i,, x. + i. x,,)

m=l,m#n

+ 2 (A, + A, x,, + A2 x,2, + A, x,,,) j I

+C[I,, +i,, f,,El -2i,, j 'l +i,2 fE21] +[E-(N-I)D2xn] [ , -i" fEl]
, n n

+[DO +Dx,, +D 2][ Ell_ fE2]]+[B,+Bxn -2(]V-1) A3 X21 f ll-

.

I ' n
n n2 Xn in

2
+'4

2
X2 +A3X3 -Axn)+NBI]f, =0

, (16)+[AO + A Xn n
nlf -[N(N-1) ('12

where f 'l and f '] are of course defined by (12), bn by (13a), and we

omit to indicate explicitly the time-dependence.

As explained above, this system of N coupled ODEs for the 2N

quantities Xn I f, must now be supplemented by N additional relations.

Let us consider firstly relations oftype (7), that yield solvable models.

In particular let us set

f, (t) = h [x,, (t), t ] ,
(17a)

where h(x,t) is a (possibly time-dependent) polynomial in x, of degree

less than N but otherwise arbitrary. Note that this entails, via (12) and

(2.4.1-9) (which is now applicable),

fV = k (x,,, 0 (17b)

f 2] = hxx (x,, t) (17c)

while (17a) entails (indeed, independently of any restriction on h(x,t),

other than its differentiability)

j,, = h, (x, 1 0 + -i,, k (x.,0 5 (17d)

j,, = h, (x,, t) + 2 - n h, (xn, 0 + 'n k (xn, t) +.i,'
,
h,,x (x,,, t) , (17e)

and (17b) entails

hxt (Xn It) + 'nh-(Xn2t) (170
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Insertion of these expressions in (16) yields, after several cancella-

tions and via (13a), the following "equations ofmotion":

N

Ci,,+E.i,,=B,+B,x,,-2(N-I)A3x,2,+ 1]
..,

(X, - X.)-1 -

M=I'M#n

.[ 2 Ci,,.im - (i,, +.i.) (D, + D, x,,) - D, x. (i,, x. + lcm x,,)

2 3)+ 2 (A0 + A Xn + A2 Xnn+A3Xn I

+fCh,(x,,,t)+[E-(N-1)D,x,, Ih,(x,t)+[D,+D,x,,+D2x,' h (x t)
 ,

I
X, ,,

+[ A0 +,4 +A X2+A 3

1 Xn 2 n 3 Xn I hxx (Xn 1 0 + [ B0 + B, x,, - 2(N - 1) A3 x,,' I hx (x,,, t)

IV

-[N(N-1)(A,-A3x,)+NB, ]h(x,,,t)j rl (xn-x.)-l (18)
m=l,m#n

These equations of motion are of Newtonian type, see (8); the product
Ar

rl (x. - xm)-1 = bn' (see (13a)) which multiplies the curly bracket in the right
M=1,M#n

hand side indicates however the presence of "many-body forces". On the other hand

the presence of the arbitrary polynomial h (x, t) ,
which is only restricted by the re-

quirement to be ofdegree less than N, entails a significant generality.
Ofcourse for h (x, t) = 0 this system, (18), reduces to (2.3.3-2).

The solution x,, (t) of these Newtonian equations of motion are the IV

roots ofthe polynomial equation, of degree N in x,

V(x,t) =h(x,t) (19a)

namely

V [x,, (t), t ] =h [x,, (t), t ] (19b)

where Vf (x, t) is the monic polynomial, of degree N in x, determined by
the linear PDE (2.3-1) (which features of course the same 11 constants,

A0, A,  A2 1, A3, B,, B, I C, D,,D,D2,E that appear in (18)), with the initial con-

ditions, or(xo) and v, (xo) ,
entailed by (19b) (note that (I9a) only holds

for x = x,, (t)
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Let us indicate how to obtain from (I9b) the initial data Or(xO) and V,(xO)

First of all we note that (19b), evaluated at t = 0, yields

V [x,, (0), 0 1 =h [x,, (0), 0 ], (20a)

and its t -derivative, evaluated at t = 0, yields

V,lx,,(O),01=-- ,,(O)vx[x,,(O),Ol+h,lx.(O),Ol+i, (O)k[x,,(O),OI - (20b)

There are now two (equivalent) routes to determine the (monic, N -th degree)

polynomial VI(xO) .
We can focus on the polynomial V(xO) - xN, the degree of

which is clearly less than N, and which clearly takes the N values

Vi[x (0), 0]- [.,, (0)1'v at the N nodes x,, (0) . Hence, by applying the standard theory

of (exact, polynomial) Lagrangian interpolation of Sect. 2.4 to this polynomial we get

(via (2.4.2-7,5) and (20a))

N N

Vf (x, 0) = x" + h [x,, (0), 0 [x,, (O)r I fj f [x - x,,, (0)]/ [x,, (0) - x,,, (0)] 1.
n=1

(21a)

'V

Alternatively, we can focus on the polynomial V(xO) -fl [x - Xn (0)], also of

n=1

degree less than N. Then via (2.4.2-7,5) and (20a) one gets

N IV IV

V(x,O) = rl [x - x,, (0)] +L hlx,, (0),Oj I I I [x - x,,, (0)]/ [x,, (0) - x,-, (0)] (2 lb)
n=1 n=1 m=l,m#n

The two equivalent formulas (21a) and (21b) provide explicit expressions of the

monic polynomial (of degree N) Or(xO) in terms of the initial data xn(0) of the

many-body problem (18).

Exercise 2.5-1. Verify the equivalence of (21b) with (21a). Hint: note that the

Lagrangian interpolation formula (2.4.2-7), applied to the polynomial (of degree less

Af

than N) fj (X_Xn)_XN, yields the polynomial identity
n=1

IV NIV

(X
IV
- N (21c)Xn) X 1:  Xn 11 [(X-Xm)I(Xn _Xm1j'

n=1 n=1 m=l,m#n

Likewise, since Vf, (x, 0) is a polynomial of degree N - 1, there holds the for-

mula (see (2.4.2-7))
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M Ar

V, (X, 0) = Y, V, [X. (0), 0 111 f Ix - X. (0)1/ [X" (0) - X. (0)] 1 - (22a)
-I m=l,m#n

Here the N quantities Vf, [x,, (0), 0] can be obtained from (20b), but to use this for-

mula we need the N quantities Vfx[xJ0),0J. To obtain them we use the fact that

V(x, 0) - xv is a polynomial of degree N - 1, hence (via (2.4.1-9) with r = 1, and

(20a))

Vfx [ x,, (0), 0] = N[& (0)]

IV

+1 b.k(O)]D.L(o)1f b.[I(O)] rfh[x.(O),01-[x (0)],V I , (22b)
M=1

with D (x) respectively  Ux defined of course by (13b) respectively (13a). Insertion

of (22b) in (20b) yields an explicit expression in terms of the initial data, x(O) and

i(O),of Vf,[x,, (0),0], which can then be inserted in (22a) to yield finally the ex-

pression ofthe polynomial Vf, (x, t) at the initial time t = 0 in terms ofthe initial data,

x (0) and i(0), ofthe N -body problem (18):

N-1

V, (0) ht [x,, (0), 0] + i,, (0) f h,, [x,, (0), 0] -N[x,, (0)]
n=1

Ar

b,, [: (O)] D,,. Lx(O)] I b,,, x(O)] Y1 f h [x. (0), 0[x. (O)y I I IL

AF

H I [X-X1(O)1/[X"(O)-X1(O)1 I (22c)
1=1,1--n

(Alternatively, as we did above, we could have exploited the fact that
IV

Vf(x,O)-fl [x-x,,(O)] is also a polynomial of degree less than N (as well as

n=1

(x, 0) - xA), obtaining thereby an equivalent version of (22b) (equivalent in just the

same sense as (21b) is equivalent to (21a)), hence an equivalent version of (22c). The

diligent reader will write it out explicitly.

This completes our general discussion of the technique to solve

(18).The diligent reader, before proceeding to the examples given below

(and others (s)he may wish to invent), is urged to ponder on the differ-

ences, and similarities, among (18) and (2.3.3-11) (including the devel-

opments that led to these equations and the techniques to solve them).
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Let us now display a few special cases of (18), including as well some

systems offirst-order ODEs. These are all solvable models.

'V

1

i,, = b fj (x,, - x.)- . (24)
M=I'M# 

'V

i,, = -aXn + b (xn - Xm)- (25)

'V

.in = -ax,, + [N g,, (x,,) - xn g1v (x,)] ][I (Xn -Xm). (26)

N 'V

' n = 2 1 i,, i. / (x,, - x.)+ b 11 (Xn - Xm)
-1

' (27)

'V N

in=-axn+2 1: - n' ml(Xn-Xm)+[NgN(Xn)-XngN(xn)I (Xn-xm)
.=l,m#n

(28)

In these equations a and b are two arbitrary constants (which could be

rescaled away; but we prefer to keep them), and g, (x) is an arbitrary

polynomial of degree N (or less; of course for gN(x) = b /N (26) becomes

(25), and (28) with a = 0 becomes (27)).

Exercise 2.5-2. Show that the solutions ofthe initial-value problem for the system
of N first-order ODEs (24) are the N roots of the following simple polynomial

equation in x:

IV

11 [x-x,,(O)]=bt (29)
n=1

Hint: set h (x, t) = b t, E = 1 and all other constants to zero in (18), to check that with

these assignments it reduces to (24); then use (2.3-2) with these same assignments,

(entailing Vf(x, t) = VI(x,O)), as well as (19) and (2 1b).

Exercise 2.5-3. Show that the solutions x,, (t) of the initial-value problem for the

system of N first-order ODEs (25) are the N roots of the following polynomial

equation in x:

IV

XJV +I c. (0) exp(-m a t) xv-' = b / (aN) , (30a)
M=1
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where the N constants c. (0) are of course the solutions of the system of N linear

equations for these constants that obtain by setting in (30a) t = 0 and

x = x,, (0) ,
n = N; or equivalently, and more explicitly in terms of the initial

data, that the coordinates xn (t) are the N roots of the following polynomial equation

in x:

N

"

lb 1(a N) - [xn (O)y I
Ar

.

x + exp(-a t)I fj f[x-x.(O)exp(-at)]I[Xn(o)-Xm(O)II
n=1 m=l,m--n

Ar

=11 [x-x,(O)exp(-at)]
n=1

'V N

+ exp(-a t) 1] [bl(aN)l fj I[x-x.(O)exp(-at)]I[x,,(O)-x.(O)]I=bl(aN).

(30b)

Hint: set h (x, t) = b 1(aN), E = 1, B, = -a and all other constants to zero in (18),

and check that with these assignments it reduces to (25); then insert the same assign-
ments in the PDE (2.3-2) and solve it, either via the ansatz (1) or directly by the

method of characteristics using the initial value V/ (x, 0) ,
see (2 1ab); finally use (1 9a).

The identity of the two expressions that are equated to b 1(aN) is of course guaran-

teed by (2 1c) (verify!).

Exercise 2.5-4. Show that the solutions & (t) of the initial-value problem for the

system of N first-order ODEs (26) are the N roots of the following polynomial

equation in x:

N

xAr + c. (0) exp(-mat) xN-' g, (x) - rxN' a (31a)
M=1

where the constant v is defined by the requirement that the polynomial

h(x) = [ g, (x) -r xv ] la (3 1b)

have degree less than N (gv (x) being a polynomial of degree N, or less), and the

N constants c. (0) are of course the solutions of the system of N linear algebraic

equations for them that obtain by setting in (3 la) t = 0 and x = x,, (0) ,
n = I,-, N; or

equivalently, and more explicitly in terms of the initial data, that the solutions x,, (t)

are the N roots ofthe following polynomial equation in x:

'V

xAr+exp(-at)j fbl(aN)-[x,(O)]'vl F1 f[x-x.(O)exp(-at)]I[x,,(O)-x.(O)]II
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N

=fl [x-xJO)exp(-at)J
n=1

N N

+ exp(-a t) 1] [b 1(a N)] x - x. (0) exp(-at)] / [x,, (0) - x. (0)]
m=l,m#n

= [ giv W -2" XN ]1a , (31c)

where the constant v is of course defined as above, see (3 lb). Hint: set

h (x, t) = h (x), with h (x) defined by (3 lb), E = 1, B, = -a and all other constants to

zero in (18), and check that with these assignments it reduces to (26); then proceed as

suggested above, see the hint after Exercise 2.5-3.

Exercise 2.5-5. Show that, for any initial condition, the solutions xn (t) of the

system of N ODEs (26) with a = -r > 0 tend, as t --> 00, to the zeros ofthe polyno-

mial g, (x) (of degree N, or less):

X" (t) -> X.,g") , gy (X",g,,) ) = 0
- (32)

t-->-

Hint. see (3 1 a).

Remark 2.5-6. This result, (32), suggests a technique to compute numerically the

N zeros of any polynomial g, (x), of degree N: by integrating numerically the first-

order system (26), with a = -r (of course with r identified by the requirement that

h(x), see (31b), be a polynomial in x of degree less than N; and with the overall

sip ofthe polynomial adjusted so that r < 0 hence a > 0 ).

Exercise 2.5-7. Show that the solution of the initial-value problem for the system
of N seqOnd-order ODEs (27) are the N roots of the following polynomial equation
in x:

"I N

I-tZ i.(O)[X-X,,(O)]-' N[x,,(O)]N-1-1 Dn.Lx(o)ltb.Lx(0)11-'Ix.(O)IVll.I
n=1 M=1

N

[x-x,(O)]=bt2l2 (33)

Hint: verify that (18) becomes (27) if one sets h(x, t) = b t' / 2, C = 1 and all other

constants to zero; then solve (2.3-2) (with this assignment), using the initial data

Vf(x,O) and Vt (x,O) as given by (2 lb) and (22c); finally use (1 9a).

Exercise 2.5-8. Show that the solution of the system of N second-order ODEs

(28) are the N roots of the following polynomial equation of degree IV in x:
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N

N

-1/ 2
6. (0) S4 1/ 2 t] I XN-mx +1 Jc.(O)cos[(ma)"'t]+(ma) (m a)

.=I

=[g,(x)-rx ' ]1a , (34)

where the constant y must be adjusted so that the polynomial in the right hand side of

this equation, (34), have degree less than N (g, (x) being a polynomial of degree

N
,
or less), and the 2N constants cm (0),  m (0) are determined in terms of the initial

data, x,, (0), i,, (0) , by the requirement that the N equations that obtain from (34) by

replacing x with x,, (t) ,
as well as their t -derivatives (another N equations), are sat-

isfied at t = 0 (the first set of N equations is a system of N linear algebraic equa-

tions for the N constants c. (0), with known coefficients and known inhomogeneous

terms; and, after this system has been solved, the second set yields an analogous sys-

tem of N linear algebraic equations for the N unknown constants 6.(0)). Hint:

verify that (18) becomes (28) if one sets h (x, t) = [ g, (x) -;V xv ] / a
,

B, = -a, C = 1 and all other constants to zero; then, via the ansatz (1), solve (2.3-2)
with this assignment ofthe constants; finally use (19a).

Exercise 2.5-9. Display the effect on (24) -- (28) of the trivial rescaling transfor-

mation

x,(t)=a ,(r), r=fit (35)

with a, 6 arbitrary constants.

Exercise 2.5-10. Show that the Newtonian N -body problem

Ar

i,, = 2.i,, I - x.)
.,

[ai,,+(l+a)iJ1(x,, (36)
M=I'M#1

with a an arbitrary constant, is partially solvable, since it possesses the

solution given by the (a -independent!) recipe (29), where the N con-

stants & (0) coincide of course with the initial positions of the IV particles
and can be assigned arbitrarily, while, for this solution, the N initial ve-

locities -i,, (0) are given by the prescription

IV

.i,,(O)=b [x,,(O)-x.(O)]-' (37)

with b an arbitrary constant. Hint: differentiate logarithmically (24) and

use the identity (2.4.1-27).
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Exercise 2.5-11. Noting that, for a = 0, the equations of motion (36) coincide

with (2.3.4.2-17) (with a = 0 ), show that the recipes (29) and (2.3.4.2-2 1) yield the

same result when (37) holds. Hint: insert (37) in (2.3.4.2-21) and use the identity

(2.4.2-32); or note that, for a = 0, (36) coincides with the completely solvable equa-

tions ofmotion (2.1.10-1).

Exercise 2.5-12. Show that the following two Newtonian N -body

problems are partially solvable, and exhibit the corresponding (class o 
solutions:

IV

.,
[ai,, + (1 + a) i

.
+(1 + 2 a) a] / (xn - x.) (38)i,, = 2 (.k,, + a) 1]

m=l,m#n

respectively

i,, =-2ai,, -a
2

Xn

N

+2('n+axn) 1] +aXn)+(l+a)(i.+ax.)]1(xn-x.) (39a)
,

la(n
m=l,m;,-n

Here a and a are 2 arbitrary constants. Note that, for a -1 2, this sys-

tem, (39a), takes the neater form

N

in=-(N+l)a.i,,-Na2Xn-(in+aXn) I in
.1

( - - m ) / (Xn - Xm ) ' (39b)
m=I,m_-n

Hint: set Xn (t)= 5 n (t) + a t respectively Xn (t) = Yn Wexp(at) in (3 6); then

eliminate the tildes!

Remark 2.5-13. For a = 0 and arbitrary a these two N -body prob-

lems, (38) and (39), are of course solvable (indeed, for a = 0, (36) is itself

solvable: it is a special case of (2.3.4-6), (2.3.4.2-34), or see directly

Exercise 2.5-14. Show that solutions xn (t) of the following two (quite

different !) Newtonian 3 -body problems,

2

i,, = -2b (Xn - Xn+I )-2 (xn - Xn-I )-2 1 (xn - Xn+I )
-1
+ (xn

'

xn-I (40)

Yn = -2 '3 (2 Xn - Xn+I - Xn-1) lb ,
(41)
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where of course n = 1, 2,3 mod(3), are provided by the 3 roots of the fol-

lowing cubic equation in x:

[x-xj(O)j[x-x2(0)j[x-x3(0)j=bt (42)

Here the 3 quantities xJO) are of course the 3 initial positions of the 3

particles, and they can be assigned arbitrarily, while, for these solutions,
the 3 initial velocities 1,, (0) are given by the prescription

.i,,(O)=b[x,,(O)-x,,,,(O)]-'[x,,(O)-x,,,(O)]-' . (43)

Hint: consider (24) with N = 3, time-differentiate it (most conveniently
logarithmically), and use it again appropriately to get (40) and (41); then

use (29) with N = 3.

Remark 2.5-15. The two partially-solvable 3 -body problems (40) and

(41) feature forces that are translation-invariant; (40) features velocity-
independent 3-body forces; (41) features velocity-dependent 2-body
forces.

Exercise 2.5-16. Show that solutions xn(t) of the following three

Newtonian 3 -body problems,

i,, = a' Xn + a b (x,, - xn,,)
-'

(x,, - x,,,)
-'

-2b
2

(Xn _ Xn+l)-Z (Xn _ Xn_l)-2 [ (X?z _ Xn+j)-I + (Xn _ Xn_j)-I (44a)

i,, =ai,, +2 a2x, -2 (in +ax,,)'(2x, -x,,+, -xn,)lb, (44b)

in =ain +2ax, -2 (in +aXn)
2 [ (Xn _Xn+I)_I + (Xn - Xn-1)

-1

(44c)

where of course n = 1, 2,3 mod(3), are provided by the 3 roots of the fol-

lowing cubic equation in x:

[x - x, (0) exp(-a t)] [x - x2 (0) exp(-a t)] [x - x3 (0) exp(-a t)] = [b / (3 a)] -

3 3

-at)] / [X -xm(O)exp(-at)1jj. (44d)-fI-exp(-at)j: fj I[X-xm(O)exP(
n
(0)
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Here flie 3 quantities x,,(0) are of course the initial positions of the 3

particles, and they can be assigned arbitrarily, while, for these solutions,
the 3 initial velocities 1,, (0) are given by the prescription

N

i,,(O)=-axjO)+b fj [x,,(O)-x.(O)l (44e)
M=I'.# 

Hint: as for the preceding Exercise 2.5-14, but with (24) respectively (29)

replaced by (25) respectively (30b).

Remark 2.5-17. The three partially solvable Newtonian 3 -body

problems (44ab,c) feature forces that are not translation-invariant; (44a)
features velocity-independent 3 -body forces; (44b) and (44c) feature ve-

locity-dependent 2 -body forces, and the latter (that does not feature the

constant b, that can therefore be chosen arbitrarily in (44e)) is remarka-

bly similar to, yet quite different from, (2.3.4-6), or equivalently (2.3.4.2-
34) (with N = 3 and, say, a = a, 8 =,a = 2 a', A = 2 a).

Let us now consider a second family of models, those that obtain by

positing (9) rather than (7), after having set, in (16),

C=O
, (45)

so that these ODEs, (16), become offirst-order:

b,, f-Ei,, + B, + B, xn - 2 (N - 1)A Xn2

Ar

2+A3 X3 )I (Xn _X.)(AO+AlXn+42X,,+2 1] n

.=l,m#n

+E[j,-i,fn ]+[BO+Blxn-2(N-1)A3xn2 ]f ll

X2 X
3+[ AO+AIXn +A2 n +A3 ]f 21-[ N(N-1)(A2 -A3xn)+NB, f = 0.(46)
n n

To obtain this equation we did also set in (16), for the sake of simplicity,

Do =Dj =D7 =0
. (47)

In (46) of course we are using again the definitions (12) and (13), and we

again omit for notational simplicity to indicate explicitly the time de-

pendence.

295



Let us now set

f (t) =,a,, in (t) + h [x,, (t)] , (48a)

where u,, are N arbitrary constants and h(x) is an arbitrary polynomial
ofdegree less than N.

Then (48a) entails

1 =,a,,n
Yn + h(x,,) in (48b)

as well as (see (12) and (2.4.1-9) with r1,2)

N

b,, D,,. b
-1

i. + h(x,,) (48c)In

M=1

,V

=,u,, bn D)
.

b
-1

in, + h"(x,,) (48d)L

Here of course the N -vector b  bW and the (Nx N) -matrix DDUx are

defined by (13) (see also (2.4.1-2,4a,5d)) and primes denotes derivatives

with respect to the argument ofthe function they are appended to.

Insertion of these relations in (46) yields the following system of

Newtonian equations:

Eyn Yn = [N(N - 1) (A, -,43 x,,) + NB, j [,a,, in + h (x,,) ]

B, +Bj xn -2(N-1) X2 ] h'(x,,) - [,4, X2 +A X3 ] h"(x,,)'43 + A Xn + A2 3 "n n

+b,,Ux JEin-BO-Bjx.+2(N-1)Ax,2,

N

2 3) _X
-1

-2(A, +AlXn +A2X. +A3Xn 2: (Xn M)
M=1,M#n

,V

-I)A3 x2+,a,, [ E in - BO - B, xn + 2(Nn
,
D.i.1b.Ux

M=1

,V

_,un (AO + A, Xn + A,
2
+ AX3 D2),,min1b.Ux (49)Xn 3 n

(D
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Exercise 2.5-18. Write out the more general equations that replace (49) if the

simpliPjing condition (47) does not hold, and/or the polynomial h, see (48a), is as-

sumed to depend on time, h =- h (x, t) .

Let us now consider a few examples; the alert reader will try out

many more.

The initial-value problem for the (translation-invariant) Newtonian

equations of motion

dUn - n = - n '

IV LV Ar

J 11 (xn-Xt)+,Un I (xn_Xm)_If'n_'m 11 RXn_XI)1(X._XI)1I1 (50)
 =1,&n m=l,m#n t=l, #n,m

is solved by the following prescription: x,, (t) is the solution of the (non-

differential) equation

IV

fj f[xJt)_Ym 111Xn(O)_Ym 11 Am
=expwfln)  

(51a)

A. (Ym - Y') (51b)
9=1'e#M

where the N constants y. are determined, in terms of the initial data

xn (0), i', (0), by the N algebraic equations

N

fj [ x,, (0) - y ]=,unin(O), n=l,...,N . (51c)
M=1

Proof. It is easily seen that the system (50) corresponds to (49) with E = 1 and all

other constants equal to zero. Hence the corresponding PDE, see (2.3-2), reads

vf, (x, 0 = 0 (52a)

entailing

V(x'0=V(x'O) -
(52b)

Hence, from (48a) and (2) we conclude that
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Ar

P" i" (t) =H [ X ' (t) - Y. I , (53a)

where we have conveniently introduced, in the right hand side of this equation, a ge-
neric monic polynomial of degree N in x,, (t) , by displaying explicitly its N zeros

y. (this polynomial is independent of the index n, and of the time t; it coincides

with V[x,, (t),O]- h[x,, (t)], with h(x) both arbitrary and irrelevant, since this polyno-

mial, h(x), of degree less than N, neither features in the equations of motion (50)
nor in their solution, see (51)).

These N constants, y., are then defined by (53) at t = 0, namely by (5 1c).
There then remains to integrate (53). To this end, using the standard "partial-

fractions decomposition7', namely the identity

(54)
M=1 M=1

with A,,, defined by (5 1b), we rewrite (53) in the form

'V

-1

in (t) E I X,' (t) - Y. 'Z. (53b)
M=1

Then, via a trivial quadrature, one gets (5 1a), which is thereby proven.
Let us emphasize that, while in general the approach based on the ansatz (9) does

not yield completely solvable models, in this case we were able to reduce the solution

to a purely algebraic task, see (5 1).

Remark 2.5-19. Clearly the equations of motion (50) entail that, if ic,, (0) = 0,

then i,, (t) = 0, x,, (t) = x,, (0). Hence any particle that is initially (or at any time) at

rest always remains at rest. However, its presence does affect the motion of the other

particles.

Exercise 2.5-20. Investigate how the method of solution of the model (50) must

be modified if one or more of the N particles do not move. Hint: begin by under-

standing the N = 2 case.

The next example we report is characterized by the Newtonian equa-
tions ofmotion

,un in= Napnin+(N-1)acXn+Nad-bc +(in -ax,,-b)-

N N

fj (Xn - XI) + (Xn -XXf -in - iC. rl [(X,, - XI) / (X. - XI)l I ] (55)
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with a, b, c, d arbitrary constants (for a = b = c = 0 this model reduces to

the previous one, see (50)). We claim that its solution is provided by the

solutions ofthe following uncoupledfirst-order ODEs:

,unin(t)+cxn(t)+d=fj fXn(t)-Xm(O)eXP(at)+(bla)ll-eXP(at)lI
M=1

+ exp(at) 1] [,um i. (0) + c x. (0) + d ] -

M=1

fj [lx,,(t)-x,(P)exp(at)+(bla)[1-exp(at)lllfx.(O)-x,(O)I] (56a)
e=I'e#M

Note however that these ODEs are not solvable by quadratures, because

they are not autonomous.

Proofs. We begin by noting that (55) obtains from (49) by setting

h (x) = c x+ d, B, = b, B, = a, E = 1 and all other constants to zero. Hence the cor-

responding PDE, see (2.3-2), reads

Vft (x, t) + (a x + b) V,, (x, t) - Na VI(x, t) = 0 (57a)

entailing (as can be easily verified)

V(x,t)=exp(Nat)V(xexp(-at)+(bla)[exp(-at)-l], 0) . (57b)

But, from (3),

N

7 (X, 0) =11 1X-X.(O) I+f (XO) (58a)
n=1

hence, via (2.4.2-7,5), (4) and (48a) with the above assignment of h(x),

N

v(x,O)=Fl [X-X"(O)
n=1

IV IV

+ 1: [uni,, (0) + c x,, (0) + d] fj 1. [x - x, (0)] / [x,, (0) - x, (0)] 1. (58b)
n=1 9=1'e#n

Now insert this expression, (58b), of V(x, 0) in (57b), set X = Xn (t) in the resulting

equation, get thereby an explicit expression for V/ [x,, (t), t ], and finally use (2) with

(48a). After some trivial steps one obtains (56a), which is thereby proven.
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Exercise 2.5-21. Show that (56a) can be rewritten in the following two equivalent
forms:

(t) + c x,, (t) +d[l - exp(aNt) ]

N

fj f x,, (t) - x. (0) exp(a t) + (b / a) [ I - exp(at)
M=1

'V

+ exp(a t) I [p. -im (0) + c xm (0) ] -

N

[fx,,(t)-x,(O)exp(at)+(bla)[1-exp(at)llllxm(O)-x,(O)I] (56b)

,u,,i,,(t)+clx,,(t)ll-exp[a(N-I)t] j(b1a)exp(aNt)[1-exp(-at)1j

+d[1-exp(aNt)]=jj Ix,,(t)-x.(O)exp(at)+(bla)[1-exp(at)]I
M=1

N N

+exp(at)j] u,,im(O) fj [fx,,(t)-x,(O)exp(at)
M=1  =1'&M

+(bla)[1-exp(at)]llfx.(O)-x,(O)I (56c)

Hint: use the identities

N Ar

I r fj [(X_X,)I(X._X,)]=Xr, r=O,l (59)X,
M=1 9=1't#M

which correspond to (2.4.2-7,5) with f (X) = Xr (see also (2.4.2-32)).

Exercise 2.5-22. For a = 0 (55) becomes independent of d, while (56a) seems to

still depend on d. How can this be ? Hint: see (56b,c).

Let us finally return to (46), but let us now supplement these evolu-

tion equations, (46), by positing

f, (t) = b,., kol La. i. (t) + 17,, x,,, (t) I , (60)

where of course b. Lx(t)] is defined by (13a) and the 2N quantities u,,, T&

are arbitrary constants.
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One gets thereby the MowingNewtonian equations ofmotion:

g,,in =(1-77ji,, +[N(N-1)(A, -A, xn)+NBj(,u,,i,, +q,,x,,)

IV

.'
(Xn - X.)

-1 [ (Y" +'U.) - " i" + qn X" i. + q.x. in I+ 1:
m=l,m;#n

X2][l+
'V

- xm)
-1

(Pn - n + Pm ' m + 17n Xn + 17m Xm ) I-[B,+Blx,,-2(N-')AI
n I (xn

m=1,m#n

-[A,+AlXn+A,x2+A,x']
"

_xM)-1*
n n 1: (Xn

m=l,m#n

N

- [ 2 + I (x, -x,)
'

(a, in +,u. im +,u, i, + 77n xn + i7m xm +,-7, x,) ] .(61)

Proofs. The ansatz (60) entails

N

in = bn  'n ' n + qn - n + (Un 'n + 77n Xn I (in - m (xn Xn;5(62a)
m=l,m#n

fnl'l=b,, (62b)
M=I'M# 

f 21 =bn (xn-xm)
-1

A'

. I (Xn _Xt)
-1

(11n - n +,"m ' ;n +,Uf 'i + Rn Xn + 77m Xm + 17, X0 I(62c)
1=1;f*n,m

The first of these formulas, (62a), follows by t -differentiation from (60); the second,

(62b), follows from (12a) via (60) and (13b); the third, (62c), follows from (12b) via

(60) and (2.4.1-5d,3). Insertion of these formulas in (46) yields (61), which is thereby

proven. Note that, for notational simplicity, we did set, in (46),

E=1 (63)

The Newtonian equations of motion (61) feature, in addition to the

2N arbitrary constants un and i7n, the 6, also arbitrary, constants
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AO  A, A2, A, BO, B,. These Newtonian equations of motion feature only

one-, two- and three-body forces; the latter are missing if
AO =A, =A, = A3=0. They are invariant under translations

(Xn __"n + XO I ' O = 0) iff qn =A, = A, = A3 = B, = 0; they are invariant under

rescaling of the dependent variables (X,, _> CXn 1
6 = 0) iff

AO = A, = A3 = BO = 0; they are invariant under rescaling ofthe independent

C'time") variable (t -> at, 6 = 0) iff A, =A, = A, = A3 = B, = B, = 0, 77, = 1,

in which case (61) becomes simply

'Un 'n = E Can + P. ) 'n '. / (Xn - X. ) - (64)
m=I,m-_n

The Newtonian equations of motion (61) are not solvable; our treat-

ment only guarantees that this set of N coupled second-order -ODEs can

be reduced to the following set of N coupledfirst-order ODEs:

N

ian 'Cn W + Un XnW = V[Xn (0) t I fj [XnW -Xm (01-1 (65)
m=l,m#n

(see (60), (2) and (13a)), where, as explained above, the monic polyno-
mial V(xt), of degree N in x, can be considered known (see (1), and

(2.3-2) with (45) and (47)). However, in the equal-particle case,

Y. =,U, ?& = 77 , (66)

the equations (65) are themselves solvable, hence in this case the many-

body problem (61), whose equations ofmotion then read

p j ,, = (I - 77) i,, + [N(N - 1) (A, - A3 x,,) +NB, ] (y i,, + q x,,)

N

+ 1] -x.)-l [2,Uin"'Cm +77(x,, i. +X. iJ]
..'

(X"
M=I'M#n

-[B, +B, x,, -2(N-1)A3 x2] 11+ 1: (X - Xm ) 'n + i.) + 77 (xn + xm)] I
M=I'M#n

_[AO +A + A
2
+A Xj

N

Xm)I Xn 2 Xn 3 n 1: (Xn
M=1,M#n
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N

- 12 + I (x., - xX1 [Al (- . +  . +- O + 77 (X,, +X. +X,,) I I , (67)
e=1;f#n'M

is itself solvable.

To prove this assertion, we must show how to solve the system of N ODEs

'V

 ' - n (t) + R Xn (01 fj [Xn (t) - X. (01 = V(Xn I t) 2 (68)
m=l,m#n

namely (65) with (66), when V/ (x, t) is a known monic polynomial of degree N in

x, see (1). To this end we introduce the monic polynomial, say  /' (x, t), of degree N

in x, which has the N coordinates Xn (t) as its N zeros:

N

 (x-1 0=fj [x - Xn (01 * (69)
n=1

It is then clear that

-,u  /, (x, t) + q [x  fx (x, t) - N  /'(X' t)] (X, t) - X'V (70)

Indeed clearly both sides of this equations are polynomials of degree less than N in

x, and they clearly coincide, thanks to (68), at the N points x = xn

Exercise 2.5-23. Prove this result. Hint: see (2.3.2-1,8,12).

But the linear PDE (70) can be easily solved, for instance by setting

N

Ar-m
 f, (X, t) = XA1 +Z a. (t) X (71)

M=1

and then by noting that (70) and (1) entail

-

= C. (72a)Y c. -77 m c.

namely

t

F. (0) exp 1- 77 m t /,41 - Y-' fdt'c. (t') eXP P 77 m (t 0 / a (72b)
0

Here the coefficients c. (t) can be considered known, being related by (1) to the

known polynomial VI(xt).
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Then, once the polynomial  f (x, t) has been determined (via (70) with (7 1)), the

coordinates x,, (t) are just its N zeros, see (68), hence their determination reduces to

the purely algebraic task of finding the zeros of a given polynomial.

We end Sect. 2.5 by proposing two exercises, thereby hinting at fur-

ther developments.
Exercise 2.5-24. Extend the treatment given in Sect. 2.5 by assuming

the polynomial V/ (x, t) not to be monic, namely by assuming that it has the

form

V(X'0 =c.(t)XN +I C.(t) XN-M
,

(72)
M=1

instead of (1). Hint: see <C86a>.

Exercise 2.5-25. Extend the treatment given in Sect. 2.5 by assuming
the polynomial V(x,t), see (1), to satisfy a more general evolution equa-

tion than (2.3-2), albeit one that preserves the property to be solvable by

algebraic operations (for instance, a linear evolution equation analogous
to (2.3-2) but with the space derivatives replaced by finite differences).

Hint: see <C85e>.

IN Notes to Chapter 2

The idea of a Lax pair, see (2.1-2), was introduced by P. D. Lax <L68>,

to identify integrable evolutions in the context of the study of nonlinear

(partial differential) evolution equations. The first application of this idea

to integrable dynamical systems (i.e., ODEs rather than PDEs) was made,

independently and more or less simultaneously, by S. V. Manakov

<Man74> and H. Flaschka <F74a, F74b>, both ofwhom applied it to the

integrable Hamiltonian one-dimensional many-body problem with expo-

nential "nearest-neighboi" interaction C'Toda lattice") introduced by M.

Toda <T67, T81>, whose integrability was first noted by M. Henon

<H74>.

The ansatz (2.1.1-2,3) for a Lax pair was introduced in <C75>, as a

generalization of the specific Lax pair (2.1.2-6,7) introduced by Juergen

Moser <Mo75> to demonstrate the integrability of the one-dimensional

problem ofN equal particles on the line interacting pairwise with repul-
sive forces inversely proportional to the cube of their mutual distance, see

Sect. 2.1.3. This model with inverse-cube forces had been previously in-
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troduced and solved in the quantal context (perhaps the first time that a

quantum many-body problem has been treated before its classical coun-

terpart) in <C71>; for this reason it is often referred to as the "Calogero-
Moser" system.

The functional equation (*), see (2.1.1-16), as well as its general so-

lution, see Sect. 2.1.4, were introduced in <C75>. This was the first ap-

pearance both of functional equations and of elliptic functions in the

context of classical many-body problems integrable via the Lax-pair ap-

proach. See also Appendix B.

A proof that the N eigenvalues A(,") of the Lax matrix (2. 1. 1 - 1) Pois-

son-commute if the function a(q) satisfies the functional equation (*), see

(2.1.1-16), was first given by A. M. Perelornov <P77> (this proof is also

reported in Sect. 3.2 of <P90> and in Chap. 2 of <H92>).
S. Wojciechowski, more or less simultaneously, gave an independent
proof of the Poisson-commutativity of the Nsymmetric invariants J, see

(2. 1 - 10) <W77>.
The result (2.1.3.1-5) was firstly obtained, for arbitrary N, in the

quantal context ("no diffraction7) in <C71>, and in the classical context

by J. Moser <Mo75>. For N = 3 it had been previously discovered in the

quantal context by C. Marchioro <Mar7O> (who also solved the problem
in the classical case, but did not publish the result). Actually the solvabil-

ity of the classical one-dimensional problem of 3 particles interacting
pairwise with inverse-cube forces had been, much earlier, noted by C.

Jacobi <Jl866>. (This phenomenology -- namely, the fact that no new

asymptotic momenta emerge from the interaction, in spite of its nonlinear

nature -- is sometimes characterized by the adjective "solitonic"; to un-

derstand the origin of this language see the literature on "solitons", for

instance <CD82> and the references quoted there. There is of course

more to this than just semantics: see for instance <C78a> and the litera-

ture quoted there).
The OP technique of solution (see Sect. 2.1.3.2 and also subsequent

sections) was introduced by M. A. Olshanetsky and A. M. Perelomov

<OP76a,c>, <OP81>. It is reviewed in several textbooks, see for instance

Chap. 3 of <P90> and Chap. 1 of <H92>; for a seminal, more group-

theoretical, treatment see <KKS78>. It is sometimes called "the projec-
tion method7 <P90>. The explicit solvability of the model of Sect. 2.1.3

had been first shown by J. Moser <Mo75> (see also <AMM77>,

<MO80>).  

The N-body problem on the line with a harmonic interaction in addi-

tion to pair inverse-cube forces, see Sect. 2.1.3.3, was also introduced and

solved firstly in the quantal context <C71>. The equispaced character of

the corresponding spectrum motivated the conjecture <C71> that all mo-

tions of the corresponding classical problem be completely periodic with
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period T, see (2.1.3.3-17). The first proof of this result (see (2.1.3.3-18)),
and of the integrability of this model in the classical context, is due to

D. C. Khandekar and S. V. Lawande <KL72> for N = 3, and to M. Adler

<A76, A77> (see also <P76> and <OP76a>) for arbitrary N. The trans-

formation (2.1.3.3-22) relating the two classical problems with and with-

out harmonic interactions was discovered by A. M. Perelomov <P78>.

The connection among the equilibrium configuration of the classical N-

body problem of Sect. 2.1.3.3 and the zeros of the Hermite polynomial of

order N, see (2.1.3.3-37), was pointed out in <C77b>. This finding is par-

ticularly intriguing because Hermite polynomials are closely connected to

the eigenfunctions of the quantal harmonic oscillator problem. Properties
of the zeros of the classical polynomials such as (2.1.3.3-44) were origi-

nally discovered in the context of the study of integrable many-body

problems on the line via the technique of Sect 2.3, hence for a more de-

tailed discussion of this type of results see below the notes on Sects. 2.3

and 2.4 (see also the notes on Appendix C and Chap. 3).
The general solution of the functional equation (*), see (2.1.1-16),

was firstly exhibited in <C75> and proven in <C76a>. This result was

also proven, more or less simultaneously, by A.M. Perelomov <OP76b>

and by S. I. Pydkayko and A. M. Stepin <PS76>.

The integrability of the model treated in Sect. 2.1.5 was firstly noted

in <C75> and <CMR75>; its explicit solution was firstly given in

<OP76c>. The factorization property, entailing the formula (2.1.5-44) for

the asymptotic shifts of the scattering trajectories in the N -body case, is

due to P. P. Kulish <K77>. S. WoJciechowski introduced and solved

<W84> a generalization of this model, characterized by the additional

presence of an external exponential potential (see also Sect. 3.5 of

<P90>).
The model treated in Sect. 2.1.6 was introduced and treated in the

quantal context by B. Sutherland <S71, S72>, and is therefore generally
referred to as "Sutherland model."

For the (more or less explicit) solution of the model, see (2.1.4-32),
with elliptic interactions, see <K78>, <K80> and <GP99>.

The trick (2.1.7-27) to generate a model involving particles of two

different types was introduced in <C75>; in this same paper the possibil-

ity was indicated to generate, in an analogous manner, a model involving
different types of particles, starting from the integrable Hamiltonian

(2.1.4-32) and taking advantage of the periodicity of the Weierstrass

fanction p(zl a), co'). The behavior of the many-body system characterized

by the Hamiltonian (2.1.7-28) was investigated by M. A. Olshanetsky and

V-B. K. Rogov <OR78>.
The possibility described in Sect. 2.1.7 to generate Lax pairs com-

posed of matrices of size 2N, 4N, 8N and so on was pointed out in
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<C76b>; as indicated there, the same trick can be used as well in the

context ofthe more general integrable model of Sect. 2.1.4.

The results of Sect. 2.1.7 based on symmetrical duplications on the

(real) line can be given a group-theoretical significance in terms of root

systems associated with semisimple Lie algebras <OP76b>, <OP81>,
<P90>; this development yielded, over time, a large body of additional

findings by many contributors (we list here a few recent references:

<DBP98>, <BCS98>, <BCS99>, <BS99>, <BST99>, <KST99>,
<BMS2000>, <CFS2000>). The idea of duplications involving some kind

of complexification was introduced in <CF92> (but see also <C86b>,
<C86c>). The treatment of "infinite duplications" given in Sect. 2.1.7 is

patterned after those of <C93b> and <C97d>; in particular, the observa-

tion that led to (2.1.7-54) was originally made in <C93b>.

The "reduction7 trick used in Sect. 2.1.7 to get the model with near-

est-neighbor interactions, see (2.1.7-57,60), was taught to me by Simon

Ruijsenaars; perhaps it was discovered simultaneously by him and by Bill

Sutherland (see the parenthetical remark after eq. (2.1.17) of <R94a>).
This exactly treatable model was introduced by M. Toda <T67>, and is

therefore generally referred to as the "Toda moder' (sometimes as the

"Toda lattice": the nearest-neighbor character of the interaction suggest
that the more natural context for this model is to investigate nonlinear

lattices <T81>).
The ansatz (2.1.8-1,2) for a Lax pair (as well as the functional equa-

tion (**), see below), were introduced in <BC87>.

The fake Lax pair (2.1.9.1-12, 13) is taken from (Sect. 3.3 of)
<C84b>, and the fake Lax pair (2.1.9.1-1,14), as well as the Hamiltonian

(2.1.9.1-17), are taken from <CF2000a> (see also Sect. 2.4.5.4). For the

notion, and several examples, of fake pairs in the PDE context, see

<CN91>.

The solvable Newtonian equations of motion (2.1.10-1) were proba-
bly introduced for the first time in <C78a>. The remarkable nature of this

system has been underlined by attributing to it the status of "goldfish"
<C99b>.

The treatments of Sects. 2.1.10.1, 2.1.10.2 and especially 2.1.10.3 are

largely patterned after <CF2000a>.

The functional equation (**), see (2.1.8-19) and (2. 1. 11 - 1), as well as

the functional equation (2.1.11-23), were introduced, and solved, in

<BC87>, whose treatment is closely followed in Sect. 2.1.11; see also

<BC90> and <BB97b>, and Appendix B.

The RS model discussed in Sect. 2.1.12 was introduced by Simon

Ruijsenaars and Harald Schneider <RS86>; it has been extensively stud-

ied by many authors, and especially by S. Ruijsenaars, who has written

many original contributions, as well as review papers and lectures notes,
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some results reported here are not contained in <C78a>. The generalized
treatment of Sect. 2.3.6 and its subsections is new, except for Sect. 2.3.6.3

that follows <CF2000b>.

The treatment of Sect. 2.4, including all its subsections, is mainly
based on <C84b>, but some results were previously given, or are more

fully elaborated, in <C81a>, as well as <C80a>, <C80b>, <C80c>,
<BC81>, <C81b>, <C81c>, <C82a>, <C83a>, <C83b>, <C83c>, <D83>,
<C84a>, <C85a>, <C85c>, <C85d>, <CF85>, <D85>, <C86b>, <Ca86>,
<C88>, <BCP90>.

The main idea on which the treatment of Sect. 2.5 is based was intro-

duced in <C85e> and <C86a>; the results in Sect. 2.5 are mostly new.
Various portions of the material treated in Chap. 2 have been cov-

ered in review papers, lecture notes, conference proceedings and books,
see for instance <C78b>, <C80a>, <C81c>, <C82c>, <C85b>, <C86b>,
<C92>, <C95a>, <C97d>, <FG76>, <H92>, <Mo80>, <OP81>, <P90>,
<T81>.
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3 N-BODY PROBLEMS TREATABLE VIA

TECHNIQUES OF EXACT LAGRANGL&N

INTERPOLATION IN SPACES OF ONE OR

MORE DIMENSIONS

In the first part of Chap. 3 we describe a version of the (exact) Lagran-
gian interpolation technique, which is more general than that outlined

above (see Sect. 2.4.2) on two counts: it is not restricted to a one-

dimensional environment (namely, it is not limited to considering func-

tions of a single, scalar, variable), and it is not restricted to a polynomial
fanctional. space (namely, it is not limited to using polynomials as basic

building blocks). Then, in the second part of Chap. 3, we indicate how

this generalized technique of interpolation can be utilized to manufacture

solvable N-body problems in spaces of one or more dimensions: we dis-

cuss a general technique to do so, including a few variations on this

theme, and we exhibit several examples.
These techniques of (exact) Lagrangian interpolation can also be ex-

ploited to identify remarkable matrices and related identities and to treat

certain problems in numerical analysis (for instance to solve numerically
eigenvalue problems in S -dimensional space); moreover, certain findings
closely connected with these developments are instrumental to uncover

and to prove certain theorems in elementary geometry. A (terse) survey of

these results is confined to Appendices D, E and F.

3.1 Generalized formulation of Lagrangian interpolation,
in spaces of arbitrary dimensions

Notation. We denote by a superimposed arrow vectors in S -dimensional

space, say T : in particular, for S = 2, F =- (x, y) is a 2 -vector (the envi-

ronment is the plane), for S = 3, F -= (x, y, z) is a 3 -vector (the environment

is the ordinary space we inhabit). Let N be a positive integer, and s,, (F),

n = 1, 2,..., N, be N functions; we assume they are assigned once and for
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all (although we retain the option to choose them, as well as N, at our

convenience), and we refer to them as "seeds". Let F, n = 1, 2,..., N, be N

different points in S -dimensional space, F if n:p,- rn; in the following

we refer to them as "nodes".

As we will soon see, it is moreover convenient to introduce N-

vectors respectively (N x N) -matrices; these quantities are denoted by un-

derlined lower-case respectively upper-case letters, say H for the N -

vector whose N components are the N numbers u, n = 1, 2,..., N, respec-

tively U for the (N x N) -matrix whose N' elements are the N2 numbers

Unm I n, m = 1, 2,..., N:

a)H=(U19U29-9Un) I

"

U11 U12 UIN

U (lb)

YNI UN2 UAWj

The N components of an N -vector
I
as well as the N' elements of an

(N x N) -matrix, might themselves be S -vectors. For instance we use be-

low the convenient notation

F = (F1 IF" ... I FIV) (2)

to indicate the N -vector whose N components are the N nodes

F., n = 1, 2,..., N. Of course F is both an S -vector-valued N -vector

(namely, an N -vector whose N components are S -vectors) and an N -

vector-valued S -vector (namely, an S -vector whose S components are

N -vectors). Likewise for (N x N) -matrices: for instance in the following
it will be convenient to use the diagonal (Arx N) -matrix whose N diago-
nal elements are the N nodes,

, =_ diag(Fn; n = 1, 2,..., N), kn = 9,. Fn (3)

Again,  is both an s -vector-valued (N x N) -matrix (an (N x N) -matrix

whose elements are S -vectors; of course in this particular case, the off-

diagonal elements all vanish), and a (diagonal) (N x N) -matfix-valued s -

vector (an S -vector whose S components are (N x N) -matrices; in this

particular case, diagonal (Nx N) -matrices).
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Let us emphasize that the choices of the N seeds s,, (T) and of the N

nodes i-,, remain our privilege -- choices to be done, in the context of this

treatment, once and for all; as indeed the choice of the positive integer
N > 1 -- and that we assume that these choices are done independently
(namely, the N seeds S. (T) do not depend on the N nodes F.). But we
hereafter assume that these choices guarantee that the (N x N) -

determinant

S1 (F )S2(j;1) ... S, 0; 

(F2) SI(F2) ... S" (F, )
'471  F2 V- FAr det [Sn (Fm

S1
(4)

SI(FIV) SAF") ... S'(FA

does not vanish:

A(FI, F2,..., F,,)#0 . (5)

Let now f, n = 1, 2,..., N, be N given numbers. The problem of (gen-

eralized) Lagrangian interpolation is then formulated as follows: tofind a
fiinction f(F) ofthe S -vector F thatpossesses thefollowing two proper-

ties: (i) f(F) is a linear superposition (with constant, namely F -

independent, coefficients) ofthe N seeds s,, (F),

N

f(F) = 1: h. s. (F); (6)
M=1

(ii) the N values that f(F) takes at the N nodes F,, coincide with the

N assigned values f

f(F,,) = f, ,
n = 1, 2,..., N (7)

It is clear that this problem always admits one, and only one, solution.

Indeed setting FF,, in (6) and using (7) one gets

IV

h. s. (Fn) = f, n = 1, 2,..., N (8)

and the condition (5) guarantees that this system of N linear equations
for the N unknowns hn admits one and only one solution.
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This solution could be easily written out, but we prefer to display di-

rectly an expression for the "interpolating fanction7 f(T) characterized

by (6) and (7). To this end we introduce N "interpolational functions"

q(n) (FI:r) defined as fOllOWS: q(n)(j;l:r) is thefunction that obtains byfirst

replacing, in the n -th line of the determinant A r, see (4), the node Fn

with the variable F, and by then dividing by the determinant Ar itseo'.-

(n) (Fl:r)=A(j;q n-I I';, j;" X FN

S, (j;I )... SAI 071 S, (F S, (j;I

S1 (j;n-1 SN( n-1) SI( n-1) SN(j;n-I
=

S1 (7) * " SN (7) / SI (7n) "*SN(Fn) * (9)

SI (j;n+l) SIV0n+I) SI (j;n+1) ... SIV n+I)

S, (r-,, )... SV (F" S, (FN) ... SV (j;,v

The notation q
(') (F I:r) is used to indicate that these interpolational functions of the

(S -vector) variable F also depend, as implied by their definition, on the choice ofthe

N nodes Fn, whose N values are encoded in the S -vector-valued N -vector F. Let

the diligent reader now pose and ponder on the different significance of the variable

F and of the N nodes F
,
whose values are encoded in the S -vector-valued N -

vector F and which enter, as it were parametrically, in the definition of the N inter-

polational functions q
( ) (F j:r) ,

see (9). As entailed by this definition, these N inter-

polational functions q() (F I:r) also depend, of course, on the choice of the set of seeds

fs,, (F); n = 1, 2,..., NJ. In the following the explicit indication of the dependence on F

is sometimes omitted, namely we sometimes write q(n) (F) in place of q() (71:r).

It is now clear that the N functions q(n)(FIDr possess the following

two properties: (i) q
(n) (F I:r) is a linear combination, with constant (i.e., F -

independent) coefficients, ofthe N seeds s.

IV

r)=E s.(j;) c., n=l,...,N; (10)q :
-,

M=1
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(h) qI'I (F j:r) vanishes for 7 = F with m # n, and takes the value unity at

7 = F,

(n) (j;q . n.

Hence an explicit expression of the interpolating function f(F), char-

acterized by (6) and (7), reads

IV IV

(n) (j;l =L (n)f(F)=J: f, q :r) f(Fn) q (12)
K=1 n=1

The standard formulas of Lagrangian polynomial interpolation, see

Sect. 2.4.2, obtain from those given above for S = 1 (one-dimensional
space) and for the following choice ofthe N seeds:

SnW = Xn-I
,

n = 1, 2,..., N . (13)

In this special case the determinant A -= A(x,, x,,..., x,), see (1), becomes

the Yandermonde determinant,

A(xj , -9 XN)  det[ (xn)m-l 1 5 (14a)

and it admits therefore the factorized representation

A(x ..... XI) = II(Xn - Xm) ; (14b)
 ,-I;n>m

hence the "interpolational functions" q
(n) (xIX),see (9), become the poly-

nomials (2.4.2-5) (of degree N - 1):

N

(n) (15)(n)(XIXq
-

= qAr-IW = fj [(X - Xn) / (Xn - XJI '

m=l,m#n

Exercise 3.1-1. Show that any redefinition of the seeds via a linear (invertible)
transformation,

M

Wn anm S. V) (16a)
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where the N' coefficients a,,. are constant (F -independent) but otherwise arbitrary

except for the condition that the (N x N) -matrix a,,. be invertible, namely

det [a,,. I # 0
,

(16b)

leads to the same set of interpolational functions q
(n) (j; ID

3.1.1 Finite-dimensional representation
of the operator of differentiation

Let us now assume that the set of N seeds s" (T) is closed under the op-

eration of (partial) differentiation, namely that the S partial derivatives

of every seed can be expressed as a linear superposition (with constant

coefficients) ofthe seeds themselves:

A'

M=1

Of course here, and always below, ' _=Calax, alo'y....
) is the gradient dif-

ferential operator in S -dimensional space.

Note that, via this formula, we have introduced the (constant, i.e. F -independent)

S -vector-valued (N x N) -matrix ' , whose N2matrix elements are the N
2
constant

S -vectors %. Clearly in order for (1) to hold it is necessary (but not sufficient) that

the seeds be constructed out of elementary functions, i.e. (integer) powers and expo-

nentials. For instance, for S = 2, the set of (4) seeds

k' V)I = f" X, Y, X
, 1 (2)

possess the property to be closed under differentiation, as well as the set of 8 seeds

IS, (F)l = fl, X, Y, X2 , exp(ar + by), sinh(ax + by),

(ac +,6y) sinh(ax + by), (ac +,By) cosh(ax + by)l , (3)
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while the set of 5 seeds

ISn V)I =fj'X'X'X2'XY,X2.Y21 (4)

do not.

Exercise 3.13-1. Prove these statements, and compute ' ., see (1), for the sets

(2) and (3).

Let us however emphasize that our treatment can be extended to the case when

the set of seeds is not closed under differentiation, as we show below towards the end

of Sect. 3.1.1.

It is now clear that the following formula holds:

N

q(n) (i:IDr q()(Fj:r)h.(:r), n=l,...,N, (5)
M=1

of course with q
(n) (FI:r) defined by (3.1-9) and with b. (:r) the (mn) Ah

element of the S -vector valued constant (N x N) -matrix br. Note that

the property of b to be constant refers to its independence from the vari-

able 7; b r depends instead, of course, on the choice of the AT seeds

Sn(F) and, as our notation emphasizes (and in contrast to ' , see (1)) on

the N nodes F
,
indeed there clearly holds the (important) formula

'5n. r=' q
(m) (7,, J:r) -' q(m) r) (6)(FI:

j; "': j;

Occasionally, in the following, we omit to indicate explicitly the depend-
ence of R_r on F, namely we write 6 instead of br.

Theproof of (6) is immediate: set F = F', in (5) (but be carefal: before doing this

you should rename the dummy summation index in the right hand side 1) and use

(3. 1-11). Then (for notational convenience) exchange the two indices n and m

Exercise 3.1.1-2. Compute the matrices f) r for the"sets (2) and (3).
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It is now clear that the S components of the (N x N)-matrix-valued
S -vector b (:r) provide faithful (N x N) -matrix representations of the op-

erators of partial differentiation in S -dimensional space, in the following
sense. Let us associate to every function that admits the representation
(3.1-6) (to which our consideration is hereafter restricted) the N -vector

f ,
whose N components are the N values, see (3.1-7), that the function

f(F) takes at the N nodes F
,

f (fllf2l ... IM = (AFI), AFI), ... I AFI)) (7)

It is then easily seen that there holds the N -vector formula

f, == D,, (:r) f (8a)

which features, in the left hand side, the N -vector f associated to the

function f
.,
(F) af(F) / ax (i.e., to the partial derivative, with respect to the

x -component ofthe S -vector F, of the function f(F)

=V (FI), f, (F2), ...I fx (FID I (8b)f
X X

and, in the right hand side, the (NxN)-matrix Dx(:r) (i.e., the x-

component of the (N x N) -matrix-valued S -vector br, see (6)), acting

on the N -vector f .
Here of course x stands for any component ofthe S -

vector F, indeed a more general version of (8) reads as follows:

V4r f , (9a)

or equivalently (see (3.1-4))

'V Ar

'mF)] r f(F.), n NI] f),,. r = (9b)
n -I M=1

The proofofthese equations is inunediate, since (3.1-12) entails

'V

(10)

hence, via (5),
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Vf(F) f. qI'I (FI:r) b-,. (:r)
M=1 e=1

Setting now FF ,
and using (3. 1 -11), there obtains (9b), which is thereby proven.

One can then state the following

Proposition 3.1.1-3. Assume that there hold the following partial dif-

ferential equation:

Af(T)=0 , (12)

with the linear differential operator A defined, in self-evident notation, by
the formula

A a,,,,, (F) a"+16+"+"*l aXaay#azr... (13)

where a,,8,,Y,...are of course nonnegative integers. There then also holds

the N -vector formula

Af =0
, (14)

with the N -vectorf defined by (7) and the (N x N) -matrix A defined by

the formula (see (14))

A= 1, a,,,, CR) [ Dx r ] a [ DY 16 [ D., (:r) (15)

obtained by applying to the operator A, see (13), the substitution rule

F => i?, a / ax => Dx (:r), a / cy =:> DY (:r),... . (16)

Here we are of course using the definition (3.1-3) of the (N x N) -

(diagonal) matrix-valued S -vector k, as well as the definition (6) (see

also (9)) of the (N x N)-matrix-valued S -vector b =) r (and of course

D,, respectively DY are the x -component respectively the y -component

ofthe S -vector b
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Of course the validity of this Proposition 3. L 1-3. is predicated upon the fact that

f (F) be a linear combination (with constant coefficients) of the N seeds s,, (F) (i.e.,

that it admit the representation (3.1-3)), and moreover that the set of seeds S. (7) be

closed under differentiation. Note that this entails that all functions obtained from

f(F) by (multiple) differentiation are also expressible as linear combinations (with

constant coefficients) of the N seeds, hence they also admit representations of type

(3.1-6). This clearly entails that (9) can be iterated, namely that there also holds the

more general formula (in self-evident notation)

(ga+,6+r+..- f(j;)IaXa ' '6 azr...G  T=T,, DJE) ]a [ DY r 1'6 [ D- r ]--.f J,,,(17)

where the notation f!i In in the right hand side denotes of course the n -th component

ofthe N -vector u
.

The proofofProposition 3. L 1-3. is then immediate: set 7 = T'
,

in (12) with (13)

and use (3.1-12) and (3.1-3) to get (14) with (15).

Remark 3.1.1-4. The commutativity of differentiations with respect to different

variables which may be expressed, say, as the operator identity

[ a "ay 1=0 , (18)

entails that a corresponding formula, say,

[ DDY I= 0
, (19)

hold for the (N x N) -matrices D,DY .
Here of course x and y stand for any two

components ofthe S -vector F.

Exercise 3.1.1-5. Check the validity of this formula using the solutions of Exer-

cise 3.1.1-2.

Clearly Proposition 3.1.1-3 entails that, to every partial differential
equation ofthe generalform (12) with (13) satisfied by ajunction admit-

ting the representation (3.1-6), there corresponds an N -vector equation,

immediately obtainable via the substitution rule

F=>'k
, , f(j;)=>f . (20)

This also entails the following
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Corollary 3.1.1-6. If the differential operator A, see (13), possesses

the eigenvalue a,

A f
C-) (F) = a f

(a) (7) (21)

and the corresponding eigenfunction f( ) (F) belongs to the functional

space spanned by the N seeds (namely, it admits the representation (3. 1 -

6)), then the (N x N) -matrix A, see (15), also possesses the same eigen-

value a,

A f
(a)
=af

(a) (22)

and the corresponding eigenvector is related to the eigenfunction f(a) (F)

by (7),

f
(a)

= (f(a) (F1), f(a) (F (23)

It is instructive to consider the relationships of these results with those

of Sect. 2.4.

In the one-dimensional case (S = 1 ), and for the choice (3.1-13) of

seeds, the (N x N) -matrix

b (E) =- D,, =- F) (24)

has the explicit representation

.b=B D B-1
, (25)

with the (N x N) -matrices B respectively 2 defined by (2.4.1-4b) respec-

tively (2.4.1-2) in terms ofthe nodes Fn =- x,,; likewise

 =X
, (26)

with the (N x N) -matrix X defined by (2.4. 1 - 1).

Proofs. The validity of (26) is an immediate consequence of the definitions (3.1-

3) and (2.4. 1 - 1).
As for (25), it follows from (6) and from the expression (3.1-15) of q(") (x). In-

Ar-1

deed this entails
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N N

Wdq,-,(x)ldx= I (x,,-x,)' 11 [(X-Xj)/(X.-XA (27)
 =I,t#n j=Ij#n,i

namely, via (6) and (24),

N Ar

1: (Xn-XX1 11 [Cxm-xf)I(Xn-xj)l (28)
t=1,t#n j=l,j#n, 

Hence, for n = m,

Ar

F)nn= Y (x,,-x,)-'=dn=Dnn (29)
t=1,f#n

(see (2.4.1-2,3,5)), while for n:?-, m

'V

F)
--

= (X,, - X. )
-'

11 I(Xm - Xj ) / (Xn - Xj )1 11 (30a)

B. = bn' (X. Xn)
-1

b,,, (30b)

bnm = bnD. bM' (30c)

To get (30a) from (28) we noted that the product in the right hand side of (28) van-

ishes unless  = in ; to get (30b) we used the defmition (2.4.1-4a) of b.
,
while to get

(30c) we exchanged the indices n and m and we used the definition (2.4.1-2) of D.

(with n#- m).
It is now clear, via the definition (2.4.1-4) of the diagonal (N x N) -matrix B

,

that (29) and (30c) coincide with (25), which is thereby proven.

Since the (NxN) -matrices B and X obviously commute (they are

both diagonal!), the formulas of Proposition 3.1.1-3, see (12), (13), (14)
and (15), can now be rewritten, using (24), (25) and (26), as follows:

A f(x)=O , (31)

A=J] a,,(x) (dldx)' (32)
a=O

v

Af=O (33)

v

D' (34)A=Y a,,,CX
-0
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V

I

f=B-f (35)

It is thus seen that, in the (one-dimensional) case of standard Lagrangian

(polynominal) interpolation, an equivalent transformation rule from linear

differential equations to N -vector equations involves the replacement

X=:>X, d1dr=:>:Dt_, f(x)=>B-l f , (36)

with the matrices X and D defined as in Sect. 2.4, see (2.4.1-1) and

(2.4.1-2).

The advantage of the rule (36) over the (one-dimensional version ofthe) rule (20)
resides in the simpler expression of the (N x N) -matrix D in terms of the N nodes

x,,, see (2.4.1-2), as compared to the analogous expression of the (N x N) -matrix

F), see (24), in terms of the N nodes x,,, see (25) with (2.4.1-4).

As we will see in some of the examples given below, there are also other cases in

which a similarity transformation, analogous to (25), generated by a diagonal matrix,
is instrumental in yielding a convenient simplification.

Before ending Sect. 3.1.1 two important points must be made, and a

useful (final) remark.

To derive the results reported above (in Sect. 3.1.1) we assumed the

functional space spanned by the N seeds S. V) to be closed under differ-

entiation, see (1). It is important to note that a (finite-dimensional)
(NxN)-maffix representation of the operator of differentiation can be

usefully introduced even if this condition does not hold, and that even in

such a case some formulas remain valid precisely as they have been

written above, while others remain valid after appropriate modifications,

and others are not valid at all. It is indeed clear that the crucial formula

(9) (of course, in both its avatars, (9a) and (9b)) remains valid, together
with the fundamental definition (6) of  r.

Proof Differentiation of (3.1-12) yields

N

f(i:) =I fjq(m)(Fj:r) (37)
M=1
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and by setting in this formula F = F,, one obtains precisely (9) with (6). (Note that we

simply reproduced here the proof of (9) given above, which indeed does not require
the set of seeds to be closed under differentiation).

On the other hand now (11) ceases to hold (except at the nodes, see

(9)) and (17) must be modified to read

a+,6+r f(i;ya
a ay,6 a y

...] ,=,=D(',6'-')r f (38)a X z
Xyz...

[

with the following definition of the (N x N) -matrix Dx('Y .r-) rz

[D (a,8r-) r I = aa+fl+r
q

(n) (i;l:r)IaxC'

ay fl az r... (39)
_XYZ  r

=r.
-

Proof As above, from (3.1-9) we get, by multiple differentiation,

Ar

aa+,8+r f(i;)1aXa  Yfl aZr ... =
a+,8+rx... -) (71: (40)f. [a q( r)1axcay"az,

and by setting F = F,, in this formula we get (38) with (39). Of course this formula,

(38) with (39), is as well valid in the case treated above (of a seed space closed under

differentiation), but in that case there holds the additional (N x N) -matrix formula

D,('Y  *') (:r) Dx ]' [ DY r ]6 [ D. r (41)Xyz
r

where the (integer) exponents a,fi, r,. in the right hand side indicate of course ar-

bitrary (positive integer) powers. Note that in this formula, (41), the ordering of the

(N x N) -matrices in the right hand side is irrelevant, since these matrices commute,

see (19). On the other hand (19) does not necessarily hold if the seed space is not

closed under differentiation, but it must be replaced by, say,

DC' 18) CF)=DCI6')CE) (42)xy - YX

and by analogous, more general, formulas that are obvious consequences of the defi-

nition (39) together with the commutativity of different differential operators.
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It is also obvious that Proposition 3.1.1-3 and Corollary 3.1.1-6 re-

main valid even if the seed space is not closed under differentiation, pro-

vided the definition of the (N x N) -matrix 4 is modified to read (instead
of (15))

rA a,,,,,,0 D)(9 (43)
CeAr

of course with D (F) defined by (39). Clearly this formula, (43), re-

duces to (16) whenever (41) holds. Of course, for the validity ofProposi-
tion 3.1.1-3 (or Corollary 3.1.1-6), modified as we just indicated, it re-

mains essential that the function f(F) that satisfies (12) (or the function

f(a) (F) that satisfies (21)) live in the functional space spanned by the N

seeds s,, (7), namely admit the fundamental representation (3.1-6).

This completes our discussion of the notation, and properties, of fi-

nite-dimensional (N x N) -matrix representations of the operators of dif-

ferentiation in the (more general) context of N -dimensional seed spaces

which are not closed under differentiation.

The second observation relevant to the introduction of ftite-

dimensional (N x N) -matrix representations of the differential operator

focuses on the following special form ofthe interpolational functions:

JV

q (44a)

where the N functions V, (F) are arbitrary, except for the crucial condi-

tion to vanish at the origin,

 on (6) -= Vn O F
= 6

= 0
1 (44b)

which is clearly sufficient to guarantee the fundamental property (3. 1 -11)
(n) j;lr,see (44), hence validity ofof these interpolational functions q ( D

(3.1-12) with (3.1-7), namely validity of the standard interpolation for-

mula

(n) (TIOf(')=Y, f(n) q (45)
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Before proceeding to investigate the finite-dimensional (N x N) -matrix representa-

tions of the differential operator ' entailed by the interpolation formula (45) with

(44), let us pause to inte ect two remarks. In the first place it must be noted that, ex-

cept for some very special choices of the seeds s,, (7) and correspondingly of the

functions (o, (F) ,
see (44), the interpolation formula (45) is generally inconsistent

with the fundamental representation (3.1-6) of f(F) in terms of the seeds s,, (F), if

one requests that the seeds s,, (T) be independent ofthe (choice of the) nodes F.. Note

that, while the assumption that the seeds s,, (F) are independent ofthe (choice of the)

nodes F,, is perhaps implied by our notation, it is in fact not required for the validity
of the results reported above. But, as we shall see, it plays a crucial role when these

findings are used to manufacture many-body problems amenable to exact treatments,
see below.

Secondly, let us emphasize that in the prototypical case ofpolynomial Lagrangian
interpolation in one-dimensional space, corresponding to the choice of seeds (3.1-13),
the interpolational. polynomials q

(n)
(x) do indeed take the factorized form (44), see

(3.1-15).

Let us now compute the (N x N) -matrix representation of the differ-

ential operator ' that corresponds, of course via (6), to the interpolational
functions (44). It reads:

r

(0.Al / V. (F. - F.) I , (46a)

,#,, = fin r = F1 'PI (Fn - FI) - (46b)
e=l,e#n

Here of course

' (0, (j;" - j;,) =  V- (0, (7) IT = Fn - j;I
' (47a)

'4' (6) v) (47b)
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Proof From (44a), by logarithmic differentiation,

' q(')(Fj:r)-=
" N

(o,, (Fn - F,,) ],(48a)E 1114,v -FA /  0' (F. - j;e) 11P

hence, for

J:r) = I F,) (Ot (F,, - Fe) (48b)
e=I'&M

while, for F = in with n:# m,

(M)V q l:r)=I[ On(6)NOn(Fm-Fn)I fj [(Oi(j;n t ) IV (Fm (48c)
1=1,1#n,m

since only the term with n contributes to the sum in the right hand side of (48a),

due to (44b). Clearly (48b) and (48c) yield, via (6), precisely (46), which is thereby

proven.

Clearly via the definition

(:r);n=I,...,N], Bn. r r (49)Ar=d'agl,#n =gnmfln0

there holds the formula

v

bo=xo 20 kol-1 (50a)

with

N

= t5nm q0I (Fn - FA / Vi (;n - FI)r)]nm
 =I,&n

i  
-

+ (1 - gnm) On (0)] 1 (Pm (Fn - Fm) (50b)

v

Note that both the (N x N) -matrices p(:r), see (50b), and :2r, see

(46), become diagonal if ' qpnfl (in addition to (pn(F), see (44b)) van-

ishes at i: = o
,
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(51)

Exercise 3.1.1-7. Repeat the treatment just given, and derive the formula analo-

gous to (46), in the more general case when (44a) is replaced by

V

I D I (OnAF j;q I [(Ont 07r)
n (52a)

e=l,t#n

which features now N2 functions V, (F), arbitrary except for the crucial condition to

vanish at the origin,

(0, (6) = (0, (7) 1j; 6
=0

, (52b)

which is, again, clearly sufficient to guarantee the fundamental property (3.1-11),
hence validity of the representation (3.1-12).

We end Sect. 3. 1.1 with the following

Remark 3.1.1-8. Let the (N x N) -matrix &DT be the fmite-

dimensional (N x N) -matrix representation of the differential operator ' 

associated with the set of seeds f s,, (F), n = 1, 2,..., N 1. Consider then the set

ofseeds

'nR
'

V)=WO Sn01 n=1,2,...,N (53a)

where w(F) is an arbitrary "weight functioe', only restricted by the con-

dition not to vanish at any ofthe nodes,

w(F,)#--O, n=1,2,...,N (53b)

to avoid violating the rale (3.1-5). Then the (N x N) -matrix r which

provides the (N x N) -matrix representation of the differential operator ' 

associated with the set of seeds I W, (7), n = N I and with the (same!) set

ofnodes Fn is given by the following simple rule:

z

RO-ECE)
, (54)
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with the two diagonal (hence commuting) (N x N) -matrices ffr and

P F) defined by the following simple rules:Cr.

W(F) diag [w(F)], W. r = 5,,. w(F,,) (55)

diagf (56a)[NFA 1 W(Fn) 1 3 nm

=: (5nm [ 'N n) I IW(Fn)

where of course

W(Fn) =1 'N7) I IT =rn (56b)

Proof Let the interpolational functions q(n) (j;l:r) respectively  (n) (FI:r) be asso-

ciated with the set of seeds I Sn (F), n = N I respectively f n = N I .
see

(53). There then follows immediately, from the definition (3.1-6), that they are related

as follows:

 (n) (FI:r) = [w(F) / w(Fn)] q(n) (Fj:r) (57)

Hence, by logarithmic differentiation,

j  (n) (j;IF) (FIF) ' q(') (Fl:r)] / q(n) (71:r) + [ ' w(F) w(F) (58)

entailing, via (57),

n) W(n) (j jr)(n) (i:l:)r  Iq(n) (FIF) W W( nA + f I ' W(F) I / W(j; (59)

It is then clear, via (3.1-11) (which of course holds as well for the interpolational

functions  (n) (71:r) ), that there hold the following relations:

(n) (i: =' q (n) (i;
n ) ] 1W(F

n ID n ID + (60a)

(n) (F (n) JE) [w(j; )/w(j;,,)], n# m (60b)

These relations, via (6), entail (54) (with (55) and (56)), which is thereby proven.

329



3.1.2 Examples

In the following Sects. 3.1.2.1, 3.1.2.2 respectively 3.1.2.3 we exhibit the

expressions of the (N x N) -matrices that provide, according to the treat-

ment of Sect. 3. 1. 1, finite-dimensional (N x N) -matrix representations of

the operators of differentiation. These examples correspond to specific
choices for the dimensionality S of ambient space (we limit our consid-

eration to S = 1, S = 2 respectively S = 3), and, in each of these cases, to

specific choices for the number N of nodes (which of course coincides

with the dimensionality N of the fanctional seed space), and to specific
identifications ofthe N seeds.

3.1.2.1 One-dimensional space (S = 1)

In Sect. 3.1.2.1 we focus on one-dimensional ambient space (S = 1),
hence denote the nodes by x, and the independent variable by x. In the

preceding Sect. 3. 1. 1 we used, for the specific (one-dimensional) case of

polynomial Lagrangian interpolation, the notation see (3.1.1-30), for

the (one-dimensional) version ofthe (N x N) -matrix r, to avoid confu-

sion with the (N x N) -matrix D introduced in Sect. 2.4. 1, see (2.4.1-2)
and (3.1.1-25). In Sect. 3.1.2.1 we stick generally to the notation D _= PUx

for the one-dimensional version of the (N x N) -matrix  r, except when

we consider an example (see the next-to-last one treated below) that in-

cludes the standard case of (one-dimensional) Lagrangian (polynomial!)
interpolation as a subcase.

We start from an elementary example:

N = 2; s, (x) = exp(x), s, (x) = exp(-x) . (1)

In this case the seed space is clearly closed under differentiation. The

corresponding expression of the (2 x 2) -matrix DUx providing a (2 x 2) -

matrix representation of the differential operator dldx, see (3.1.1-6),
reads:

"cotgh(x, - x,) - 1 / sinh(x, - x,)"

2ux = (2)

j /sinh(x, - x,) - cotgh(xl - X2)
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Proof

A(XI 9 X2)  exp(x,) exp(-X,)
2 sinh(x, - x2) (3)

exp(X2) eXP(-X2)1 =

q(1) (xlx) sinh(x -x2) / Snh(XI - X2) (4a)

q(2) (xlx)=-sinh(x-x,)/sinh(x,-X2) ; (4b)

q(1) (xlx) = cosh(x - X2) / sinh(xl - X2) (5a)

q(2) (XIX) =-cosh(x-x,)/sinh(x,-x,) (5b)
X

Here (3) has been obtained from the definition (3.1-4) with (1); (4) from (3) via the

definition (3.1-9); (5) by differentiating (4), and it yields directly (2) via (3-1.1-6).

In the functional space spanned by the seeds (1) the operator A=dldx has the

eigenvalues 1 :

(d / dx) exp(x) = exp(x) (6)

Hence Corollary 3.1.1-6 entails that the matrix :LUx ,
see (2), also have these eigen-

values, +1 respectively -1, with eigenvectors (exp(x,),exp(X2)) respectively

(eXp(_XI),eXP(_x2)),

Exercise 3.1.2-1. Check this.

Exercise 3.1.2-2. Check explicitly that the choice of seeds

s,(x)=aexp(x)+bexp(-x),s,(x)=cexp(x)+dexp(-x) ,
(7)

with a,b,c,d arbitrary constants (ad#- bc), yields the same (2 x 2) -matrix D(x), see

(2), indeed the same interpolational functions q
(') (xlx) ,

see (5) (see Exercise 3. 1 -1).

Next, we consider the following choice of seeds:

N = 3; s, (x) = 1, S2W =exp(x), s3 (x) =exp(-x) .
(8)

Also in this case the seed space is closed under differentiation. The corre-

sponding Q x 3) -matrix RUx reads:

PUx = (A/ 2)
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cosh(x,-x,)-cosh(x,-x,) -I+cosh(x,-x,) 1-cosh(x, -x,)

1 - cosh(x, - x, ) cosh(x, - X3 ) - cosh(x, - x,) - I + cosh(x, - x3)

,-
1 + cosh(x, - x,) I - cosh(x, - x,) cosh(x, - x,) - cosh(x, - X3), 

(9)

(A / 2) = sinh ft, - x,) + sinh (Y2 - x3 ) + sinh (x3-x,). (10a)

Proof

A(XIIX2,X3)= eXP(XI) exp(x,) eXP(X3) (10b)

exp(-x,) eXP(-X2) eXP(-X3)

A(XI I X2 I X3) = 2[sinh(x, - X2) + sinh(X2 - x,) + sinh(x3 - xj)]

q(1)(XI-X) = ISnh(X-X2)+Snh(X2 -x3)+Snh(x3 _x)]

/ [ sinh(x, - x,) + sinh(x, - x,) + sinh(x, - x,)

q
(1) (xj: ) = [cosh(x - X2) -cosh(x - x3) IX

/[ Snh(x,-x2)+Sinh(X2-x3)+Sinh(X3-xl) (12)

q(1) (xl Ix) = [cosh(x, - x,) - cosh(x, - x3) I
X -

[ S"h(xI - X2 ) + sinh(X2 - X3 ) + sinh(X3 - X1 (13)

q(')(x,ix)=[I-cosh(x2-x3)]I[sinh(xl-x2)+sinh(x2-x3)+sinh(x3-xl)]. (14)X

We trust the derivation of these formulas to be self-evident, as well as the derivation

of (9) with (10) from these formulas and the analogous ones obtainable from these by
appropriate permutations ofthe relevant indices.

Exercise 3. 1. 2.1-3. Formulate and solve the analog (with (8) in place of (1)) of

Exercise 3.1.2.1-2.

The expressions (2) and (9) of DUx are clearly translation-invariant, namely

they do not change if all the nodes Xn undergo a common shiftq xn --> x,, + xO.

Exercise 3-1.2.1-4. Prove that this property also holds for the following two

choices ofseeds, which generalize (1) and (8):
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N = 2 M; s. (x) =exp(a, x), s.,m (x) =exp(-a.x), m M ; (15a)

N==2M+I; s,(x)=I,s.+,(x)=:exp(a,,,x),s.+m+,(x)=exp(-a.x), m=l,...,M.(l5b)

Here M is an arbitrary positive integer, and the M constants a. are also arbitrary

except for the requirement that they be all different, a., # a if MI M2. Hint: note

the invariance of A(x,,...,x,), see (3.1-1), under a common shift of the nodes

Xn)x-n- xn+x02 n=l,...,N.

Exercise 3.1.2.1-5. Prove that the condition

IV

bn = 0 (16)
n=1

is necessary and sufficient to guarantee translation-invariance (under xn -+ Xn + XO

of the (N x N) -matrix DUx associated with the following set of seeds (which in-

cludes all those treated above):

s
n
(x) = exp (bn x), n = N, (bn # b, if n # m) . (17)

Hint: same as above, see Exercise 3.1.2.1-4.

Exercise 3.1.2.1-6. Determine the eigenvalues and eigenvectors of the (N x N) -

matrix :2( ) associated with the set of seeds (17). Hint: see Corollary 3. 1. 1-6 and

Exercise 3.1.2-1.

Let us now consider another simple choice of seeds:

N=2; s,(x)=x, s,(x)=llx. (18)

Note that this set is not closed under differentiation. As explained in the

last part of Sect. 3. 1.1 we can nevertheless associate a matrix Dox to this

set. It reads:

+ X2=((XI2 2) / X, -2x,)1 2 I(X2 2

DUx
2

-X2 1

(X2 +X2)IX
1 2)
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Proof

-

X, X2 2
_ 2)/ (x x ) , (20)'6L(xI2X2): X2 1 2

1/xI VX2 =(X;
(1)(XIX)=[(X2_X22)1(XJ2_ 2)](q X2 XI X) (21)

(XIX)=[l+(X2lX2)] / 2_X2)(1)
_

XI (X1 (22)qx - 2 2

(1)
(xj Ix 2 2)/[ ( 2_ 2)] 3)=(xj (23a)qX I

+X2 XI X1 X2

(1)
qx (X2 I-X) = 2x, / (x,2 - x22) (23b)

Likewise, evaluate q
(2) (xlx), q(2) (XIX) and q

(2) (x,, Ix), n1,2 Then use (3.1.1-6).X X

Exercise 3.1.2.1-7. The following formulas are clearly true:

f"(x)=,, f(x)=x , (24)

x
2

ff(x) =1, f(x)=-IIX (25)

xf'(x)=f(x), f(x)=x (26a)

xf'(x)=-f(x), f(x)=llx (26b)

where the primes denote of course differentiations. Note that in all these cases the

functions Ax) are in the functional space spanned by the seeds (18), and that the two

equations (26) entail that the operator A=xdldx in this functional space has the ei-

genvalues +1 respectively -1 with eigenfunctions x respectively l1x. Using the

(2 x 2) -matrix PUx ,
see (19), write the 2 -vector equations that correspond (recall

Proposition 3.1.1-3) to these formulas, (24), (25) and (26), and check explicitly their

vahdity.

Exercise 3.1.2.1-8. Repeat the analysis for the set of seeds

N=3; s,(x)=l, s,(x)=x, s,(x)=Ilx. (27)

The next set of seeds we consider in Sect. 3.1.2.1 have arbitrary di-

mension N. The first of them is a straightforward generalization of the

(polynomial) set (3.1-13). It reads

SnW = W(X) Xn-I
,
n = 1, 2,..., N . (28a)
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This set is closed under differentiation iff the function w(x) is an expo-

nential,

w(x) = exp (ax) (29)

Our treatment below is not restricted to this case, (29); but of course we

hereafter.assume that the "weight function7 w(x) does not vanish at any

-one ofthe nodes,

W(X,,) # 0
,

(28b)

to avoid violating the condition (3.1-5).
The (N x N) -matrix 5 corresponding to (28) reads as follows:

IV

,
(X" - x IV(X)1.=8.I[W,(X")1W(x.)1+ I

(30a)

with (see (2.4.1-4a))

N

bn ( X) (Xn - X ) (30b)
1=1,9#n

Ofcourse, if w(x) is merely a constant, the present findings reproduce res3alts already

discussed above, see (3.1.1-24,25); this fact, incidentally, motivates our use ofthe

tilde-notation, F) (see (30)), here as well.

The proofof (30) is by now standard, and we indicate tersely the relevant steps

without any additional comment:

W(X,) W(X,) W(Xx)
AF

A(x...... XV) W(xj) H(XII - X.)

W(Xl)x
IVA

W(x ) x'-' W(xV) x,'v'-'
I ][n,m=I;n>m I I

2 2

(31)

A'

q(n)(XjX)=[W(X)1W(Xn)] rl [(X_ XW(xn_xA 31 (32)

q,(,n) (xlx
1

(33))==q(')(x)[w'(x)lw(x)+ I (X-xl)-] I
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IV

q ( )
(x,, Ix) = w'(x,,) / w(x,,) + I (x. - x,)

-'

,X -

(34)

q(.) (x. Ix q(') (x) (x - x.) n #- m (35a)X
_ =[

X=X.

q(' (x. Ix) = [w(x.) / w(x,,)] (b. / b,,) (x,, - xJ-', n:;,- m
.

X (35b)

Clearly (30) can be written in the compact form

)D(WA)-' + V (36)B = (WP

with the 2 diagonal (hence commuting) (N x N) -matrices W and V de-

fined as follows:

W EUx = diag[w(xJJ, W w(x,,) (37)

V LUX = d'agl W(Xn) / W(Xn) Vnm = 15nm WF(Xn) / W(Xn) (38)

and the matrices B and D defined as above, see (2.4.1-4) and (2.4.1-2).

The alert reader should have noticed that the results we just reported could have

been obtained by applying the Remark 3.1.1-8 stated at the end of Sect. 3.1.1 to the

treatment of the standard polynomial set given in that section (see after (3.1.1-23)).
The reader who did not notice this connection (and who therefore does not deserve to

be considered alert!) should pause and ponder over it.

Likewise in the next example we keep an arbitrary weight function in the defini-

tion of the set of seeds, even though the effect of its presence is accounted for by Re-
mark 3.1.1-8 (as the alerted reader will note!).

The next set of seeds we consider in Sect. 3.1.2.1 reads as follows:

sJx)=w(x)c(x-a,,+a,)1a(x-aJ , (39)

where w(x) is an arbitrary function, the N + 1 quantities ak, k = 0, N are

arbitrary constants, and the function

0-(X) =_ 0- (XI co, co') (40)
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is the "sigma7' Weierstrass function, see (A-38). This set of seeds is not

closed under differentiation, since

s'(x) = snW I [w(x) / w(x)] +  (x - an + a) -  (X -aA (41)n

cannot generally be written as a linear combination with constant coeffi-

cients of the seeds (39). Note the appearance, in the right-hand side of

this equation (41), of the Weierstrass zeta functions (via (A-39)). Also

note that in this equation, (4 1), and always below, we omit to indicate the

dependence of the Weierstrass functions on the "semiperiods" CO and CO'.

As explained at the end of the preceding Sect. 3. 1. 1, it is nevertheless

possible to introduce, via (3.1.1-6), an (N x N) -matrix DUx that provides
a finite-dimensional representation of the differential operator. It reads

LbuxInm  _'5nmdn + (1 -6 =) [W(Xn) / W(X.) On /fim)

-[o-(a+x,,-xm)lo-(a)][o-(x,,-xm)]-' (42a)

N

d,, = d,, Ux = [w(x,,) / w(x,,)] +  (a) + 1]  (xn - x,) - ;(x,, - aj), (42b)
t=I,&-n j=1

AT

a = a(x) = ao + aj) (42c)(x,
j _I

N

_X0]
N

fj o7(xn -a,) (42d)fin fin UX = fj  *n1e=I,t#n
j=1

Proof From (3.1-4), (3 9) and (A-63)

 '(X 1-51Xn) = det[W(Xn) u(x. -a
n
+a,) I c(x. -an)]

N

w(x.) u[aO+j:(xj-aj)][o-(a )]'-=1 I
j=1

Ar IV

- fj [o-(x,, -x ) a(am - an)II I I C(xn - a.) . (43)
n,m=l;n>m n,m=l

Hence (see (3.1-9))
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N Ar

q
(n) (XIX) = [w(x) / w(xj] Jofao + x + Xf- aj ]la[ao+Y -aj)]I-_,(xj

t=1,1:#n j=1 jA

Ar Ar

11 [c(x -x,) / a(x, -x,)] fj [c(x,, -a,) / u(x - aj), (44)
t=1,e#n

I

 
j__1

Hence, by logarithmic differentiation, and using (A-39),

,V N

q
(n) (XIX) = q(n)W fWrW / W(X) + [a0 +X+ X, - a,X

I E
9=1,9#n j__I

IV 1V

+  (x - xj -  (x - aj) (45)

Hence, see (3.1-11),

V IV N

q
(n) (Xn I_X) = Wr(Xn W(Xn ) +  [qo + aj)] + Z  (Xn -Xd _'L  (Xn - a,)
X (Xj

j=1

(46)

To compute from (45) the "off-diagonal" element qx() (x. Ix) with m # n one uses

again (3. 1-11), as well as the property (see (A-46) and (A-47))

lim[c(z)  W] = 1
-

(47)
z->O

Hence, for n # m,

q
(n) (XM =[W(xm)IW(xn )]107[ao +XM _ Xn + (Xn _ a, )] lo7[ao + YN -a,)]I.
X -

E
_., (Xj

j=1 j=1

N N ff

- 11 [o-(x,, - aj) lo-(xm - aj)] 0-(XM -Xt C(xn xt) (48)

Via (3.1.1-9) these formulas, (46) and (48), yield (42), which is thereby proven.
The diligent reader will ponder on the analogies, and differences, of the present

treatment, relative to that presented at the end of the preceding Sect. 3. 1.1 (see (3. 1. 1-

44a), and the discussion following it).

Clearly the (N x N) -matrix D, see (42), admits the convenient repre-

sentation

v

D=(WA)D(WB)-I (49a)
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W = E(x) = diag(w(x,,), n = 1,...,N), UW
.

= 9,,. w(x,,) (49b)

B = AUx = diag(,8,,, n = 1,...,N), 0. =,5n.fln (49c)

V

LD). =8,,.d,, +(l-'5nm*T(a+Xn -XJ10'(a)RC(Xn -X )1-1 9 (49d)

with the diagonal elements d,, defined by (42b), a defined by (42c) and

the elements 6,, of the diagonal (N x N) -matrix B, see (49c), defined by

(42d).
According to Proposition 3.1.1-3 the differential equation (with j an

arbitrary integer in the range 1:! j:! N)

f'(x)-I[w'(x)lw(x)]+ (x-aj+a,,)-, (x-aj)lf(x)=O (50a)

which clearly holds, see (41) and (39), with

f(x) =- f(x; j) = s,W = w(x) c(x - a, + aj / o-(x - a,) (50b)

entails an N -vector equation whose n -th component reads

N N N

 [a +1:(Xk -ak)]- (Xn -aj +a0)+ 1:  (Xn - Xi ) - 1:  (Xn - ak )
k=1 e=l,e#n k=i,k#j

IV N N

+ fofa, + Xn - Xm +I (xk - a,-)] / c[a, + >' - a '(Xn(Xk IC A 1 [0 -XMA *

k=1 k=1

N

[c(ao + xm - aj) / o-(ao + Xn - a,)] fj c(x. - x,)]l [ fj o-(x. - x,)

N

4 11 P'(Xm - ak ) IC'(Xn - ak =0 (51)
k=1

This formula displays N
2

(equivalent!) identities, since the choice of the indices

n and j remains arbitrary; it features the 2N + 1 arbitrary constants

x,,,, in = 1, 2,..., N and ak, k = 0, N. Its proof is such a direct consequence of

(50), via Proposition 3.1.1-3 with (42) or (49), not to require any further elaboration

here (but try and do for yourselfthe calculation!).
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Exercise 3.1.2.1-9. Prove (A-67). Hint set, in (51),

n = j = 1, x, = 0, a, - a, = Y, iv = 9 + 1, x, = Y,-,, a, 2,..., N, and, after

having rewritten it appropriately, eliminate all tildes.

The last set ofseeds we consider in Sect. 3.1.2.1 reads as follows:

(2) (N-2)
SIW -":: 1

1 S2W = V(X)  S3W = P(X) I S4W = fo"(X) = P W I.... SAIW = P (x) -

(52)

Note that here we have dispensed with carrying over the multiplicative
function w(x), which can of course always be reinstated using Remark

3.1.1-8. Here of course p (x) =- p (xj co, co) is the Weierstrass function, see

Appendix A, and the primes appended to it (as well as the parenthetical

upper index) denote of course differentiations with respect to the variable

x
.

This set, (52), is not closed under differentiation, since the x -

derivative of the last seed, s, (x), cannot be expressed as a linear combi-

nation of the N seeds.

It is nevertheless useful and easy to obtain an explicit expression of

the (N x N) -matrix D Ux that corresponds to this choice of seeds, (52):

2Ux =   Ux -hUx [   Ux (53a)

N

jUx = diagf [o-(x,,)]' [ fj c(x,, - x.)] ,
n = N I , (53b)

.=I,m#n

V

JpUx S. [ (N3E) - N (xj +  (x,, - x,)]

(53c)

Here a(x) -= c(xl co, co') respectively 4(x) =-, (xj co, co) are the sigma respec-

tively zeta functions, see Appendix A, X is the "mean coordinate",

Ar

x N-1 1: Xn (54)
n=1

and we assume of course that it does not vanish, 0.
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Proof From (3.1-4), (52), (54) and (A-57),

AUX =H (N-1)(N-2)12
F,- nI_ u(NY) [

IV

'(Xn) ]
_,V

N

(55)110 fj 17 (XM - Xt )
n=1 n=1 t,M=1;e>M

Hence (see (3.1-9))

Al

q(n) (XI X) = [0-(X - X" +N7)1a(NY)j[o-(x,,)1o-(x)]v fj [u(x-xm)1o-(x.-x.)].

(56)

From this expression of q
(n) (XI X) one gets rather immediately (53), via (3.1.1-6) and

(A-39), (A-46d).

Exercise 3.1.2.1-10. Prove (A-70). Hint: note that, for the set (52),
there obviously holds the relation

s,+, (x) = ds,+, (x) / dx, k = 1,2,..., N - 2
. (57)

Hence

IV

.d nm
(-X) Sk+l(xm), k = 1,2,..., N - 2

.Sk+2 (Xn)7- 1] D (58)
-I

Now use (52) and (53).

Exercise 3.1.2.1-11. Prove (A-71) (from (A-70), via (A-37b) and (A-
55b)), and verify explicitly its validity for N = 3, k = 1

.

3.1.2.2 Two-dimensional space (S = 2)

In Sect. 3.1.2.2 we focus on two-dimensional ambient space (S = 2), but

we use for convenience a
"

3 -dimensional notation for 2 -vectors", as

follows:

7 --=- (X, Y,O), k -= (0, 0, 1), k A F =- (-Y, X, 0) ,
(1a)

F1 *j;2 =F2 *FI =XIX2 +YIY2 (1b)
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k-F, AF, =7, -kAF, =-k.j;, AF, =-j;, -kAF, =xy, -y,x, . GO

Under rotations the scalar respectively pseudoscalar products, F, - F, re-

spectively k-i;,AF,, remain invariant; under inversions (say,

x -> -x, y -> y), the scalar product F, - F, remains invariant, the pseudosca-

lar product k - RAF, changes sign.
The first, very simple, choice of seeds we make is

N=2; s#)=x,s,(F)=y . (2)

This set of seeds is not closed under differentiation. The corresponding

(2 x 2) -matrix Dr representing the differential operator reads as fol-

lows:

'6r =

-kAF, kAF,
I (k. j;j A F2) (3) -kA';2 kAR, 

Proof. from (3.1-1) and (2)

XI X2
IJ; 2 (4)2) = JYI

Y2
j=XIY2_X2YI=k' IA

Hence (see (3.1-6)

q(') (;;IDr = (k -;;Aj;,)1(k-F AF2) (5a)

q
(2) ( j:r)=(k*FjAj;)1(k*j;,A;2) (5b)

Hence

' q(') (j;l:r) = -kA F2/ (k - FIA F2) (6a)

' q(2) (Fi:r) =kAF,1(k-F, AF2) . (6b)

This, via (3.1.1-9), yields (3), which is thereby proven. Note that the (2 x 2) -matrix

, r, see (3), has equal elements in each column, and that all its elements behave as

vectors under a plane rotation of the 2 -vectors F, and F2. There clearly holds moreo-

ver the equation (see Proposition 3. 1. 1-3)

1i - j r = L A-Dr L (7)
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reflecting the obvious property of the operator A = 7 -' to reduce to unity in the

functional space spanned by the 2 seeds (2).

The next set of seeds we consider reads as follows:

N=3; s
I V) = 12 S2 V) = X ' S3 (;:) = Y * (8)

This set is closed under differentiation. The corresponding expression of

the (3 x 3) -matrix b , providing a (3 x 3) -matrix representation of the 2 -

vector differential operator can be written in the following compact
form:

(:r) = [kA 2
- F.,-,)]/A, m = 1, 2,3, mod(3), (9)

A =- A (FI, F2, F3) = k - (F, A F2 + F2 A F3 + F3 AFI) , (10a)

j;A =  *(71 - 2) A(j;j -';3) (10b)

Proof

1 X, Y, I X1 Y1

A(FI I F2  F3 1 X2 Y2 = 0 X2 - X1 Y2 - Y1 (11a)

1 X3 Y3 0 X3 -XI Y3 _Y1

z F2 R F, (1 1b)A(FPF21 3) = *( I Ai2 + 2 3 +F3 AiA F 1) (FI A ( 1
- 3)

The first equality in (11a) corresponds to the definition (3.1-4) with (8), and the sec-

ond obtains by subtracting the first line from the second and third in the determinant.

The two expressions in the right hand side of (1 1b) obtain by evaluating the two de-

terminants in the right hand side of (1 1a). Thus (10a) and (10b) are proven. Of course

additional, equivalent, expressions of A, see (11), obtain by performing cyclic per-

mutations on the indices of the vectors in the right hand side of(10b).

(n) (j;l:r) (F A F
n_+j

A Fn+2 +j
+ j;q n+2AF)/A , n=1,2,3mod(3), (12)

q() (j;l:r) = kA(F+,-F,,,)IA ,
n = 1,2,3 mod(3), (13)

D,,. r A (Fn+, - j;.+,) / A, n = 1,2,3 mod(3). (14)
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The first of these 3 formulas follows from (3.1-9) and (10a); the second from the first,

using the 3 -vector identities

ZiA =4AZi
,

(15a)

ii4Aj= -EAa=j-iiA ; (15b)

the third follows from the second, see (3.1.1-6), and it coincides with (9), which is

thereby proven.

Exercise 3. 1.2.2-1. The differential operator F -' has the eigenvalues 0 (with

multiplicity 1) respectively 1 (with multiplicity 2), with eigenfanctions 1 respec-

tively x and y. Noting that all these eigenfunctions are expressible as linear combi-

nations of the seeds (8) (actually, they coincide with these 3 seeds !), find eigenval-

ues and eigenvectors of the (3 x 3) -matrix i? , r ,
see (3.1-3) and (9), with matrix

elements

F. A (FI - j; 12) / A
, n,m = 1,2,3 mod(3), (16)

see (10). Hint: use Corollary 3.1.1-6.

Exercise 3.1.2.2-2. Same as Exercise 3.1.2-1, but for the operator k -j; A' 

having the eigenvalues 0, + i respectively - i, with eigenfanctions; 1, x + i y respec-

tively x-iy.

Exercise 3.1.2.2-3. Clearly, for any function f(F) living in the 3 -dimensional

functional space spanned by the seeds (8) (namely, expressible as a linear combina-

tion with constant coefficients of the 3 seeds (8)) there hold the equations

f",V) = f, (F) = f, (F) = 0
.

(17a)

Hence, according to Proposition 3.1.1-3, the (3 x 3) -matrix D(:r)
,
see (9) with (10),

must have the property

(Dx)2= (D.Y )2 = D , D., = DY D,, = 0
,

(17b)

since the functional space (8) is closed under differentiation. Check that this is indeed

the case.

Note that the (3 x 3) -matrix r, see (9) with (10), is invariant under a common

translation of the nodes F 1, 2,3), and that it behaves as a vector
,, +T, nr

,,
.
As for the determinant A, seeunder a (common) plane rotation of the 3 nodes F

(10), it is clearly invariant both under translation and rotation of the nodes, indeed, up
to a factor of 2 and possibly a sign, its value coincides with the area of the plane tri-

angle having the 3 nodes F as its 3 vertices.
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Exercise 3.1.2.2-4. Consider the set of seeds

N = 4; s, (T) = 1, s, (F) = x, s, (F) = y, s,(F) = r' = x' + y' . (18)

This set is closed under differentiation. Calculate the corresponding (4 x 4) -matrix

b
.
In the process, note that the quantity A(F, F, F, 7,), see (3.1-4), is invariant both

under (common) rotations and translations of the 4 nodes F,' .
Hence this quantity

must have a geometrical significance. (i) What is it ? (h) What Theorem (of elemen-

tary plane geometry) is entailed by the possibility to evaluate A(F, F, F, Fj in differ-

ent manners ? (W) Can you generalize this result to higher-dimensional spaces

(S > 2) ? Hint (for question (iii)): use the set of seeds

N = S + 2; s, (T) = 1, s, (F) = r' = X2 + Y2 + Z2...' S2 V) = X-1 S3 (7) = Y, **' * (19)

Solutions: see Appendix F.

The next choice we make is characterized by an arbitrary number N
ofnodes and seeds, and it is clearly closed under differentiation:

sn(F)=exp1(n-l)x+(N-n)yj, n=1,2,...,N . (20)

The corresponding expression of the matrix :p-(:r) providing an

(N x N) -matrix representation of the 2 -vector differential operator  can

be written as follows:

N

Dx (Dr I- [I - exp(x, - X + Yn - Ye) for n = m, (21a)

D., for n # m, (21b)-=J8JeXP(Y._Yn)_eXP(X._Xn)1 '8.

N

A, r [eXP(Xn + YO - eXP(Yn + xt) 1 (21c)

with an analogous expression for its y -component, DY (:r), obtained by

performing, in the right hand side of (21), the exchange

xj +-> Yj, j N
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Proof From (3, 1-1) and (20)

exp[(N - 1)y, ] exp[x, + (N - 2)y, ] ... exp[(N - I)x

A(Fil ... I FIV) (22a)

exp[(N-I)yj exp[xv+(N-2)y,l exp[(N-l)x,]

Ar

1 exp(x, - y) exp[2(x, -y,)] ... exp[(N-1)(x, -y,)]
= exp[(N -1)y

n=1
1 exp(x, -y,) exp[2(xv -y,)] ... exp[(N-1)(x, -y,)]

(22b)

'V

= exp [(N - 1) Yn I fj [eXP(Xn_Yn)_eXp(Xm_Ym)1 (22c)
n=1 n,m=l;m<n

The first equation, (22a), corresponds to the definition (3.1-4) with (20). Then one

extracts a common factor from each line of the determinant in the right hand side of

(22a), obtaining thereby (22b), and finally one notes that this formula features a de-

terminant of Vandermonde type, whose evaluation (via (3.1-14) with x,, replaced by

exp(x,, - y,, ) ) yields (22c).

From (22c) and the definition (3.1-9) one then gets

(n) (j;l:) [(IV _ 1)(Y _ Y")].q r exp

N

fj f [exp(x - y) - exp(x, - ye)]l [eXP(Xn -YJ - eXP(Xe -YA 1 1 (23)
e=1,&n

and from this., by differentiation,

a q() (j;l:r) / a x = exp[(N - 1)(y - yj] exp(x - y) [exp(x, - yn) - exp(x, - yg)]-'

- fj f [exp(x - y) - exp(x, - yj)]l [eXP(Xn -YJ - eXP(X, - Yj)] (24a)

hence

N

aq(n)(j;jDr1ax I [I - exp(x, - x. + y - y,)]-' for n = m (24b)

aq(n) (Fl:r) / a X r
T.

_eXpI(N - 1)(Ym - YnA [1 - eXP(Xn - Xm + Ym - Yn)]
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(x,-y,)]l [exp(x,, -y,,)-exp(x,-yj)Jj for n#m,fj f [exp(x,,, - y.) - exp

(24c)

aq
(n) (FIDr lax r 6m(r:)[exp(yn-y.)-exp(Xn-Xm) 1[flnrOY for n#m,

(24d)

with 8n r defined by (21 c). Via (3.1-1-6) this yields (2 1), which is thereby proven.

Clearly the differential operator

A = ii -' = ax a lax + aY alay (25)

has eigenvalues

2i. = (n - 1) a., + (N - n) ay, n = I,,N (26)

with the seeds (20) themselves as eigenfunctions:

(ii .' ) exp[(n - 1)x + (N - n)y] = 2i,, exp[(n -I)x + (N- n)y] ,
nN .(27)

Hence, as a consequence of Corollary 3.1.1-6, one may state the follow-

ing

Proposition 3.1.2.2-5. The (N x N) -matrix

N

nm nm I (ax  n 77, - ay  , q,,) q, -  , 77j
e=I,f#n

+(1-9n.)(ax ,77,n -ay . 77X( n qm _ m 77n) (28)

has the N eigenvalues 2i, see (26), with eigenvectors V(n)

(k(n))m fj [ M 77 77 m  ;-l 71V n (29)
M

V(n) an (30)
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This result holds of course for any arbitrary assignment of the integer
N  ! 2 and of the N + 2 numbers a, ay,  ,, q,, (,  #  .,   #- 0, 77,, # q.,i& :# 0);

note that the eigenvalues, see (26), are independent of the values of the

2N numbers  ,, q,,, though the (N x N) -matrix 2, see (28), depends non-

trivially on these 2N parameters; conversely the eigenvectors, see (29),

are independent ofthe 2 -vector a.

Proof This result corresponds, via Corollary 3.1.1-6, to (27), by setting

= exp(x,,), 77,, = exp(y,,) , (31a)

2=B-'AB (3 1b)

diag(,6,,) (31c)

'V

fin  t 7& (31d)

Exercise 3.1.2.2-6. Check these results by explicit computation for N = 2 and for

N = 3.

Exercise 3.1.2.2-7. The independence of the eigenvalues 2i, see (26), from the

parameters  n, q, entails that, when these parameters are changed, the (N x N) -

matrix 2, see (28), undergoes an isospectral deformation. Show that indeed such a

deformation corresponds to a similarity transformation, find the matrix that generate

it, and, by assuming that the quantities  , =-  , (t) ,
-17n = qn (t) depend (arbitrarily!) on

a parameter t Ctime"), write a Lax equation for the "time-variation7' of the matrix

Hint: see the analogous treatment given in Sects. 2.4.5.3 and 2.4.5.4.

The last (but perhaps not least interesting?) set of seeds we consider

in Sect. 3.1.2.2 reads

sn 0;)= x
a+n

Y
8-n

= xa+lY
'6-1 (x / Y)", n = 1, 2,..., N , (32)

with a and 8 two arbitrary constants (not necessarily integers).

The corresponding (N x N) -matrix  r reads

N

Kr L [(a + 1) / x. + Y, (k. F. A F,)
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rIU. r](k-F AF (33a)

N

F-N)ly, - x, (k, FnALDY(:r)j,"n =,5,.

+('-(5
- [0 -

n
A Fm)

nm
) Xn (Xn / Xzn )

C +I

(Yn / YmYN .n rlom rl( 'F -1

9 (33b)

IV

an (Dr =- fj (k - Fn AF,) . (34)
9=1,t#n

Proof. From (3.1-4) and (32)

IV IV

F') = 1-1 [(Xj )
a+1

(Yj ) fl-1 ] 1-1 I(Xn1Yn)_(Xm1YA 5 (35a.)
j=1 n,.=I;n>m

A' N

A(F ..... FN)=fl [(xj),+,Yj,6-,v 11 (k.FnAi;.) . (35b)
f__I n,m=l;n>m

To obtain (35a) we used the Vandermonde identity (see (3.1-14), now with x. re-

placed by xn / yn); to obtain (35b) from (35a) we used the trivial identity,

Ar IV

fj Yn YM 41 (Yj)N-1 (36)
n,.=I;n>m j=1

as well as the definition (1c).

Hence, via (3.1-9),

(n)
'v

A Fq
_'v

7 (37)(TI:r) = (X / Xn)
" +I

(Y / YnY n
A

t=l,t#n

Hence, by logarithmic differentiation, and using (1 c),

N

q
(n) (j;IDr = [(a + 1) IX+ 1] (n) (i;)
x

(k - FAi ,)_'yt Iq (38a)

'v

q
(n) (i;l:r) =[(,6-N)ly- 1] (k-j;AF,)_'x, ]q(n) (i;) (38b)
Y

Hence, by using (3. 1-11),
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q j:r) = (a + 1) / x,, + (39a)
X

'V

q(n)(F.j:r)=(j8-N)1y,- I (k-FAF,) X, (39b)
Y

To compute the "off-diagonar' terms q(") (T I:r), q(n) (Fm J:r), nm, we use again
X Y

(3. 1-11), as well as the formula

,,
/ x,,)"-" (y. / y,,),8-vlimf [k-j;Aj; )-']q(')(Fi:r) 1=(xr

IV

fj (k - Fm A F,)Il [ n (k - F. A F,)] (40)
e=I'I#n'M e=I'e--n

which is clearly entailed by (37). Hence, for n:;,- m
,

(n) Nr [am r / 0', rI(k * Fn A Fm)-I 2 (41a)qx (Fml:r)=Ym(XmlXn)  +1(YmlYn)'6-'

a j; :Y)
-Ar

(41b)-x
+1

(Ym /YJ 3
m
0 r I(k'

n
A ir) =

m
(x r /07noq(" (Fml: m

1Xn) m) I

with u,, r defined by (34). These formulas, (39) and (41), yield, via (3.1.1-6), the

expressions (33) with (34), which are thereby proven,

Exercise 3.1.2.2-8. Do the two matrices Dxr and DY r, see (33), commute? If

not why not (recall the Remark 3.1.1-4)? Hint: is the set (32) closed under differen-

tiation?

Let the differential operator A be defined as follows:

A=axalax+byalay , (42)

with a and b two arbitrary constants. It is then clear, see (32), that

(A -,Vn) S (7):- 0 ,
n = N

, (43)

r,=a(a+n)+b(,8-n)=aa+b,8+(a-b)n . (44)

This shows that the operator A has the N eigenvalues r, see (44), with

eigenvectors sn(F), in the N-dimensional space spanned by the seeds

(32). There holds therefore, according to Proposition 3.1.1-3 and Corol-

lary 3.1.1-6, the following
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Proposition 3.1.2.2-9. There holds the following N -vector eigenvalue
equation:

(A - Yj) Y(j) = 0 j = 1, 2,...,N (45)

A=aXD,,+bYDY (46)

V(j) =s.(F,) (47)
n j n

with Dx, DY defined by (33) with (34), y, defined by (44), and of course

I d'ag(xn) 11 -7fnm = gn. Xn (48a)

I d'ag(Yn) 5 Ynm = '5nm Yn (48b)

Exercise 3. 1.2.2-10. Compare this Proposition 3.1.2.2-9 with Proposition 3.1.2.2-5.

For

a = -1, 8=N (49)

the matrix (33) can be conveniently written in the neat form

br =; r Dr Lzr)]- (50a)

201 = -'6nm (k AD / (k*"nA"f)+(1-15nm)(kA"n)l(k'F.Ai.) (50b)
L J. i=M#n

  (E) = diag[o-,, (:r), n = N)] (50c)

with un r defined of course by (34). Note that Ir behaves as a scalar

under a (common ) plane rotation of the nodes F (actually as a pseudo-

V

scalar, if N is even: see (34)), and the (IV x N) -matrix Dr (as well, in

this case (49), as &E) itself), as a 2 -vector.
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3.1.2.3 Three-dimensional space (S = 3)

In Sect. 3.1.2.3 we focus on three-dimensional ambient space (S = 3), for

which we use the standard 3 -vector notation:

F=(X,Y,Z) , (1a)

_':2 A F (lb)F1 A ':2 1=(YIZ2-Z2YI ZIX2-XIZ21xlyZ-YIX2)

=X':1 "2 = ;:2 '

I IX2+YIY2+ZIZ2 (1c)

_j; _j; -j; 3.7 j;';I ";Z A ':3 = j;2 * j;3 A ';I = j;3 , il A F2 =1* 3 AF2= 2 'il A 3 2A I

=xly2Z3+X2Y3Zl+X3ylZ2-XIY3Z2-x2Ylz3-x3Y2ZI

=Xly2Z3+YIZ2X3+ZIX3YI-XIZ2Y3-ZIY2X3-YIX2Z3 (1d)

j; j; j; j;;;I A (j;2 A j;3) = (j;j A j;2) A j;3 I
' 3) 2 1 ' 2) 3 (le)

Note that the triple product (ld) is a pseudoscalar: it remains invariant

under (collective) rotations of the three 3-vectors Rj, j;2, F3 ,
and it

changes sip under (collective) inversions (x -+ -x, y -> -y, z -> -z). It has

a simple geometrical meaning: it is, possibly up to a sip, 6 times the vol-

ume of the tetrahedron having the origin of coordinates, and the 3 nodes

F, has its 4 vertices.

The first choice of seeds we consider reads as follows:

N=3; SI(F)=Xl S2(F)=Y" S3(F) =Z . (2)

This set of seeds is not closed under differentiation.

The corresponding expression of the (3 x 3) -matrix Dr reads

L r (FmI A F.12 )/A, m=1,2,3, mod(3) (3)

13 2-1 3) = 1' 2 Ai3 (4)
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Proof. From (3.1-4) and (2)

Xi YI ZI

j; j; - - j; (5)FI 51 2  3 ) :_ X2 Y2 Z2 :_

1
* F2 A';3 ::::: Tn ,  n+j A j;n+2 *(

X3 Y3 Z3

The index n in the right-hand-side of (5) is defined mod(3), and it can take any

value (1, 2 or 3; see (1c)). In the remaining part of this proofwe consider the index n

to be always defined mod(3). Hence, from (5) and (3.1-6),

( ) (F1 = (;;. i:a n_+1 Aj _J/A (6)q

entailing

(n) (F1 = (i; (7)q :r) n+1 AFn+2)/A

This formula, via (3.1.1-6), yields immediately (3) with (4), which is thereby proven.

Exercise 3.1.2.3-1. Verify the property

-Dr = '1 01
n.

= gn. - (8)

Can you explain this remarkable fact ? Hint: consider the effect of the linear differen-

tial operator A = F .' in the 3 -dimensional functional space spanned by the seeds

(2); and recall Proposition 3.1.1-3.

The next, again quite simple, example we consider is characterized by
the following choice of seeds:

N = 4; SI (:) = 1-1 S2 (7) = XI S30 = Y, S4 (:) = Z
' (9)

In this case the set of seeds is closed under differentiation, and a faithful

representation of the operator of differentiation ' is provided by the

(4 x 4) -matrix

 Cr) 1. = [(F.,l - Fm+3 )]A [(:m+2 - Fm+3)11 A (10)

A = A(F, F2, F3, FI) = (F 2 - F1 RF3 - F, ) A (F, - F,)] (11)
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Here and below the indices are defined mod(4). Note that A is a pseudo-
scalar (invariant under a collective rotation of the nodes), and it is moreo-

ver invariant under a translation of the nodes + 70, n 4), as

well of course as under any cyclic permutation of the nodes appearing in

the right hand side of (11). Indeed, up to a sign, the value of A coincides

with 6 times the volume of the tetrahedron whose 4 vertices coincides

with the 4 nodes F,,, n = 4. Likewise, the (4 x 4) -matrix b(F) behaves

as a vector under rotations, and it is invariant under a translation of the

nodes (Fn -> 7 + F, n = L...' 4) ; and it features 4 equal lines.

Proof. From (3.1-4) and (9)

1 X1 Y1 Zi 1 X1 Y1 zi

-

1 X2 Y2 Z2 0 X2 _X1 Y2 _Y1 Z2 _Z1
12 21 3)

X3 Y3 Z3 0 X3 _X1 Y3 _Y1 Z3 _Z1

X4 Y4 Z4 0 X4_X1 Y4_Y1 Z4_Z1

=, X2_Xl
Y2_Y1 Z2_Z

-j;X3_X1 Y3_Y1 Z3_Z1 j1DIF - i;j) A (;4 1)]11 z ( 2 3

X4_X1 Y4_Y1 Z4_Z1

z

-in Fn Fn(Fn n+3 )' [(Fn+l n+3 ) A (Fn+2 n+3)] (12)

From this formula and (3.1-6)

q(n)(i:lr:)=(7-Fn+3)*[(Fn+I-Fn+3)A(Fn+Z-Fn+3)]IA 1 (13)

hence

q(n) (Fla = [0; - Fn, ) A (7n+2 - F,,, )]/ A (14)n+1

and this formula, via (3.1.1-6), yields (10) with (11), which is thereby proven.
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3.2 N -body problems in spaces of one or more dimensions

In the 3 subsections of Sect. 3.2 we discuss AT -body problems in one-,

two-, respectively three-dimensional space, obtained by using the exact

(generalized) Lagrangian interpolation technique described in the first

part of Chap. 3. The examples exhibited below are meant to illustrate this

approach to manufacture N -body problems amenable to exact treatment,

not to provide a systematic survey of this methodology, which lends itself

to several variations and modifications; much less do we try an exhaus-

tive display of all the models that can be manufactured in this manner or

even of all those that have already been investigated (references to these

are provided below, see Sect. IN).
But before presenting specific examples, in the rest of Sect. 3.2 we

outline the general methodology to manufacture, in S -dimensional space,

N -body models which are amenable, as we explain below, to exact

treatment.

The starting point of our treatment is an S -vector-valued function

j(F,t) whose S components admit, for some specific choice of the set of

N seeds I s,, (7), n = L..., IVI, the (exact!) interpolational representation

(3.1-6) hence also (3.1-12), which are now written as follows:

N

A;, t) =I k(t) S.0
M=1

N

(n)M'o = in (t) q r-( (2)
M=1

entailing (see (3. 1-11))

i,W=!rr,(tV1 (3)

N

(t) S. V. (ol (t) (4)
M=1

The diligent reader should now pause for a moment, to digest the novelties of

these formulas, relative to the analogous ones given above, see (3.1-6), (3.1-12), (3. 1-

7) and (3.1-8). First ofD here not only the space variable 7 is an S -vector, but also

',
(t) ,

that j(j;, t) takes atthe function !(F, t) ,
as well of course as the N values, 1,

the N nodes F,, (t), see (3). Secondly, and most importantly, we have now introduced

an additional variable t C'time"), and we have assumed (see below) that the S -
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vector-valued function j(Ft) depend on it, as well, most importantly, as the N

nodes F Q) (see (2), (3) and (4)). The dependence ofthe N nodes,

F.  F.W 1 (5)

(n) r1i; t ]on the time t entails that the N interpolational functions q r-( ) depend as well

on the time t, via their dependence, see (3.1.9), on the N nodes F,, (t). We assume on

the other hand that the N seeds S. (':)I see (1), are time-independent; as we shall

soon see, this entails an important simplification.

Let us now assume that the S -vector-valued function j(F, t) satisfy
the following linear partial differential equation, characterizing its time-

evolution:

i, (;;, t) = A A;' t) (6)

The subscripted variable t of course denotes partial differentiation

it (i;' t) =_ a 1(j;' t) / a t. (7)

Note that the evolution PDE (6) is offirst order in time (the extension to

linear PDEs of second order in time is an avenue of generalization we
will not pursue here). The linear differential operator in the right hand

side of (6) is assumed to be ofthe type considered above, see (3.1.1-14),

iiaflr...

(i:)aa+,6+r+- laxa  Yfl azy ... (8)

where of course x,y, z,... are the Cartesian coordinates of the S -vector

F_= (X,Y,Z,...) and a,,6,,v.... are nonnegative integers. Note that, in writing

(8). we assumed the functions to be time-independent; this is

again for the sake of simplicity (indeed, it entails a significant simplifica-
tion, see below). But we do not forsake here the possibility that the op-

erator A
.
hence the coefficients (see (8)), act as tensors on the

S-vector Y(F,t), and the double-headed arrow on A and is a

reminder ofthis possibility.
Let us re-emphasize that we posit the time-evolution (6) to be com-

patible with the interpolational representation,, see (1) and (2), of j(F,t),
namely we assume that the time-evolution (6) of j(j;,t) maintains for all

356



time every component of the S -vector AF,0 inside the class of functions

representable as a linear superposition (with coefficients independent of

the space variable F) of the N seeds s,,(F) (which are here assumed to

have been chosen once and for all, as'starting point for the treatment): see

(1). This entails that the time evolution (6) can be generally mapped, via

this representation (1) of 1(7, t) as a superposition of the seeds, into a set

of N linear coupled first-order evolution ODEs for the N S - vectors

(t), namely into a set of SN linear evolution equations, with constants

coefficients (thanks to the assumption made above, that the operator A is

time-independent, see (8), and that the seeds s,, (F) are also time-

independent), for S N functions of time (the SN components of the N

S - vectors (t)). As it is well known, the solution of such a system is a

matter of linear algebra, the "most difficult" task entailed by it consisting
in finding the eigenvalues and eigenvectors of a matrix of rank (at most)
SN.

Let us now proceed and manufacture the equations of motion of our

N -body problem. To this end we time-differentiate (3):

4.

fnW =fit V 0+nW *' ] 10:10 1 F=F (t)
- (9)

Here and below we denote by superimposed dots time-differentiations

(for functions depending only on the time t).
We now use the results, and notation, introduced in the first part of

this chapter, to rewrite this equation as follows:

4.

At) = t (t) +  6) (t)] I i(t) (10a)

On the left hand side this equation features the time-derivative of the

(S -vector valued) N -vector j(t) (which is, of course, as well an N -

vector-valued S -vector), whose n -th component W is given by (3).

The first term in the right hand side is the (S -vector-valued) N -vector

(t)
,
whose n -th component is the value taken, at the n -th node, namely

for F= F,,, by the partial derivative with respect to time, ft (F, t) ,
of the S -

vector j(F,t). As for the second term on the right hand'side, the (S-

vector-valued) (NxN) -matrices j(t) and bkw] are those defined in the

first part of this Chapter, see (3.1-3) and (3.1.1-6), (3.1.1-9); their time-

dependence is inherited via the time-dependence of the nodes F,,W .
and
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of course A-W denotes the time derivative of j(t). The dot between RA(t

and a(t) denotes the scalar product in S -space, while the usual rules for

matrix-matrix and matrix-vector products are moreover operational for

S -vector-valued) (NxN) -matrices, such as 0 and bLF(t)], and for (S -

vector-valued) N -vectors, such as f_(t)
, f,W and 1(t) . Hence, compo-

nentwise (and after using (3.1-3)) the N -vector equation (10a) reads

!.(tkJF.(t),tj+L (10b)
M=1

with the dot interposed between "CO and b,mLr(t)] denoting of courser,,

the scalar product among S -vectors.

We now set F= F, (t) in (6), obtaining thereby, via Proposition 3.1.1-3,

W=i(t) 1(t) - (11)

Here we have written again this formula in (S -vector-valued) N -vector

form; the (NxAT) -matrix  Ct),

 (t) = I: ii" r(t)] ja'8Y... (R:) ID, IDY [E (t)] 116 JR, LF (t)] 1,- (12)L

or

j(t) (1k) D(",07"*) LT(t)] (13)
XYZI*I

is obtained of course from the (possibly tensorial in S -space) linear op-

erator A, see (8), and the validity and significance of (12) and (13) have

been explained in Sect. 3.1.1 (see (3.1.1-16) or (3.1.1-43): in particular
(12) applies if the set of seeds is closed under differentiation, otherwise

the more general formula (13) must be used). The (NxN) -matrix 2 (t)

acts of course according to the standard rules of matrix-vector multiplica-
tion in N -space on the (S -vector-valued) N -vector 1(t)

,
and according

to the standard (possibly tensorial, as entailed by the structure of

rules in S -space on the (N -vector-valued) S -vector 1(t) .

From (10) and (11) we get

f(t) L,(t)I+(t) -
_6Lr(t)] 11(t) (14a)
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or equivalently (componentwise; after using (3.1-3))

Lw=l f2,,.Lr(t)1+ (14b)
M=1

Since &F(t)] and bLr(t)] are explicitly known in terms of the N nodes

F(t), see (12) or (13) and (3.1.1-6) or (3.1.1-39), this equation provides

an explicit set of N relations among the N S -vectors (t), their time-

derivatives f
,,
(t)

,
the N S -vectors F,, (t) and their time-derivatives F,, (t)

(see (3.1-3): a relation which is linear, and structurally independent from
the choice of the set of N seeds I s,, (F), n N 1, for the 3N S -

vectors 1,,(t), f,,(t) and "(0, but is instead generally highly nonlinear,rn

and directly dependent on the choice of the set of N seeds

fSn (7), n =NJ, for the N nodes i--,, (t) .

We are now at liberty to posit another set of N relations among these

quantities, generating thereby a dynamical system, which shall look (see
below) like a Newtonian IV -body problem in S -dimensional space, with

the nodes F,,(t) being interpreted as particle positions; a model which is

(partially or completely; see below) solvable. Here we limit our choice of

such a relation to the following special form:

in (t)=Pn Lr(01 rnW+ , Lr(01 (15a)

or equivalently, in N -vector form,

j(t)=RLr(t)j P(t)+ Lr(t)] . (15b)

Here we have of course introduced the diagonal (NxN) -matrix I!Qr), and

the (s -vector-valued) N -vector  Q) ,

Rr =diag[p,, r; n=1,2,...2NI I Pn. r ='5n.Pn r (16)

 r =Vnr ;n=1,2,...,N] , (17)

as functions of the N -vector F, see (3.1-2). Note that we assume both P

and  to depend on the time t only via the t-dependence of the "particle

coordinates" F (t)
n

To get our evolution equations we must now combine (14) with (15).
To this end we time-differentiate (15a):
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IV

]+[(tVn1aFM)* 11 * (18)rM
M=1

The reader is advised to scrutinize this formula attentively (in particular, the sig-
nificance of the scalar products in the right hand side!); if there remains any uncer-

tainty about the precise significance of any term, re-obtaining this formula by t-

differentiation of (15a) shall eliminate any doubt. Note that, for notational conven-

ience, we have omitted to indicate explicitly the functional dependence of each quan-
4. ..

tity: be it directly on the time t, as is the case for f., F and F,,,, or be it, as it is the

case for all the other quantities, on the S -vector-valued N -vector 7, and of course,

through it, F =E(t)
,
on the time t as well.

We now insert (15a) in the right hand side of (14b) and equate the

expression obtained in this manner to the right hand side of (18), getting
thereby, after some trivial rearrangements, an evolution equation which

can be conveniently written as follows:

,,
0 :r), n N (19a)p,, r F.

IV

r-Pn (k,D 1: R. [ Wn r la';Jr. ]+ PMr r. [ rn
M=1

+ m r I rn - Am r OVn r Jr' M' ] +Pm0 [ 2nm 'rM

+[ 2.- M 11 - (19b)

Clearly (19a) is interpretable as the Newtonian equation of motion

("mass times acceleration equals force") for N particles of mass p,

moving in S -dimensional space. The "force" J QE) acting on the n -th

particle depends on the position Fm and the velocities of all particles, as

detailed by (18b), whose right hand side has been organized to highlight
three different types of velocity-dependence, respectively of degree 2

(quadratic: first line), of degree 1 (linear: second line), of degree 0 (no
dependence: third line). In contrast to this relatively simple dependence
on the N velocities the dependence on the IV article coordinatesp

is generally highly nonlinear
, originating from the dependence upon the

set of nodes f Fn; m = 1, 2,..., NJ of pn =_ pn r(see (15); of course only for

constant p,, r =,u,, witli g, independent of F, can (19a), as written, be
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directly interpreted as Newtonian equations of motion), of b =-,aCr) (see

(3.1.1-6) with (3.1-9)), of 2 -= 2r (see (12) or (13), as the case may be),

and of   =-   r (see (15)). (To avoid any possible ambiguity let us em-

phasize that the middle term in the second line of (19b) is an S -vector

whose j -th component reads - (a a r.,)  .,, where of course r,,, is
k=1

the j Ah component of the S -vector rk is the k Ah component of the

s -vector F and likewise  .k is the k -th component of the S -vector

In the following three Sects. 3.2.1, 3.2.2 respectively 3.2.3 we discuss

representative examples of such Newtonian N -body problems in spaces

of one, two respectively three dimensions. But before doing that we must

still discuss, in Sect. 3.2, to what extent, and how, the class of N -body

problems in S -dimensional space we just manufactured, see (19), is ame-

nable to exact treatment. Indeed, let us now indicate how to deal with the

initial-value problem for (19), namely how to determine, for t > 0, the set

n
(t); n = L...' NJ from the (assumedly given) initial dataE(t) = fF

F 0) = f Fn (0); n = L..., NJ and-0) = f- (0); n =NJ.L( - rn

The first step is to evaluate, from the initial data, the corresponding
initial valuesof fnW  

1 r(O)J -

(0) +  nLr(0)1 ,
n = L., N. (20)rn,,

(0) = p,,L

The second step is to evaluate the initial value of the S -vector func-

tion 1(Ft),

!(F' 0) =
"

1,, (0) q
(") [i JE(O)] , (21a)I

n=1

(see (2)). Here of course the interpolational functions q
(n) [FIE(o)] are con-

stracted, see (3.1-9), with N nodes which coincide with the initial posi-
tions of the particles, F,, = F (0). In fact, in view of the next (third) step,

what is actually needed are the initial values  ,n (0) of the quantities  ,n (t) ,

see (1), which can be obtained by solving the linear algebraic equations

(see (4) and (20))

A,

(O)sr r,,(O)]=pnLr(O)1-(O)+ ,,Lr(0)J, n = 1,2,..., N (21b)
M=1
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The third step is to evaluate the S -vector  (;;, t) from its initial value

j(F, 0). This is achieved by solving (the initial-value problem for) the lin-

ear evolution PDE (6). As already noted above, under our assumptions
this task is essentially algebraic, as it can be reduced to solving the corre-

sponding evolution equations for the N S -vectors  . (t) ,
see (1), a set of

first-order linear evolution equations with constant coefficients whose

solution is generally reducible to the diagonalization. and inversion of

matrices of maximal rank NS. (in fact in most of the following applica-
tions this step will be quite trivial, as we will often limit consideration to

time-independent fanctions j(Ft)=f(FO), entailing that the corre-

sponding quantities  . (t) (0) ,
see (1), are constants of the motion; see

below).
Thefourth step is to insert the quantities

(t) = ik, (t), tj (22)

in (15), obtaining thereby the equations

(23)

which are the final formulas of our technique of solution. Note that the

fanction j(F,t), as well of course as the given functions p,, r and   r,

the choice of which remains our privilege, are now known. Hence this

equation, (23), is now an explicitly known system offirst-order evolution

ODEs for the "particle coordinates" F,, (t), which must of course be com-

plemented with the initial data FJO) (the initial data (0) are no more

needed; they have already been used to determine j(F,t), and this guar-

antees the consistency of (22) at t = 0). The "degree of solvability" of the

many-body problem characterized by the Newtonian equations of motion

(19) is therefore generally tantamount to the possibility to reduce the sec-

ond-order system (19) to the first-order system (23). However, the sys-

tem (23), in contrast to (19), is generally nonautonomous, due to the ex-

plicit time-dependence of j(F,t); although there are simple, yet interest-

ing cases (see below), in which such an explicit time-dependence does

not emerge. Two additional simplifications emerge moreover in special
cases: (i) the evolution equations (23) decouple, (ii) the evolution equa-

tions (23) linearize. The simplification (i) occurs ifthe N scalar functions

p,, r, as well as the AT S -vector-valued fanctions F r, decouple,

namely both p,, and ;F,, only depend on F (rather than on the entire set

i; = IFM NJ):
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P. r = P. (F.) , (24a)

  r =  ' (F") - (24b)

The simplification (H) occurs in particularly simple cases, which may

nevertheless correspond to nontrivial. N -body problems in S -dimensional

space (see below).
A class of IV -body problems we consider in the following corre-

sponds to the special case of (6) with

A ==a
, (25a)

entailing of course

2,. = a,5,r (25b)

where a is a (possibly vanishing; see below) scalar constant. Note that

this choice is clearly always compatible with the essential requirement
that the time-evolution equation (6) be consistent with the ansatz (1). We

moreover now set

Jon r =,U, (26)

and

JV

(27a)  (F) = 1 77,,.  

M=1

entailing

r
n
0 (27b)W

for any S -vector - . Here of course the N quantities Yn and the iv'

quantities qm are (arbitrary) constants. Then the many-body problem (19)

takes the form

F = f(I) 0,
n

(
r j; Gr (28a)Yn I n n,

n)+T

where, in the right hand side, we have separated, in the force F_n Cr,:r)

acting on the n Ah particle, see (I9b), the one-body contribution depend-
only on the velocity and the coordinate ofthe n Ah particle,
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F,,' ,
(28b)

from the many-body contribution,

IV

5. r]  1,' - +r. Y, 17,,j Fj
j _I

IV IV

r+ 'n A.r r. + 77_ + aq. (28c)

The corresponding version of (23) reads

(29a)(0, 01 exp(a t) -

with

7[r, 01 = E  . (0) S.v) (29b)
-I

(see (1)), where the values of the AT constant (Le, time-independent) s -

vectors  (0) can be determined, from the initial data, via (21b) with (20)

and (27a).

To obtain this equation, (29), we used the relation

AF, 0 = AF, 0) exp (a t) ,
(30)

which is an immediate consequence of (6) with (25a).

Exercise 3.2-1. Write the more general equations that replace (28) and (29) if

(25a) is replaced by

5,=a
,

(31)

with ii a constant tensor in S -dimensional space.

if

a=O (32a)
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the system of first-order evolution equations (29a) (or, for that matter,

(23); see below) becomes autonomous. In this case of course (see (25a))

A=O
, (32b)

entailing (see (25b))

2=0
, (32c)

as well as (see (6))

1, (F, t) = 0 (32d)

hence

A;;'t)=AF'O) - (32e)

Therefore in this case the N S -vectors  ., see (1) and (32e), provide N

constants of motion. Their explicit expressions in terms of the particle
coordinates F,, (t) and their velocities (t),  . Gr can be obtained from

(4), with j,, (t) given by (15), namely from the relations

N

S
(m) rrn (01 = Pn CD *nr- (t) +   r ,

n = 1, 2,..., N (33a)

and more particularly, for the special choices (26), (27) of p,, r and

  r

IV N

k S
(M) rrn (01 = 4n r, W +1q. F(t) n = 1, 2,..., N (34a)

M=1

The corresponding class of many-body problems is particularly interest-

ing: indeed, the explicit availability of the N constants of motion

i.JE(t),  (t)], which, as we just mentioned, can be obtained by solving for

these quantities this set of N linear algebraic equations, (33a) respec-

tively (34a), justifies considering these models as integrable. Their

Newtonian equations ofmotion read (from (19) with (32))

IV

PnOr =YA.j P*nkaPnrIaT.)'T J+P. rr.[ n*')nmor I
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r[ --f)_(:r) ]-[ (a  rlaF.). n=1,2,...,IV, (33b)r,'

respectively (for the special choices (26), (27) of p,, r and  r)

Ar

n = 1, 2,..., N. (34b),4n F. + F.rl i. +Y
M=1

Let us emphasize what this finding entails: for any arbitrary choice of

the number N of particles and of the set of seeds Sn (F) (which of course

yield, correspondingly, a specific definition of the S -vector-valued

(N x N) -matrix b
,
as explained in detail in the first part of this chapter,POT

see in particular (IIA-6) and (3.1-9)), (33b) respectively (34b) provide
the Newtonian equations of motion of an integrable N -body problem in

S -dimensional space, whose initial-value problem can be solved by inte-

grating the set offirst-order, autonomous, evolution equations (33a) re-

spectively (34a), which can be rewritten here as follows:

V

r + j s(m)rr,,(t)], n=1,2,...,NP. r _n(t) r (33c)
M=1

respectively

IV

Yn r,, (34c)

Of course the N constant S -vectors  . -=h-,,,Cr f) which appear in these

equations can themselves be obtained, in terms of the initial data E(0) and

t(o), from these same equations (perhaps in their completely equivalent
avatars (33a) respectively (34a)) at t=0, which, as indicated above,
should then be considered a system of linear algebraic equations for the

N unknowns  m.
The special case of (34) with

17nm = Snm 77,, (35a)

is sufficiently important to deserve explicit mention. Then the Newtonian

equations ofmotion (34b) become

IV

('U.
-

+ 77 f)_ r n = 1, 2,...,N,a,, r = -77n F (35b)r
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and (34a) become

N

S(,) + i& Fr
,,,

n = 1, 2,...,N (35c)") ='U" F"
M=1

or, completely equivalently,

IV

y. T, _': -77. F. + L hm s
(') (F,, n = 1, 2,..., N (35d)

Let us repeat: the first version of this equation, (35c), is meant as a set of

linear algebraic equations, to be solved, at t = 0, to get the N (constant)
S -vectors  ,,, in terms of the initial data; the second version, (35d), is

meant as a set of ODEs to be integrated in order to evaluate the time-

evolution of the coordinates F (t). Note that in this special case this set of

ODEs consists of N copies of just one (decoupled!) first-order autono-

mous ODE for the S -vector F (t), whose evolution, as given by (the n Ah

one of) these equations (35d), appears decoupled from all other coordi-

nates (the coupling entailed by the Newtonian equations (35b) is now

completely encoded in the values of the constant S -vectors  .). And of

course,- in the one-dimensional case, (35d) can be solved by quadratures,
as we indeed discuss in the following Sect. 3.2. 1.

Remark 3.2-2. Clearly (35b) (but not (34b)) imply that any particle
that is initially at rest, say the kAh one,

rk(o)=o (36a)

remains at rest for all time,

7, (t) = j;, (0),
 '

) = 0
- (36b)T(t

However the presence of one, or more, such fixed particles affects non-

trivially the movement of the other particles. Hence each of the N -body
problems in S -dimensional space characterized by the equations of mo-

tion (35b) contains in itself a family of (N-M)-body problems,
M = 1,2,..., N -1, characterized by the presence of M constant vectors.

Exercise 3.2-3. How should the equations of motion (35b) be modi-

fied (making them. complex in the process), so as to guarantee that they

possess a'(Iarge) set of completely periodic solutions? Hint: see Proposi-
tion 2.1.13-1, as well as Sect. 4.5.
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3.2.1 One-dimensional examples

The results reported at the end of the preceding Sect. 3.2 identify a class

of one-dimensional N -body models whose initial-value problem can be

solved by quadratures. We start Sect. 3.2.1 by reviewing the relevant

equations, which are written below in the notation appropriate to the one-

dimensional context to which consideration is restricted in Sect. 3.2. 1.

We then apply these results to the examples treated in Sect. 3.1.2. 1. The

alert reader will have no difficulty in experimenting with additional ex-

amples.
Then, in the latter part of Sect 3.2. 1, we consider a different ap-

proach, which also emerges as natural follow-up to the treatment of Sect.

3.2. An interesting feature of the findings obtained in this manner is to

yield many-body problems with one- and two-body forces only (see be-

low), rather than the many-body forces that are instead characteristic of

the models treated in the first part of Sect. 3.2.1. Another interesting as-

pect of these many-body problems is their close relationship with models

treated previously, see Sect. 2.3.3.

The solvable Newtonian equations of motion treated in the first part
of Sect. 3.2.1 read simply

JUn ' n = "n I- 77n +, (1)I D.Ux [yi. + q. x. ] I ,

M=1

with a,, and 77,, 2N arbitrary constants, and the (N x N) -matrix D aRUX

representation of the differential operator, see Sects. 3. 1. 1 and 3.1.2. 1. As

usual, here and below the indices n, m, I run from 1 to N, unless otherwise

indicated.

The solution of the corresponding initial-value problem is provided,
in implicit form, by the quadrature formula

X(t)
Ar

[' SmW]- 17nXI_1 =tPn f
"',

dx I hm (2)
 (O)

M=1

where the N functions s,, (x) ,
n = I,,N, are the N seeds which we can

choose arbitrarily, and which determine the (N x N) -matrix DUx ,
see (1),

as explained in Sects. 3.1.1 (and see Sect. 3.1.2.1 for several examples).
The N constants hm, m = 1, 2,..., N, in (2) are determined by the initial data

via the following set of linear algebraic equations:

Ar

Y h Sm[Xn(0&,"nn(0)+77nXn(0) * (3)
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Proof. The equations of motion (1) are merely the one-dimensional version of

(3-2-35). The quadrature formula (2) is obtained from the following one-dimensional

version of (3.2-36):

Ar

p,, x,, = -i& x,, +L [h. s. (x,,)] . (4)
-I

The formula (3) is of course merely (4) evaluated at t = 0; and (4) also provides the

system of N linear algebraic equations which define the N constants of the motion

h., m = 1, 2,..., N, in terms of the N particle coordinates xn -= x,, (t) and of their

velocities in =- in (t) .

The following solvable N -body problems correspond to the examples
of Sect. 3.1.2.1.

la -'l 1-171 + [(PI '1 + 771 XI) Cotgh(X12) - G12 '2 + 772 X2)1' Sinh(X,2)I (5a)

JU2 '2 =2 f-772 - KU2 '2 +772 X2)Cotgh(xl2) _CUI '1+ 77, X, )]I Snh(X,2 (5b)

Here and below we occasionally use the shorthand notation

Xnm
 

Xn,m
=

Xn - Xm * (6)

Yn 'n =.i,, f-i7,, + [(,u,, i,, + 17,, x,,) [cosh(Xn,n+l) - cosh(xn,n+z)j

+ (,Un+2 'n+2 _JUn+I 'n+1 + '7n+2 Xn+2 - '7n+l Xn+I ) [1 - Cosh(xn+i,n+2

-[sinh(xl,)+sinh(X23)+S'nh(X31)1-1 1, n=1,2,3,mod(3) (7)

2

,ul i, = i, f - i7l + [ (,alic, + i7l xj) (x,2 + x22 ) - 2 (,u2 '2 +172 X2)XI I1

X1 (X2_X2) ]-I (8a)1 2

2 2

A12 ' 2 = "2 1 + X2_U2 (42, 2 +172 X2)(XI 2)-2(JU2 ' 2 +172 X2)X21 2

X (X2 _X22 (8b)2 1

369



A, in = in I - 77. + Cun i. + q. Xn) IWVJ /W(XA

N

,
+ (y. i. + q., x.) [w(x,,) /w(x.)] [bn Ux I b. Ux+ yn in + 77j,

m=l,m;-n

.(X.-X.)-l I. (9a.)

Here w(x) is an arbitrary function, while (see (3.1.2.1-30b))

g

bn Ux =- fj (x,, - x,) .
(9b)

e=1'9#n

,an in = in 77n + (un in + qn xn) I [w'(x,,) / w(x,,)]+  (a) -  (xn - an)

IV

+ [ (xn x, -a,)]
M,&n

IV

+ I f (U. i. + 77m X.) [W(Xn) / W(XA VnUX / 16. UX
m=l,m#n

.0'(Xn - Xm + O ) / [  7 (a) 07(X, - XJJ
-1 11 - (10a)

Here w(x) is an arbitrary function, respectively

u(z) =- u(zlco, co) are the Weierstrass zeta respectively sigma functions (see

Appendix A), the N + 1 quantities a, k = 0,1,..., N, are arbitrary constants,

Ar

a=aUx =ao+l
.,

(x, -a,) (10b)
j=1

N F 'V

,8 - a,) (10c)
n
UX H 07(Xn - xi)] fI U(xn

L j=1
I -

V

j"n in =' n f - qn + Gln 'n + 17n Xn) [ (N Y) -N (Xn) + 1:  (Xn - XfA

Ar N N

+ CU. 'm + 17m XJ t [U(Xm) / 0'(Xn)]'V 0-(Xn - Xd] I I -
07(X. -XA I

_0 X) '7(.'7(Xn - xm + N 5E) / [o Nrx-Xn -XA I I 1 (1 1a)
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Here  (x) -=  (xj co, co') respectively o- (x) = o- (xj co, co') are again the Weier-

strass zeta respectively sigma functions (see Appendix A), and X- =- X- (t)

denotes the "mean coordinate",

IV

jE(t) =- N-I E xjt) , (1 1b)
n=1

which is of course assumed not to vanish.

These Newtonian equations of motion all correspond to (1), with the various

choices for N and for the seeds sn (x) ,
hence for RUx ,

of Sect. 3.1.2. 1: specifically,

(5) corresponds to (3.1.2.1-2), (7) to (3.1.2.1-9), (8) to (3.1.2.1-19), (9) to (3.1.2.1-
30), (10) to (3.1.2.1-42), and (11) to (3.1.2.1-53). Clearly the last model, (11), appears

as the special case of the preceding one, (10), with all the constants ak y
k = 0,1,..., N,

vanishing, a, = 0, and w(x) = 1
.

Exercise 3.2. 1-1. Solve the one-dimensional few-body problems (5), (7) and (8),
and discuss the corresponding motions. Hint: see (2).

Let us now discuss a bit the three many-body problems (9), (10) and

(11).
We begin from (9), assuming for the sake of simplicity that

w(x) = exp(a x) , (12)

with a an arbitrary (possibly vanishing) constant so that (9) become

,a,, - ,, = i,, f - i& + a (,u,, in + 77,, x,,)

+
,

f IL,, i,, + i7j, + (,u. i. + q. x.) exp[a (xn - x.)] [b,, Ux / b. Ux] I -

.=l,m#n

(xn - xM)
-1 1 1 (13a)

of course always with (9b). The corresponding version of (2) reads then

(see (3.1.2.1-28a) with (12))

X I(t
IV

JUn f " 0) dx h, exp(ax)xm-1 - 77, x t (13b)
XJ )

M=1
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Note that, iff

=0
, (14)

the Newtonian equations (13a) become invariant under (space) transla-

tions (x,, -> x,, + xO 9 io = 0) ,
as they then read

g,  ,, = i,, jap,, i,,

Ar

+ Z +,a. i. exp[a (x,, - x.)] [b,, Ox / b. (x)] I/ (x,, - x.) I . (15)
M=I,.#n

Exercise 3.2.1-2. Modify these equation of motion, (15), so that they possess a

(large) set of completelyperiodic solutions. Hint: see Exercise 3.2-3.

There is another manner to manufacture translation-invariant equa-

tions from (13a), without requiring (14) but imposing instead the conditi-

on

a=O (16)

(see (12); hence w(x) becomes a constant and drops completely out from

consideration). It is based on the remark that (13a) with (16) are invariant

under rescaling of the particle coordinates (x,, --> c& ,
6 = 0). Hence, via

the position,

xjt)=exp[b jt)] (17)

with b an arbitrary (nonvanishing) constant, one obtains for the new

"particle coordinates"   (t) the translation-invariant equations ofmotion

b,u,, f-77,, + 2) b
,

Iu,, b e,, + 7& + (u. b e,,, + 77.) exp[(N
.=I,m#n

Ifl - exp[b ( m  J] (18a)

Ar

1 - exp[b  J] (18b)
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Next, some considerations on the many-body system (10).

Perhaps the main reason that recommends this system, (10), to our

attention is the fact that it features the Weierstrass functions  and a. It

is however of some interest to also display the more special models, fea-

turing hyperbolic (or, equivalently, trigonometric) respectively rational

functions in place of elliptic functions, that obtain from (10) in the dege-
nerate cases when one of, respectively both, the semiperiods of the ellip-
tic functions diverge (see (A-54) respectively (A-55)). They read, respec-

tively, as follows:

JUn 'n :_ 'n f - Un + (Un - n + '7n Xn ) f [Wr (Xn ) / W(Xn )]

- (a2/3) ao + a cotanh(aa) - a cotanh[a (x,, - an)]

Ar

+ [a cotanh[a (Xn - x,)] - a cotanh[a (Xn - a,)]

N

+ Y, [ (A, i, + 77m XJ 1W(Xn) / W(XJ I [  . UX / ftm UX I -

M=I'M#n

.1 sinh[a(a+x,,-xm)]1sinh(aa) lexpf (a
2

16)(x, -xj[(N-1)(x,, +x,)-2a.]

-I a' sinh[a (x,, - x.)] I` I , (19a)

with (10b) and

N

ftnUX =a jj sinh[a(Xn_XI)1 / sinh[a (x, -a,) ; (19b)

f(Xn)IW(xn)]+a-l -(Xn -an)-lgn 'n   n 77n + (Un ' n + 77n Xn [W

N

+ [(Xn _XJ_1 -(Xn -aj-1

v v

+ E [(Um 'm +77m Xm)[W(Xn)IW(Xm)][ J8nUX 1,8.UX I

' [(a + xn - xnj) / all (xn - XJI 1 3 (20a)
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again with (10b) and

F
V

=[
A'

fl
n
Ux - T1 (Xn - XI) (x,, - aj) (20b)

e=I,I#n
I

j=1

Exercise 3.2.1-3. Derive these equations of motion, (19) and (20), as well as the

corresponding quadrature formulas, see (2).

Exercise 3.2.1-4. Verify that, for a = 0, (19) yields (20).

Exercise 3.2.1-5. Investigate the model that obtains from (19) in the limit

-> co
,
n = 1, 2,..., N.

Exercise 3.2.1-6. In the limit ak-> oo
,
k = 0, N (and with w(x) given by

(12)) (20) become (13a). Verify this fact, and understand why it happens.

Likewise, let us display the form that the Newtonian evolution equa-

tions (11) take in the degenerate cases when one of, respectively both, the

semiperiods of the elliptic functions diverge (see (A-54) respectively (A-
55)):

J"n 'n =' n 77n

+ (JUn ' n + i& xn) Ja cotanh(aNT) -Na cotanh(a xn) + E a cotanh[a (x, - x,)] I

IV

+ 1: (,a. i. + 77. x.) [sinh(a x.) /sinh(aXnAN Isn Ux / Sm UxI

- a sinh[a (x, - x. +NY)] / Isinh(aNY) sinh[a (x,, - x.)] I I , (21a)

s. Ux "- fj sinh[a (x,, - x,)] ; (21b)

,Un '5 n =' n I - 77n + (Yn - n + 77n Xn) [( N Y)
-'
-N XnI+ E (Xn -Xe)-11

t=1,f#n

+ 1: CUm "m +17m Xm)(Xm lXn)g [bnUX lb.Ux] [(N5E)-1 +(xn -xn )
-1 ] , (22a)

374



N

b,, Ux = I I (x,, - x,) . (22b)
M,9#n

Of course in both these equations, (21a) and (22a), 5E is the "mean coor-

dinate", see (1 1b).

Exercise 3.2.1-7. Derive these equations of motion, (21) and (22), as well as the

corresponding quadrature formulas. Hint: see (11) with (A-54,55), and (2) with

(3.1.2.1-52) and again (A-54,55).

Exercise 3.2.1-8. How should all these equations ofmotion, (10), (19), (20), (21),
(22), be modified, to guarantee that they possess a (large) set (or perhaps only) com-

pletely periodic solutions? Hint: as for Exercise 3.2-3.

Exercise 3.2.1-9. Investigate in as much explicit detail as you can the solutions of

the many-body problems (9), (10), (11), (13), (15), (18), (19), (20); (21), (22) for

N = 2.

In the last part of Sect. 3.2.1 we return to the treatment of Sect. 3.2,
and consider the results that emerge, again for the choices of seeds

(3.1.2.1-28), (3.1.2.1-39) respectively (3.1.2.1-52), but now coupled with

an appropriate choice, different from (3.2-26) (indeed, different from

(3.2-24a)), for the N functions Jon UX ,
and a correspondingly appropriate

choice for Vn UX (see (3.2-15)). The equations ofmotion then read

N

Jon UX - n = 1:  'n' m [DnmUx PmUX - a JonUX / 13 Xm I
M=1

+.in D,,. Uxrm Ux -.im a rn Ux / a xm I , (23)

of course with D.,,Ux given by (3.1.2.1-30), (3.1.2.1-42) respectively

(3.1.2.1-53). (Warning: in the case of (3.1.2.1-30), the reader should be

aware that the (NxN)-matrix denoted here as D(x) coincides with the

(N x N) -matrix B Ux of (3.1.2.1-30)).
These equations of motion are merely the one-dimensional version of

(3.2-19), with in addition the assignment

2=0 (24a)

which corresponds ofcourse to
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A=O (24b)

and entails, see (3.2-6),

fI(XI0=0 - (24c)

Of this fact we will take advantage below when we shall discuss how to

solve the equations ofmotion we now derive. Note that, as a consequence

of (24), it is justified to consider all these models as integrable ones, sin-

ce they possess N constants of motion h,,, (see the discussion of this im-

portant point in Sect. 3.2). The diligent reader will consider also the more

general case without the assumption (24a,b), hence with (3.2-6) (and
what follows from it, see Sect. 3.2) instead of (24c) (but beware: the time-

evolution (3.2-6) must be compatible with the ansatz (3.2-1)).
Let us discuss firstly the model corresponding to the choice of seeds

(3.1.2.1-28), hence to the expression (3.1.2.1-30) of D.Ux . (Once more,

beware! : the (N x N) -matrix denoted here D,,. Ux (see for instance (2 1)),

has been instead denoted F),.Ux in(3.1.2.1-30)).

It is then natural to set (see (3.1.2.1-30b))

IV

p,,Ux =g, w(x,,) b,, Ux =g, w(x,,) 11 (x,, -x,) , (25a)

,v,, (x) = gn (x,,) w (x,,) b,, Ux = g,, (xn) w (x,,) fl (x,, - x,) , (25b)
 =I,e#n

where the g, are N arbitrary constants, gn (x) are N arbitrary fanctions

and of course b,, Ux is defined by (9b). Thereby (23) become simply

Ar

'(X0 + (Ian +,U.). '. + 9. (X.) 'n + 9., (XJJan 'n gn
m=l,m#n

(X" - X.)
-, I - (26)

Let us emphasize that these equations of motion, (26), only feature one-

and two-body forces, in contrast to the many-body problems considered

previously in Sect. 3.2.1 (see (9) and (10), and note the presence there of

the quantities bnUx and b.Ux which depend on all the coordinates

x,, x2,.--, x. .
see (9b)).
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Proof We like to consider here a slightly more general ansatz than (25), since it

is of some interest to report the equations of motion that correspond to this more ge-

neral case. Hence we write, in place of (25a),

'V

p,, (x) = It,, (x,,) w(x,,) bn UX =,Un (Xn) W(Xn) fj (Xn - XI) 1 (27)
e=l, #n

without modifying (25b). These equations, (27) and (25b), entail

X) / a Xm = PnW [15 F (Xn) /a Jon(
nm

f LU
n JUn (Xn) J+

Ar

[WI(Xn) / W(Xn)] + 1: (Xn - XI)
-1 1 - (1 - 8nm) (Xn - XJ-1 I  (27c)

'V

t (Xn) /
-1 1aynu Y (Xn - X')X f 15nm I [9n gn (Xn) I+ [Wf(Xn) / W(Xn)]+X 'aXm 7nu

0 nm)(Xn -XJ-1 (27d)

Insertion ofthese expressions, and of (3.1.2.1-30), bi (23) yield

5 n = _' 2/1,Yn (Xn)' 'n gnn n
(Xn) (Xn)

IV

' m [Aln (Xn) +,Um (Xm)]+ -i (27e)+
n n gm (Xm) +   m gn (XJ 10

n

- XnA '

m=l,.#n

For XW = Yn (independent of x: see (27) and (25a)), this equation, (27e), yields

(26), which is thereby proven.

if

0gnW = 77n gn (28a)

these equations ofmotion, (26), obviously entail that the center-of-mass

540 JA' JUnXJO]l['V JUn] (29)Y,
n=1 n=1

moves uniformly,

 (t) = 0 (28b)
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Y(t) = Y(O) + t k(O) - (28c)

Let us now review the solution technique for these equations of moti-

on, (26). The fundamental formula, see (3.2-23) and (3.2-1), now reads

Y

(30)p,, Ux i,, + y,, Ux= Y h. s. (x,,) ,

with the N seeds s (x) given by (3.1.2.1-28), o,, Ux and r,, Ux given by

(25), and with the time-independence of the N constants of motion hm

guaranteed by (24c) with (3.2-1). We can therefore rewrite these equa-

tions as follows:

'V

+ g,, (x,,)] b,, Ox = 1] h,,, (x,)m-1 , (31)
M=1

of course with b,, Ux given by (9b).

Note that the weight fanction w(x) has completely dropped out from this equati-

on, (3 1), as indeed from the equations of motion (24). To simplify the rest of this

discussion we therefore set hereafter

W(X) = 1
. (32)

As explained in Sect. 3.2, the degree of solvability of the many-body
problem (26) amounts to the availability of the N constants of motion

h,,,, entailing the possibility of reducing this system, (26), of N coupled

second-order nonlinear ODEs, to the system (3 1) of N coupled first-
order nonlinear ODEs. But in special cases one can go much beyond this.

Indeed, let us consider the special case

'U" = 1
, (33a)

gnW = g(x) = -(Do + D, x) (33b)

so that (26), respectively (3 1), read

N

ND, i" + [2' 'C. - (' n + im) (Do + D, Xn)] / (Xn - X.) (34)
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respectively

+ (D, + D, xj] b., Ux = -1 h. (x,,)'- . (35)

To obtain (34), in addition to inserting (33) in (26) one must use, in the numerator

-in the right hand side, the simple trick to replace x. with x,, + (x,,, - xj and then

note that the second term cancels with the denominator. As for (35), it follows di-

rectly from (33) via (32).

It is now convenient to introduce the (monic, time-dependent) poly-
nomial of degree N in x that has the N coordinates x,, (t) as its zeros:

IV

V/(X, 0 = rl [X - X" (01 , (36a)
n=1

A'

V/(X, t) = X'V + Cjt)XN- (36b)

and to set

Vft (x, t) + (D, + D, x) Vfx (x, t) - ND, VI(x, t) = -f (x, t) . (37)

Then this function f (x,t) coincides (as our notation suggests) with the

function f (x, t) introduced above, hence it satisfies the extremely simple
evolution equation (24c).

Proof The strategy is to show firstly that f(xt), as now defined, see (37), lies

within the functional space spanned by the seeds (3.1.2.1-28) with (32), then secondly

(and sufficiently) that this function f(x, t) ,
evaluated at the N nodes, x = x,, (t) ,

yields precisely the N quantities f, (t) defined above. Indeed, the first statement

coincides with the requirement that f(x, t) ,
see (37), be a polynomial in x of degree

at most N - 1 (see (3.1.2.1-28) with (32)); and this is clear from (37) and (36b). To

prove the second statement one must show that

f [x,, (t), tJ = f,, (t) = P,, kol i,, (t) +,v,, kol (38)

(see (3.2-15)), with p,, (x) and r,, Ux given by (25) with (32) and (33). Hence (see

(36) and (25) with (32) and (33)) the relation we must prove reads
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Vf, [& (t), t] - [D, + D,x,, (t)] Vf., [x,, (t), tJ+ ND, Vf[x,, (t), t]

fi,, (t) -[D, + D,x,, (t)] I b,, kol (39)

with b,, Ux defined by (9b). Indeed the definition (36a) of VI(x, t) entails

N N

0"'(x't)=Z H [X-X,(t)] (40a)
n=1 i=1,,1#n

'V

Vft (X 0 = _1 in (t) H Ix - x, (t)] , (40b)
n=1 t=1'e#n

hence (see (9b))

Vx[xJt),t]=bnk(t)1 (41 a)

b,,[i(t)1 , (41b)

while ofcourse (see (36a))

V+JOA_:: O * (41c)

The validity of (39) is now obvious.

We therefore conclude that the coordinates x,, (t) , evolving according

to the Newtonian equations of motion (34), are just the N zeros of the

(time-dependent, monic) polynomial of degree N in x, see (36), that sa-

tisfies the linear PDE

V,, (x, t) + (D, + D, x) V,,, (x, t) - ND, V, (x, t) = 0
, (42)

which is clearly implied by (37) with (24c). Now compare (42) respecti-
vely (34) to (2.3.3-1) respectively (2.3.3-2) with (in both cases, (2.3.3-1)
and (2.3.3-2)) C = 1, E = -ND,, '40 ='41 = A2 = A3 = B, = B, = D, = 0: Cle-

arly we have recovered (a special case of ) the results of Sect. 2.3.3!

Exercise 3.2. 1-10. Recover, in an analogous manner, the fall result of Sect. 2.3.3,
see (2.3.3-1) and (2.3.3-2). Hint: replace appropriately the assignment (24a,b) with a

more general position. (Warning: the solution f(xt) of (3.2-6) must remain in the

functional space spanned by the seeds (3.1.2.1-28)).
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Let us now return to (23), but now with the seed choice (3.1.2.1-39)
rather than (3.1.2.1-28) (and let us immediately also use the simplificati-
on (32)). Natural choices for p,,Ux and v,,Ux in this case then read (see

(3.1.2.1-42))

P"
(_X) fi

"
WX (43a)

Y,, WX I& XUX (43b)

with 8,, (x) defined by (1 Oc). There thus obtain the following Newtonian

equations ofmotion:

= i, (.i,, + (a)

IV u(x,, - x. +a) (44a)+ i. (i" + U.)  (X" - X.) I ,

m=l,m#n (a) c(x,, x.)

of course with a defined again by (10b). Note that, except for the depen-
dence on the (collective) mean coordinate 5E(t), now defined as follows,

N

x (t) = N-'Y x,, (t) (44b)
n=1

so that (see (10b))

a=-aUx =Nrx(t)-al (44c)

N

a = N-1 [-ao +Y aj (44d)

this many-body model only features one- and two-body forces (in contrast

to the model (9)). Moreover the N+1 constants a,, k=0,1,...,N, only

enter via the single constant a, see (44d).

Proof Note that, by logarithmic differentiation, (43a) entails, via (A-39),

IV IV

aPn UX / a X. = A UX  '5nm Z  (Xn - XI) - Yj JXn- aj)le=I'e# 
j=1

I
- 0 - (5n.)' (X - X.) I I

(43c)

381



and likewise, from (43b),

IV IV

ar.Ux1ax.=q.fl.Uxf-5..

- (1 -5..K(Xn -X.) I - (43d)

Insertion of these expressions, (43c,d) as well as (43ab) and (3.1.2.1-42) with (32), in

(23) yields (after a bit oftrivial algebra) (44), which is thereby proven.

Exercise 3.2. 1-11. Show that the solutions of thefirst-order system

N

11 c(x,, -a.)
Ar

j=
c(x,, -a. +a,)

+ IT, = y' h. (45)

F1 0-(X. -X)
M=1 c(x,, -a.)

e=1'9#n

where the hm are N constants (whose values, in the context of the initial

value problem, are determined by this very equation, (44a), at t = 0), yield
the solutions of the second-order system (44a)-. Hint: insert (43a,b) with

(10c) and (3.1.2.1-39) with (32) in (30).

Exercise 3.2.1-12. (1) Verify that, in the (degenerate) case when

u(x) = x,  (x) = x-'
,
see (A-55), the model (44a) takes the simple form

Ar

(2U i" + i,, i,,, + i7nin + ui,, (x,, -xnn N (46a)

with

U=-U(t)=G +V)1(Y-a) , (46b)

with 3E = Y(t) respectively a defined by (44c) respectively (44d), and

IV

77 =N (46c)Y 17n

(H) Verify that in this. case

Y(t) = jF(O) exp [U (0) d f i +  T [X- (0) - at, f exp [-U(O)tl- 'I I ,(46d)
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u(t) = fk(O) +  f exp[-u (0) t] I / rx(O) - El , (46e)

where of course u(0) can be obtained from (46b) (or equivalently from

(46e)) at t = 0. Hint. sum (46a) over n from I to N, and then integrate
the resulting nonlinear ODE for jE(t) (after dividing it by X`-  f ).

(iii) Write the first-order system of evolution equations equivalent to

the second-order system (46a). Solution: see (45) and (A-55).

Exercise 3.2.1-13. In the equal particle case, entailing

,7,, = 17  (47)

(46) is similar, albeit not identical, to (34). Try and repeat, for (46) with

(47), the discussion given after (34). Can this treatment be extended to

(46) without (47) ?

Finally, let us return once again to (23), but now with the seed choice

(3.1.2.1-52). A natural choice for Pn Ux and vn Ux in this case then read

(see (3.1.2.1-53))

IV

P"UX =[O-(X")]-,v 14 [0-(Xn -XM)1  (48a)

rn UX = qn Pn UX (48b)

Therethus obtain the following equations ofmotion:

- n = 'n ('n +

IV

* 1: fin (in +qJC'(Xn -Xm +N5E) la(Ar3E) 0'(Xn -Xm)]
m=l,m#n

* 'm (in + 77n) ' (Xn Xm) (49)

where of course =- Y(t) is defined by (44b), and  (x) =  (xj co, co') respec-

tively a(x) -= o-(xl co, co) are the zeta respectively sigma Weierstrass functi-

ons, see Appendix A.
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Proof Logarithmic differentiation of (48a, b) yields

N

a'O" Ux /a X. = gnm '0 Ux [- N (x,, ) + 11 ' (X" -XA

- (1 - i5n.) Pn UX  (Xn - Xm) I (48c)

as well as well as

N

"7nUX 1OXm -:":gnm77nPnUX PNJXJ+ I -XA

(48d)

Insertion of these expressions, (48c,d), as well as (48a,b) and (3.1.2.1-53), in (23)
yields (after a bit oftrivial algebra) (49), which is thereby proven.

Remark 3.2.1-14. The Newtonian equations of motion (49) are the
A'

special case of the Newtonian equations of motion (44) With ao =Ia.,
j=1

hence a = 0 (see (44d) and (44c)).

Exercise 3.2.1-15. Show that the solutions of these (Newtonian, se-

cond-order) many-body equations of motion, (49), are provided by the

solutions ofthe following system offirst-order ODEs:

N M
 '

I -(Xn - X.-in + qn = [0-(Xn)]' F1 [0 )jr[h,+j] hp('-)(xn)] , (50a)
M=I'M#n M=2

where the hn 's are N constants of motion, u (x) -= u(xl co, W') respectively

p (x) -= p(xl co, co') are the "sigma7' respectively the doubly-periodic "pee"

Weierstrass functions (see Appendix A), and of course

P(O)(x)-=p(x), p(')(x)-=p'(x)=dp(x)1dx, p()(x)-=p"(x)=d-p(x)ldx',(50b)

and so on. Hint: insert (48a,b) and (3.1.2.1-52) in (30).

Exercise 3.2.1-16. Ponder on the shnilarities and differences of (44)
respectively (45) with (49) respectively (50). Hint: consider to begin with

the N = 2 case; and note that generally, if u vanishes, a = 0, see (44d),
the Newtonian equations ofmotion (44a) and (49) coincide.
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Exercise 3.2.1-17. (1) Verify that, in the (degenerate) case when

o- (x) = x,  (x) = x-', see (A-55), the Newtonian equations of motion (49)

take the simple form

N

i =Vi + Y (51a)
,
(2n.+'7,.+q.n)1(Xn_X.) ,

m=l,m#n

V_=V(0=[i(t)+if]1jE(t) (51b)

with x-(t) defined by (44b) and  T by (46c). (U) Verify that in this case

v(t)=jk(O)+ Texp[-v(O)t]j1x(O) ,
(51c)

x (t) = jq-!(O) + x-' (0) Y(O) exp [v (0) t] I/ [k(O) +  fl (51d)

where of course v(0) can be obtained from (51b) or (51c). (iii) Verify that

the system offirst-order ODEs

IV IV

fj (x,, - x.)]-' [h, x"' + 1] 1 h. x
N-m 1 (52)- n + 17n n

M

(M

is equivalent to the system of second-order ODEs (51). (iv) When is this

system of ODEs, (52), solvable? Hints: for (i) and (U), see Exercises

3.2.1-11 and 3.2.1-12; for (iii), insert (A-55b) and (A-37b) in (50); for

(iv), see (2.5-26).

Exercise 3.2.1-18. Find the flaw in the following general treatment, and identify
the exceptional cases when it is correct (and it reproduces results given above). Con-

sider the set of interpolational functions

'V

q
( ) (XIX) =11 [(Od (x - xf) I 9d (X - X01  

(53a)

where we maintain the freedom to choose at our convenience the N
2

functions

& (x), see below, except that we require them to satisfy the conditions

V, (0) = 0
,

(53b)

which is sufficient to guarantee the fundamental property of the interpolational func-

tions,

q(') (x.lx) = 5. ,
(54)
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so that, ifwe define the function f(x, t) via the interpolational formula

IV

(n)
tf(x, t) (t) q x (55a)

n=1

there holds the relation

f. (t) = f[X. (t), d - (55b)

'fhe (N x N) -matrix D Ux that corresponds to the set of interpolational functions

(53),

D,,. Ox = q,(,) (x,, Ix)X -

(56)

(see (3.1.1-6)), takes the explicit form (see Exercise 3.1.1-7, or verify now by explicit

computation)

,V

..,
ko, (X. - X,) / (0", (X" -X'ADn.Ux =,5. 1] ni

(57a)+ a - 05nm ) [(OMn (0) /  9mm (xn _xmA [flmnux IfimmUX

N

,Bnm UX =: 11  9.f (Xn - Xf) ' (57b)
e=I,e#.

(How can this formula be correct ? Evidently the definition (53a) does not depend on
the assignment of the "diagonal" functions (p.,Jx), yet D.Ux seems to feature a

presence of these functions in its off-diagonal component, see (57a). Yet (57) is cor-

rect: verify it, and understand the way out ofthis (fictitious) paradox).
The property of D Ox ,

to provide a representation of the differential operator

d Idx in the functional space spanned by the interpolational. functions (53), corre-

sponds to the formula

IV

-E Dkwlmof '[X' (t)'t] f(X't) X X = XnW
(58)

Therefore time-differentiation of (55b) yields the relations

N

(59)W = fI[XnWItI+'n(0j] D [X(t)]f,,,(t)
M=1

where of course (here and below)

f(x,t)_=aAX,01at (60)
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Let us now assume that f (x, t) satisfy the very simple PDE

fl(Xlt)=O I (61a)

entailing

RX,0 = AX, 0) (61b)

and let us moreover set

f"W ='U" i.W , (62)

where we reserve the privilege to choose later the N constants 'U, This equation, via

(55b), entails

x i" (t) = f[X" (t), d (63)

hence, via (56b),

x _i" (t) = AX" (t), 01 - (64)

But (55a) entails

X

f(x, 0) = 1: f (0) q
(n) [XI: (O)] , (65)

n=1

hence

(66)f[x,(t) 01=Y f.,,(0)q()[x,(t)j:j(0)] I

M=1

hence (via (62) and (53a))

N N

,Un'n(t)=l Ym"Jo) 11 t 9[Xn(t)-XZ(0)11(0[Xm(o)-X (O)II (67)
M=1 e=1'e#M

This is afirst-order autonomous ODE for xn (t) which can clearly be solved by qua-

dratures.

On the other hand, insertion of (62) in (59) yields, via (61 a), the Newtonian evo-

lution equations

N

Yn 'n = il Dnm(x) pmim (68)

) defined by (57). In this equation, and sometimes again below, merelywith D,.(x

for notational simplicity we omit to indicate explicitly the time-dependence.
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We are still free to choose the N' functions (9,,, (x), except for the constraint

(53b). Let us choose them so that they satisfy the additional limitation

 9,', (0) =- d  o, (x) / dx
n  X=O= 0

, (69)

which entails, see (57a), that the (N x N) -matrix DUx become diagonal,

IV

D,,. Ux = 15,,, Z g, (x,, - x, ) 1,u. . (70)

Here we have introduced the function g, (x) via the position

&9W = Un (OnfW / (O CW I (71a)

which entails

X

(x) = exp flUn' f dx g,,, (x') (71b)

In this formula, (71b), the lower limit of integration is arbitrary (but different from

zero), since any arbitrary constant multiplying  o,,, (x) has no relevance whatsoever,

see (53a).
Insertion of (70) into (68) yields the Newtonian evolution equations

2

(72)Yn 'n = 'n I gnm (Xn - Xmn

m=l,,.#n

We have therefore concluded that the initial-value problem for the many-body model

characterized by these equations of motion, (72), can be solved by quadratures, see

(67). Note that we have a large latitude in the choice of the functions g, (x), which

can still be assigned arbitrarily, except for the requirement that the functions  9,,, (x)

yielded via (71b) satisfy the conditions (53b) and (69): this of course entails that

g,,, (x) diverge at x = 0. Alternatively, one can choose &(x) to satisfy (53b) and

(69), and compute the corresponding g, (x), for instance

'p,W = X
Ae /'U.

(73a)

with A,,, lu,, > 1 (sufficient to guarantee (48b) and (60)) yields

gnJX):-Ant1X ; (73b)

(0, (X) = expl (-A. /'U,') X-P (74a.)
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with A, lu,, > 0 and p = 1,2,3.... (also sufficient to guarantee (53b) and (69)), yields

g, (x) = 2 p A, X-(2p+l) ; (74b)

and so on.

Given the large freedom in the choice of g, (x), one can moreover set (see, for

instance, (73b))

g"' (X) = 62 f", (X) (75a)

as well as

X"(t)=tIe+ "(t) , (75b)

and then take the limit 6 -> 0, transforming thereby (72) into

N

W = I fl. (19 - (76)
.=I,M#n

which are the Newtonian equations of motion of the standard many-body problem
with velocity-independent pair forces!

Note finally that, while we have discussed here this (flawed!) approach in a one-

dimensional context, the treatment we have just reported could be repeated just as

well (nay, just as badly -- since there is a flaw!) in the S -dimensional case, see indeed

the discussion given at the end of Sect. 3. 1. 1.

Hint: is the simple time-evolution (61) compatible with the representation (55,
53)?

3.2.2 Two-dimensional examples (in the plane)

In Sect. 3.2.2 we use the notation for 2 -vectors introduce'd at the begin-
ning of Sect. 3.1.2; the reader is advised to review it. And we also review

here, in 2 -vector notation, the two formulas on which our treatment will

be based in Sect. 3.2.2:

N

[ (a P, / a F.) + pm b-,.P, r. rn r. r. r,I

+ [ n ,5
nm

]- [(0 ; 
n

/ ta Fm ) r. (1)
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Ar

+ h. s. (F,,) (2)p,, r
M=1

In both these equations p, and   are functions of the N particle coordi-

nates F (t) , p,, -=,o,, LF(t)],   -=   LF(t)], and the choice of these functions

remains our privilege; the 2 -vector-valued (N x N) -matrix f) =- b Lr (t)] in

(1) is determined, as detailed in Sects. 3. 1. 1 and 3.1.2.2, by the choice we

make for the N seeds s,, (7); the N "constants of motioif'  . in (2) can

be determined, in terms of the initial data, from (2) at t = 0, namely from

the (system of linear algebraic) relations

N

 .S.[j;n(0)1=,D,,Lr(O)Irn(O)+  rE(O)I (3)
M=1

and of course in (1) (t), (t) ,
and likewise in (2)rn rn rM rM

4.

n
(t). Needless to say, in all these equations, (1), (2) and (3),rn r W

as well as in those written below, the index n takes all integer values

from 1 to N.

These formulas follow directly from those of Sect. 3.2; but note that we are now

restricting attention to the simple case with

A=0 (4a)

entailing

2=0 (4b)

hence (see (3.2-6))

AF, t) = AF, 0) - (4c)

In particular (1) corresponds to (3.2-19) with (4b); (2) corresponds to (3.2-23) via (4c)
and (3.2-1), of course with  . =  . (0) (inde4 see (3.2- 1) and (4)), which justifies

considering the N 2 -vectors k as constants ofmotion (and therefore the Newtonian

equations of motion (1) as integrable); and likewise (3) corresponds to (3.2-21b) (as
well as to (2) at t = 0). Of course, for any given choice of N, of p,, r, of v,, r ,

and of s,, (F) hence b r, the specific form taken by (1) is interpreted as Newtonian

equations ofmotion of our N -body problem in the plane, and the corresponding form
taken by (2) provides substantial progress towards solving that N -body problem.
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7

Before going over to the discussion of specific examples, let us inter-

ject the following.

Remark 3.2.2-1. The evolution equations (1) admit the (trivial) solu-

tion

71,W =P, (0) 1 r,,W = 0
1 1 (5)

for any (arbitrary) choice ofthe initial positions F, (0).

Now, to the examples. Firstly we restrict attention to the following

simple choice for p,, r and   r:

P. r =,u,, (6a)

IV

r = Y, (6b)
M=1

with a,, and 77,,. arbitrary (scalar) constants. Then (1) yields the Newto-

nian equations ofmotion

Af Ar

r. + I r, r 'U. r. + (7)
-I f=1

while (2) becomes

4.
N N

'U', T. s. 17,,. T. (8)
M=1 M=1

This latter equation, (8), is a system of IV coupled, generally nonlinear

(up to exceptions, see below), first-order ODEs with constant coefficients
for N 2 -vectors, namely a system of 2N (first-order, constant-

coefficient) ODEs for 2N (scalar) unknowns. Moreover, if the (NxN)-

matrix with elements 17nm is diagonal, namely if

77nm = 0 for n#- m
,

(9)

then this system, (8), decouples into N separate 2 -vector (first-order,

constant-coefficient) ODEs, each ofthem involving 2 (scalar) unknowns.
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The alert reader should have noted that (5) respectively (6) are merely copies of

(3.2-26) respectively (3.2-27a), as (4a), (4b) respectively (4c) are copies of (3.2-32b),
(3.2-32c) respectively (3.2-32e), and (7) respectively (8) are copies of (3.2-34) re-

spectively (3.2-33).

Exercise 3.2.2-2. Suggest a (possibly complex) modification of these equations of

motion, (7), adequate to guarantee that they then possess a (large) set of completely
periodic solutions. Hint: see Exercise 3.2-3.

The simplest example we consider corresponds to the choice of seeds

(3.1.2.2-2). This yields the following solvable 2 -body problem in the

plane:

r  k-FAT,)
I I

- 1712 j;2 +11 2A

r, + 7711 j;, + 7712 ':2 r,' AF2)17722 F F 7- (U. r2 + 772, r +2)(k A 1) (10a)

j;,42rl -772, r, - 7722 r2 + (k - F, A 2)_

F F A[CUI ri + 7711 1
+ q12 ':2 r2 A 2CU2 r2 + 7721 r, + 7722 j;2 ) (k * F2 (10b)

The corresponding equations that demonstrate the solvable nature of this

problem read as follows:

,u,il=hl.,,x,+h2xYl-77iixi-ql2X2  (I 1a)

pjj=hjYxj+h2yYI-77nYi_'712Y2 (I lb)

JU2 '2 = h, x2 + h2x Y2 - 7721 xi - q22 X2 (1 1C)

JU2  2 = hy X2 + h2y Y2 -1721 YI - 7722 Y2 (11d)

The equations of motion (10) follow straightforwardly by inserting (3.1.2.2-3) in

(7). Note their rotation-invariant character. They are also invariant under inversions,
and under resealing ofthe particle coordinates (F -> c 7,,, 6 = 0).

Likewise, (11) follow straightforwardly by inserting (3.1.2.2-2) in (8). Note that

the solution of (the initial-value for) these set of 4 coupled linear ODEs is a purely
algebraic task. The first step is to determine the values of the 4 constants

hl, h2x , h, , h, in terms of the initial data, F, (0), j;2(0), (0), r (0), by solvingY Y ri 2
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(10) at t = 0. Note that the condition on the initial data sufficient to guarantee that

this system of 4 linear equations for the 4 unknowns h,.,, h,, h,y, h,y have a unique

solution, namely the requirement that the relevant "determinant of coefficients" not

vanish, reads (after an elementary computation)

k-F,(O)AF,(O)#O ,
(12)

and its significance for the equations of motion (10) is clear. After the 4 constants

h1x 1 h2x  hly  h2Y have been computed, the solution of (11), now to be considered a

system of 4 coupled first-order linear ODEs with constant coefficients for the 4

unknown functions X1 (0 Y1 (t), X2 (t)  Y2 (t) , generally requires the diagonalization

and inversion of (4 x 4) -matrices. However, if (9) holds, this task reduces merely to

the diagonalization and inversion of (2 x 2) -matrices and can therefore be easily ac-

complished in completely explicit form.

Exercise 3.2.2-3, Solve explicitly this case and discuss the character of the mo-

tion. Are there periodic trajectories ? Solution: see <CJX93b>.

Exercise 3.2.2-4. Investigate the nature of the motion in the more general case

when (9) does not hold: what about periodic trajectories ? Hint: see Exercise 3.2.2-5

below.

The second model we consider corresponds to the choice of seeds

(3.1.2.2-8). Hence this solvable 3 -body problem in the plane reads as

follows:

'Un n r. I
-;;F 77n. +[ 3)Y, 2) A( I

mod(3)

3

+
+I
- j;,n+,) n = 1, 2,3 mod(3)rM 77me r11A (13)

t=1

while the equations from which its solution can be obtained in almost ex-

plicit form are given by (8) with (3.1.2.2-8).
These equations of motion, (13), are clearly invariant under (plane)

rotations, as well as under rescaling of the particle coordinates

(F c F, ,
n = 1, 2,3, 6 = 0). They are moreover invariant under translations

Q:,, Fn + j;O ,
n = 1, 2,3, 0) ,

if the 9 constants 77n. satisfy the 3 con-ro

straints

3

(14)1] 77. = 0, n=1,2,3 .
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And let us recall the geometrical significance of the denominator in the

right hand side of (13): up to its sign, it is twice the area of the (plane)
triangle whose vertices coincide with the positions ofthe 3 particles.

Exercise 3.2.2-5. Show that the solution of (13) has the explicit form

F,, (t) = F, + 7,, exp(A, t), n = 1, 2,3, (15)
P=I

obtain the algebraic equations that determine, in terms of the initial data E(O) and

k(O), the 6 scalars A,, p 6, and the 21 2 -vectors n = 1, 2,3; p = 0,...6,

and discuss the solution (15), focussing on the eventual presence of (possibly multi-

ply) periodic motions. Hint: write out (8) with (3.1.2.2-8) and take advantage of its

character: linear, constant coefficients. Solution: see <CJX93>, <C93a>.

The third model we consider corresponds to the choice of seeds

(3.1.2.2-32) with (3.1.2.2-49); we moreover restrict consideration to the

case (9) (for simplicity; the diligent reader will also explore the general
case, without (9)).

We thus obtain the following solvable N -body problem in. the plane:

ln n -77n ';n + (k' 'n A FmA r
M=I'M#n

r,' + F, A F u rM 77 rnr,' + [an r am r] +
.
Fm) (k -A; (16a)

IV

0-,' r = fj (k - F,, A 7,) . (16b)
e=I,I#n

The corresponding equations, providing the clue to the solvability of

this model, read

Ar

,an r,, = -i7n +L h. (Xn)
In

(Y.)
N

-1
n = 1, 2,..., N (17a)

M=1

or equivalently

N

+Y,V-'l h_ (Xn IYX-I (17b)Jun kn = -'7n Xn n

-I
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IV

"'-I I h, (Xn / Yn)m-1 (17c)Pn  n -'7n Yn + Yn
M=1

The Newtonian equations of motion (16) are obtained by inserting (9) and

(3.1.2.2-50) in (7); likewise (17) are obtained by inserting (9) and (3.1.2.2-32) with

(3.1.2.2-49) in (8).
We called this model, (16), solvable. Indeed the evolution equations (17), with

the N (time-independent!) 2 -vectors  . determined in terms of the initial data F (0)

and L(O) by the same equations (17) at t = 0, can be solved by quadratures. Let us

tersely indicate how

For N = 2 these equations, (17), are linear hence easily solvable; indeed they

reduce to (a special case of) (10). Hereafter we assume N > 2.

We rewrite these equations, (17b,c), as follows:

pi=-qx+y'v-'H(')(x1y) (18a)

,a =-i7y+y'v-'H(Y)(x1y) (18b)

with

'V

H(')(u) = h,,,, um-1 (19a)
M=1

'V

H(Y) (u) = Y h.Y um-1 (19b)

Note that, merely for notational convenience, we omit here to indicate explicitly the

index n.

We now set

U=X/Y, V=Y,/x (20a)

X = (U
Ar-1

V) 11(N-2) Y=(UV)11(Y-2) (20b)

and obtain for u and v the ODEs

pzi =v F(u) ,
(2 1 a)

p  = (2 - N) 77 V + V2
"

G(u) (21b)

with

F(u) = u [ H(') (u) - u H(Y) (u) (22a)
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G(u)=H('3(u)-(N-l)uH(')(u) (22b)

We now set

V (t) = VIU (t)] (23a)

so that (in self-evident notation)

 = V'(U) 1 
. (23b)

Hence, from (21) and (23),

V'(u)=[F(u)]-'[(2-N)77+V(u)G(u)I (24)

This linear ODE for V (u) can be solved by quadratures:

V(u)=V[u(0)]expf fu du[G(u')1F(u')]j
 U(O)

+ (2 - N) f
u

du' [F(u')] -1 expf udu" [G(u")1F(u)] 1 (25)
U(O)

Then (2 la), which now reads

,uit(t)=V[u(t)jF[u(t)j , (26)

can also be integrated by a quadrature, and the solution of the problem is thereby
completed (up to functional inversions), since once u(t) is known, v(t) is easily ob-

tained from (21a), (22a) and (19), and then x and y by (20b).
Indeed we can go a bit fixther, by noticing that (19) and (22) entail

F(u) = c (u - uj) (27)
j=0

'V

G(u) /F(u) = c I pj / (u - uj) (28)
j=0

with (see (22a) and (I 9b)) uo = 0 and c = -h(N) (we assume this latter constant not to
Y

vanish). The computation of the other 2N+l constants (namely:
um 2

m = 1, 2,..., N; pj , j = 0, 1,-, N) is a purely algebraic task. Then the integrations
in the right hand side of (25) can be performed to yield:

'V

V(U)=V[U(O)lri f(u-uj)/[U(O)-Uj]lpj
j--0
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N

ri Rut - -(I+pk (29)+[(2-N)771c][jj (u-u,)Pj] u

du' Uk)
j=0

f.(0)
k=O

The many-body model (16) features many-body forces, due to the

factors u, ( ) in the right hand side. It is clearly invariant both under a

(common) rotation and (time-independent) rescaling of all particle coor-

dinates F,' ,
n = 1, 2,..., N. It is, instead, not translation-invariant, and it fea-

tures forces which become singular whenever 2 particles are aligned with

the origin of coordinates. It may be of some interest to write the Newto-

nian equations of motion of this model, (16), in the polar coordinates

On ,
defined in the standard manner:r

(30a)r,, (cos On, Sn on) I

entailing of course (see (3.1.2.2-1))

'Fm = rn rm COS(On - Om)  
(30b)

'Fn A Fm = -r,, r. sin(o,, - On) (30c)

They read

N

2
r2 fln  n + 77n rn ) [( n 1 n) + 6n Cotan(O,UnFn = rn  n _17n  n + E n

_OJI
m=l,m#n

+6n [ (Um  m +17m rm)Cotan( on -0m)+jUm rm 6m ] [ YnO I rm(01 I 01a)

IV

,
 ., cotan(O,, - Oj]u,, + r

+[pm rm  m cotm(0,, -0.)-lim  m -77.rm] [SnO I Sm(D] 11  (3 1b)

j n
[sin(O. - Ot)] (3 1c)
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Exercise 3.2.2-6. Verify these equations.

Exercise 3.2.2-7. Modify the equations ofmotion (16) and (3 1) so that they-pos-
sess a (large) set of completely periodic solutions. Hint: see Exercise 3.2-3, and do not

hesitate to go complex ifneed be.

To manufacture an example of many-body problem in the plane that

only features one- and two-body forces we now maintain the choice of

seeds (3.1.2.2-32) with (3.1.2.2-49), but we abandon the special assign-
ment (6) and we replace it, as indeed suggested by (3.1.2.2-50), as fol-

lows:

P,' (D =,u,, 0-,' r (32a)

 , r = 77n j;n Un r (32b)

where a,, and 77,, are again 2N arbitrary constants and of course o-,, r is

defined by (16b) (or (3.1.2.2-34)). We thus get the following Newtonian

equations ofmotion:

Ar

fl. r. = -U , F. + L f (k - F,, A F.) .

m=l,m#n

rl,, + 77n i;, ) (k * r. AiD +(Pm r . + 77. 70 (k * r,,AF,,)] (33)

Indeed, logarithmic differentiation of (32) with (16b) yields

a P. r a F. =x C', r

N

f7gn. 1: l(kA:f)l(k'j;nAj;t)l+('-(5nm)(kAj;n)l(k*Fn A i;0!, (34a)
e=l,e#n

Ar

[a  . (D / a  , I - ii = 77,, 0-,, (D [ 9n. f " + ';n 11

(1 - 15nm) ':n (k,  i A Fn) / (k'Fn A Fm) (34b)

with ii an arbitrary 2 -vector. And insertion in (1) ofthese expressions, as well as ofthe

expression (3.1.2.2-50) of .5 r, yields, after some nice cancellations, precisely (33).

398



The Newtonian equations of motion (33) only feature one- and two-

body forces; the curious property of these forces, to become singular
whenever a pair of particles is aligned to the origin, remains. Again, the

model (33) is not invariant under translations; it is instead clearly invari-

ant both under rotation and rescaling.
Note that the equations of motion (33) differ from (16) not only be-

cause of the presence in (16) of the (multi-body) term [o-,,(x)lo-.Ux]. In-

deed the equations of motion (16) entail that, if a single particle, say the

k -th one, has at any one time a vanishing velocity, r- (0) = 0, then
k

rk(t)=Ol F,(t)=Fk(o), for all time; namely this particle never moves, al-

though its presence does affect the motion of the other particles. Such a

property is not featured by the equations of motion (33), which are incon-

sistent with any one particle remaining still while all the others move; al-

though these equations of motion, (33), admit as equilibrium configura-
tion any configuration with all particle standing still, namely F (t) =

n
(0),

n = 1, 2,..., N, is a solution of (33) for any arbitrary assignment of the N 2 -

vectors 7JO).

Exercise 3.2.2-8. Write the equations in polar coordinates that correspond to (33).

Exercise 3.2.2-9. Modify the equations of motion (33) so that they possess a

Oarge) set ofcompletely periodic solutions, Hint: see Exercise 3.2-3.

The "degree of solvability" of the Newtonian equations of motion

(33) is lower than for the equations of motion (16). It amounts to the

availability of N 2 -vector integrals of motion  . defined (implicitly), in

terms of the N 2 -vector coordinates 7 and the N velocities
.

of the NrI

particles, by the N linear 2 -vector equations

IV

1] k (Xn)-'(Y,,) O-n r  ln rn + qn ';n I  (35)
M=1

with o-,, r defined by (1 6b).

These equations, (35), are merely (2) with (32) and (3.1.2.2-32) with (3.1.2.2-49).
They have, as usual, a double role. At t = 0, they can be considered a set of N 2 -

vector (i.e., 2N scalar) linear algebraic equations for the N 2 -vector (i.e., 2N

scalar) unknowns  .: their solution, which is a standard algebraic task, determines
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these quantities in terms of the initial data (for the N -body problem) E(O) and k(O).
(This task is facilitated by noticing that the determinant of the coefficients in the left

hand side of (35) -- an algebraic set of linear equations that should of course be solved

componentwise, i.e. firstly for the x -component ofthe 2 -vectors h,,,, then for the y -

component of these 2 -vectors -- is of Vandennonde type). Once the N (time-

independent !) 2 -vectors  ,, have been determined, the equations (35) characterize

the time-evolution of the coordinates j;,, (t), hence they can be solved instead of the

equations ofmotion (33). To obtain a unique solution from them one must of course

assign the initial data E(O), and the theory detailed above then guarantees that the

solution of this initial-value problem for (35) also provides the (unique) solution to

the initial-value problem, of course with the same initial data, for the Newtonian

equations of motion (33). The advantage, in terms of solvability, is that (35) is a sys-

tem of N 2 -vector, generally coupled and nonlinear, albeit autonomous, first-order

ODEs, while (33) is a system ofsecond-order ODEs.

3.2.3 Few-body problems in ordinary (3 -dimensional) space

In Sect. 3.2.3 we use the notation of Sect. 3.1.2.3, which the diligent
reader should immediately review, Our presentation here is limited to

solvable few-body (specially: 3 -body and 4 -body) problems, of course in

ordinary (3 -dimensional) space: those that correspond to the two cases

treated in Sect. 3.1.2.3. Indeed the results of Sect. 3.2.3 emerge directly
from the insertion of the relevant expressions of b r and of the seeds

s,,(j;), as given in Sect. 3.1.2.3, into the two fundamental formulas (see

(3.2-34) and (3.2-33))

N N

r'U" n qnm + I r. * -kmr A,, r. + 77w j;

Af

[-'7_j;.+ks(m)0A (2)

Here, of course, all vectors are 3 -vectors.

The solvable 3 -body problem that obtains by inserting (3.1.2.3-2) in

(1) reads

3 3

(3a)+rm r
-

I I - 77n.
 '

+
.
'(;m+l A;m+2) [It. r.

-,
77m, F, I/ A I ,
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with (see (3.1.2.3-3))

A= A F, A F (3b)

Here, and always below when discussing this 3 -body model, all indices

take the values 1,2,3 mod(3).

These equations of motion, (3), are invariant under rotation and

rescaling, but not under translation. And let us recall the geometrical sig-
nificance of the denominator A in the right hand side of (3a.) ; it is, up to

its sign, six times the volume of the tetrahedron having the origin of co-

ordinates, and the positions F of the 3 particles, as its 4 vertices (see

(3b)).
The solvability of this model follows from the form that (2), via

(3.1.2.3-2), take in this case:

3

g, r, = -E [q,,. F. ] +  , x,, +  2 y,, +  3 z,, ,n = 1,2,3 , (4a)
M=1

or equivalently,

3

Pn "nj (-'7n.Umj+ hmjUnm) ,
n = 1,2,3, j = 1,2,3 (4b)

where we have set, for notation convenience,

Xn
 

Unl I Yn=Un2 Y Zn
 

UA ,
n = 1, 2Y 3  (4c)

h,, , = hm, 3
h

-

, h,,. =- h 2,3 (4d)
mT

= hm2 m3) M=L

of course with (h., h,, hrz). By a technique which should by now be

familiar the 9 scalar equations, (4b), at t = 0, determine the values ofthe 9

scalar constants of motion hmj in terms of the 18 scalar initial data, u,,,j0)

and "nm (0) ,
see (4c), and then determine the time evolution of the 9 quan-

tities U..W , namely of the 3 3 -vectors F (t), see (4c). Both steps require

only algebraic operations: the first one obviously so, see (4b); and the

second one as well, since the required task is to solve a system of linear

first-order ODEs with constant coefficients, see again (4b).
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Exercise 3.2.3. 1-1. Solve as explicitly as possible the 3 -body model (3)' and dis-

cuss the possibility of (completely, or multiply) periodic motions. Consider the sim-

plification that occur if (i) U. (ii) q,. = 0. Modify case (ii) so that all its

motions are completely periodic. Is there a modification of case (i) (with q,, # 0) that

yields the same effect (i.e., only completely periodic motions) ? Hint: see <CJX94>,

and note that only the simplified case (i) is fully treated in this reference. However,

the case considered in this reference is marginally more general: it also features, in its

equations of motion, 3 constant 3 -vectors ii,, which however break the rotation-

invariance of the model. Does such a generalization correspond just to a shifting of

the 3 particle coordinates ? If not, trace the appropriate place in the treatment of Sect.

3.2. where such a generalization should be introduced.

Exercise 3.2.3-2. Discuss the 2 -body respectively 1 -body problems that obtain

from the 3 -body problem (3) if one respectively two particles are fixed at some arbi-

trarily assigned positions. Hint: see the Remark 3.2. 1.

Next, let us consider the solvable 4 -body problem that is obtained by

inserting (3.1.2.3-10) in (1):

f-17. r +'U" , + (j;.+, - Fm, )A (Fm+2 Frn M+3) ltymrm Y '7mJ;J1A 15(5a)

F,) A (F, - FI)] (5b)A A (':I I F2 I j;3 I F1 0;11 3

Here, and always below while discussing this 4 -body problem, the indi-

ces n, m,  run from 1 to 4 and are defined mod(4) ,
while the indices j,k

run from I to 3 (see below: corresponding to the 3 -dimensional nature of

ambient space).
These equations of motion, (5), are invariant under any common

(time-independent) rotation, and under any common constant rescaling

,,,
6 = 0), of the 4 particle coordinates (and as well, of course, of(F" -> CF

the 4 velocities
"

and the 4 accelerations
-

); they are moreover invariantrn rn

under a common, time-independent, translation (Fn -* F ro,,
+ F,, 0), iff

the 16 parameters i&.'satisfy the following 4 constraints:

4

Y n = 1, 2,3,4
'_.,

77. = 0
,

(6)
-I
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And let us recall the geometrical significance ofthe denominator A in the

right hand side of (5): up to its sign, it is 6 times the volume of the tetra-

hedron that has the 4 particle coordinates F,, has its 4 vertices (see (5b)).
In close analogy to the 3 -body model discussed above, the formula

that displays the solvability of this 4 -body problem obtains by inserting
(3.1.2.3-9) in (2). Hence it reads:

4

,
[i&. F. ] +   +  , x,, +  3 y,, +  4 z,, ,

n = 1,2,3,4 , (7a),u,, r Y
M=1

or equivalently

4

j 1,2,3A, k,j+1 u.,j+, + h., u,,,.) n = 1,2,3,4 (7b)
M=1

with

n = 1, 2,3,4 (7c)Un, 11 Un,2 =xn3 Un,3 =Yn3 Un,4=Zn

h., h., h 2= hmy  hm3 = hnnz, m = 1, 2,3,4 (7d)

The discussion of how to evince from this formula, (7), the solution

of the initial-value problem for the 4 -body model (5) is so closely analo-

gous to that given above (in Sect. 3.2.3, as well indeed as in other pre-

ceding sections), that we forsake any additional elaboration here, except
to note that, while (4b) are 9 scalar equations and serve to determine

firstly 9 constants of motion hk .
see (4d), and then the time-evolution. of

9 quantities ujt), see (4c), now (7b) are 12 scalar equations, to evaluate

firstly the 12 constants hnj 9
see (7d), and then the time evolution of the 12

quantities u,,,j+l(t), see (7c).

Exercise 3.2.3-3. Formulate and solve exercises analogous to Exercises 3.2.3-1

and 3.2.3-2, but for the solvable 4 -body model (5) (with or without (6)). Hint: see

<CJX94>.
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3.2.4 M-body problems in M-dimensional space,

or M'-body problems in one-dimensional space

Any 9 -body problem in 9 -dimensional space can also be interpreted as

an N -body problem in S -dimensional space provided 99 = NS, since

both models refer to the time-evolution ofthe same number, NS ==,W 9, of

(scalar) quantities. However, by such a trick, one generally obtains N -

body models in S -dimensional space whose physical interpretation is

moot, and in particular which do not live up to the requirement we con-

sider mandatory for any set of evolution equations to be interpretable as

those characterizing an N -body problem in S -dimensional space, namely
that they be expressible in terms of S -vectors so that their property to be

rotation-invariant in S -dimensional space be immediately apparent.
Such a criterion has however no relevance for one-dimensional space

(S = 1), since such an enviroranent has no room for rotations. In such a

case one might, but one need not, consider as a requirement for "physical

interpretability" that the Newtonian equations of motion be invariant un-

der translations (x,, -+ x,, + x, n=N, io = 0) .

In Sect. 3.2.4 we outline how certain translation-invariant N -body

problems in one-dimensional space, with

N =M2
,

(1)

can be obtained by (appropriately) reinterpreting certain M-body prob-
lems in M -dimensional space. As we show below, these models are solv-

able by purely algebraic operations.
Our starting point is, in M -dimensional space, the set of M "linear"

seeds

SI (:) = X I S2 YI S3 V)= Z (2a.)

We evidently need here a change of notation, which we perform by using
for the M components ofthe M -vector F the notation

(3a.)

which also entails, in connection with the M nodes (or particle coordi-

nates) i:
,

the corresponding assignment

Fj =(xj,yj,zj"*,)=( ill i2l j3l*,*, il) (3)
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Hereafter the indices j, k, run from 1 to M, and we focus on the evo-

lutions of N = M' "particle coordinates in one-dimensional space"

 jk  jkW

The second-order evolution equations of motion of our solvable N -

body problem then read

M M

Pjk  jk = I I - 77jkjk' efk' + ejk' [ Ujk ejk + E (17fkte'  W) C---)k , (4a)
j',k'=l e,e=1

with the M2 elements of the (M x M) -matrix ;-; given by the simple rule

Qik
=  jk (4b)

In the right hand side of (4a) denotes the (M x M) -matrix which is the
tt

inverse of  j, and (;-;-'),k indicates of course the jk -th element of this in-

verse matrix.

The corresponding first-order ODEs read

M M

lijk ejk = - 1] ( jj hu) (5)d(77jkjk'  fk) +I
jV=1 1=1

where the quantities h,, are N' constants ofmotion.

Let us show directly that (4) follows from (5). Indeed time-differentiation of (5)
yields

M M

,
(ej, h,) . (6),ajk ejk (i7jvk, ejk, ) +Y

jV=1 t=1

On the other hand (5) can be written, in M -vector notation,

(k) (k)w h P k = 1, 2,...,M (7a)

by using (4b) and by introducing the M -vectors

h(k) (hkl,k,,...,hk,) ,
k = 1, 2,...,M (7b)

(k)
P (P1k1P2k2**"pmk) I k=1,2,...,M (7c)
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M

+ (7d)Pjk JUjk eft 1: (17fiVk'  fk')
jI,V=1

as well, of course, as the (Mx M) -matrix (4b). Hence

 7
-1 (kh(k) = ,

E p
)

,
k = 1, 2,...,M ,

(8a)

or equivalently (see (7b), (7c) and (7d))

M M

hu = E f [Pi'k eft + 1: (77jkjV  fk' C-- I'
(8b)

j'=l jk'=l

Insertion of this expression of hk, in (5) yields (4), whose consistency with (5) is

thereby proven. (Advise to the diligent reader: do the detailed calculation, and beware

ofthe different role the index k plays in the right hand sides of (7b) and (7c)).

Let us emphasize that in (5), as well as in (4), the N = M2 quantities ujk, as well

as the NZ = M4 quantities Y7jVk,, are arbitrary constants. The N = M2 quantities h.

in (5) are also constant but their role is quite different, and indeed they do not appear

in the equations of motion (4). They must rather be considered as N = M2 functions

of the N = M2 "particle, coordinates"  jk =  jk (t) and velocities ejk = ejk (t) ,
as in-

deed given explicitly by (8); N functions which remain constant over time ("con-

stants ofmotion7) when the  ,, (t) evolve according to the equations ofmotion (4).

As usual, the initial-value problem for the Newtonian evolution equa-

tions (4) can be solved by focussing instead on (5). Firstly one evaluates

the N = M2 constants ofmotion hk, from (5) at t = 0, in terms ofthe initial

data,  j, (0) and ej, (0) : this requires the solution of M disjoint systems of

M linear algebraic equations in M variables. Next, one integrates the

system of linear ODEs with constant coefficients (5) to get the N = M2

coordinates  ,, (t) .
This is also an algebraic task, and it entails, in the gen-

eral case, diagonalizing an (N x N) -matrix, unless there holds the con-

straint

77j,V,e = SJ' 77jkt (9)

in which case it reduces to M disjoint systems, each entailing the di-

agonalization of an (M x M) -matrix.
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The Newtonian equations of motion (4) are not translation-invariant,
but they are clearly invariant under rescaling ( ,, (t) --> c  ,, (t), 6 = o).

Hence via the following position,

 jk (t) = exp[ Xjk (t) I ) (10)

one obtains for the "new particle coordinates" xjk (t) a system ofNewto-

nian equations ofmotion which are translation-invariant. It reads:

M

2
+ exp (Xjk'

' Y, f-77jvW-,Ujk 'jk = _Yjk 'Ijk 'jk _xjk)
j',k'=l

M

+ ijk' [ Ujk 'Cj'k eXP(Xjk' + Xj'k
-

Xjk ) + E_, 77j'kU' eXP(Xjk' + XW -

Xjk )ky'
eX=1

(1 la)

jk
= eXP (Xjk ) * (1 lb)

Exercise 3.2.4-1. Verify that the equations of motion (11) are translation-

invariant.

Exercise 3.2.4-2. Prove that the equations of motion (11) are solved by the for-

mula

N

Xjk(t)=log I CjIWeXP(11nt)] (12a)[n=l
and obtain the formulas that determine the N= M2 constants A,, and the N2 = M4

constants Cjkn, Hint: see (10) and (5).

Exercise 3.2.4-3. Show that, if (9) holds, (10) can be replaced by the simpler for-

mula

M

Xjk (t) = log I c,, exp (A, t) (12b)

which contains only M constants A, and M' constants Cjkt'

Exercise 3.2.4-4. Correct the misprints that mar the presentation of these results

in <CJX94>. Hint: focus on the equations ofmotion, rather than their solutions.
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Exercise 3.2.4-5. Write explicitly the equations ofmotion (4) and (11) in the spe-

cial cases M = p, and compare your findings with appropriate equations of Sect.

3.2. p, for p = 2,3 .
Hint: compute explicitly -7-1 and E-1.

Exercise 3.2.4-6. Discuss the behavior of the N -body system (11), with particu-
lar attention to the presence of : (i) singularities; (U) confined (multiply or completely
periodic) solutions. If neither (i) nor (ii) apply, discuss the behavior of the system as

t -> oo. Perform the analysis more completely in the cases M = 2 and M = 3, if

need be with (9).

Exercise 3.2.4-7. Modify the equations of motion (11) so that they feature lots of

(perhaps only?) periodic solutions. Hint: see Exercise 3.2-3 (and do not hesitate to go

complex ifneed be).

3.3 First-order evolution equations and partially solvable

N -body problems with velocity-independent forces

In Sect. 3.2 we described a general technique to manufacture exactly
treatable N -body problems characterized by Newtonian equations of

motion, see (3.2-19). Examples of such models were then discussed in

Sects. 3.2.1, 3.2.2 respectively 3.2.3 in l-, 2 - respectively 3 -dimensional

space, and in Sect. 3.2.4 again in 1 -dimensional space. For some of these

models the initial-value problem is solvable via (a sequence oD purely
algebraic operations; for others the "exact treatment" available amounts

merely to the possibility ofreducing the original Newtonian second-order

evolution equations to an equivalent set offirst-order ODEs C'equivalenf
'

means in this context that the solution ofthe initial-value problem for the

original, second-order, Newtonian equations can as well be achieved by
solving the "equivalent'

'

set of first-order ODEs). All these N -body
problems feature Newtonian equations of motions with velocity-
dependent forces; and in all cases we considered problems with unre-

stricted initial data.

In Sect. 3.3 we tersely describe a modification of the 'approach of

Sect. 3.2 that yields Newtonian equations of motion featuring velocity-
independent forces. However, these N -body problems are only partially
solvable, namely they are solvable only for a restricted set of initial data:

generally the initial positions can be assigned arbitrarily, while the initial

velocities are determined by the initial positions (in order for the solution

technique to be applicable). Moreover, these models generally feature

many-body forces.
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The main idea to manufacture such models is fairly trivial: one con-

siders to begin with solvable evolution equations offirst-order, and then

obtains from these, by time-differentiation, second-order equations of

Newtonian type.

This trick has already been used in preceding sections. The diligent reader is ad-

vised to retrieve and review these previous developments before proceeding finther.

In this Section we outline a treatment of this approach in the general
context of multidimensional ambient space. We confine however our

presentation to such an outline, and to one, fairly trivial, one-dimensional

example: the alert reader will have no difficulty in inventing and treating
additional examples.

We take as starting point of our treatment the equations that obtain by
setting p,, Lr] identically to zero, p, LF] = 0, in (3.2-15) and (3.2-19). Then

the latter, (3.2-19), yield the evolution equations

f -

_: 

=2- (1a)
-

r
A

-

or equivalently, componentwise,

IV S N S

Ya 1: 'Fnm,jk  .,k 11: A-,jk iVm,k (lb)
m=1 k=1 -1 k=1

where

IV

,-jk = 0 rnj /a r.,k - '5- 1 re,j Dn ,k (2)
f=1

Let us recall that here  =-  (:r) can be chosen arbitrarily, while b =_ F) r

is determined by the choice of the N seeds sm(F), see Sect. 3.1 and its

subsections. As for 2, we limit hereafter our consideration to the simple
case (3.2-25), so that (1) in fact read

f .

_: -

-

r=ar (3a)

or equivalently
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N S

Z L rnmjk  m,k ==a y,,,, (3b)
m=1 k=1

with a an arbitrary scalar constant.

The corresponding expression of (3.2-15),

1. (t) =  ,, V(t)] (4)

then yields

N

exp(at)j ks.k(t& .k(t)] (5)
-I

At t = 0 this (nondifferential) system of N S -vector equations determines

the N constant S-vectors  m; for t>O, it determines the N S-vectors

F,, (t), which are the solutions of (3).

Exercise 3.3-1. Prove (5). Hint: see (3.2-1,4,6,25) and (4), and note that

notational consistency would have suggested to write h (0) in place of h. in (5),

while we heeded instead the call for maximal notational simplicity, thereby introduc-

ing in (5) the constant S -vectors  m.

The evolution equations (3) can be conveniently rewritten in the fol-

lowing form:

r = a( - (6a)

or equivalently

V

r,, =a (6b)

or, still equivalently,

Al N

a Y Gn.,jk 7.k (6c)
-I k=1

Note that the equivalence of (6) to (3) defines which is clearly, in an

appropriate sense, the inverse of f
.
Here of course both j7 and d (may)

410



depend on all the coordinates F r and r; the dependence

of  on F is a matter of direct choice (as well as the choices of the di-

mension S of the ambient space, and of the number N of particles); the

dependence of ( on F is also a matter of choice, but less directly so as it

emerges from the choice of the set of seeds s.(F), and also from the

choice of  r, as entailed by (2), (3) and (6).

We now time-differentiate (6):

Ar IV

r, =a (7)
M=1 e=1

and then use (6) again, to eliminate The resulting evolution equations

read

r,, = a' &2 (8a)
4MIIM2=1

F"'j. = a2 ml,kl
G,.2 (8b)Y ,kk2 iVm2,k2

t,mj,"r,=l k,kl,k2 r ,k

These are then our partially solvable Newtonian equations of motion

(read again the statement after (6c)!). Their solutions are provided by the

solutions of the (nondifferential!) equation (5), but only for the set of ini-

tial data that satisfy (3) and (6) (at t = 0; actually these solutions satisfy
(3) and (6) for all time).

Of course a necessary condition for this approach to work is that (3)
be actually solvable for F, to yield (6). That this may fail to happen is

illustrated by the example given below.
Let us begin by considering the one-dimensional setting, in which

case (5), (6) and (8) take the following, somewhat simpler, forms:

Ar

exp(at)j] h.SJXJ01=rnLXW1 (9)
M=1

N

(10)i,, =a G,mUx rmUx
M=1

in =a
2

Ar a[Gnml (_X) rm, UX
Ux r., Ux (11)I

e'M,M'=II axe f
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where of course now the (N x N) -matrix GUx is just the inverse (see (3)

and (6)) of the (N x N) -matrix FUx

'V

(12)IF. Ux = ay,, Ux / a x. -,5.. 1] D,Ux 7, Ux

(see (2)).
Let us then limit our consideration to the simple case with

Y" UX = r" (X") ,
(13)

) becomes diagonal,entailing that r (x

".
Ux = g.. V (X.) - U" UxI ,

(14)r
n

IV

xDUn (-X) = X r. (X.) ..U (15)

Hence in this case

= 5
1

(X
-1

(16)GnmW nmV n)-UnCX)l I

and the two evolution equation (10) respectively (11) read

a [r(x,,) - u,, Ux1-1 rn (Xn) (17)
n

respectively

-UnU
_2'

(Xn) -
ff

(Xn) Yn (Xn) -UnUin =a V JVn I(Xn) X'(Xn) X I rn (Xn) JVn

+
allnUX

, (X.) - Um (_X)rm(x.) [r.
XM

of course withUnUx defined by (15).

The derivation of these two equations is plain: (17) follows from (10) and (16),
while (18) follows from (11), (10) and (16), or directly from (17) by t -differentiation

and by using again (17).
Note that, if

I .
W ==! AX) (19a)7
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(note the independence of the right hand side from the index n), and if the function

f(x) is representable as a linear superposition of the seeds s. (x) ,
then (15) entails

Un (_X) = PXJ  -_ Yn (19b)f (Xn) I

hence the diagonal matrix F vanishes, see (14), and the matrix G does not exist.

Let us simplify still ffirther the evolution equations (17) and (18), by
positing

YnW = 77n X * (20)

Then (17) respectively (18) become

in=axjl-v,,Ux1-' (21)

respectively

A'

2
(X

-2 fl [aV"(j ,, = aXn ['-Vn (22)X.[,_V.(X)] X)1aXjj

with

IV

(23)v,, (x) D,,. Ux (77m / 77n) xn
M=1

The solutions of these equations, (2 1) and (22), are then given by the

roots xn -= x, (t) of the (uncoupled!) equations

IV

_= 17n Xn (24)exp(a t) E hm Sm (Xn) '

-1

Note that the evolution equations (22), as indeed, more generally, the

evolution equations (8), (11) and (18), can be interpreted as the (Newto-
nian !) equations of motion of an N -body problem with velocity-
independent forces.
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Note that, if tile constants i& were all equal,

77,, 77 ,
(25a)

then (20) would correspond to (19a) with

f(x)=qx (25b)

Exercise 3.3-2. (1) Verify that, for the choice of seeds (3.1.2.1-18), the 3 equa-

tions (22), (21), respectively (24) yield

)2 77.,(771 )-2(X"IX4 )(X2_X2 X2 _ (77" + 2 77, j ) x,,2.,, (26a)i,, = (a12 -772 n+I n
n+1) [ 3 77,, n n

-172)-l (Xn 1Xn _x2D I.i,, = -(a / 2) 77,, (77, 2+1 ) (XJ2 2
(26b)

respectively

[Xn (01 2= (772 - 7h) x, (0) X2 (0) ] 2,

2(0) -1
- fq, [x,2 (0) -x2 (0) exp (-a t) + [ 772 X2 _77, X2 (0) (2-6c)2 1

where of course n = 1, 2 mod(2) and 77 = 772 / 771 is an arbitrary constant (q 1: note

that in all these 3 equations 77, and 172 only enter via this ratio). (H) Verify that (26a)

follows from (26b) by t-differentiation. (iii) Verify that (26c) satisfies (26b) and

(26a). (N) Verify that, by setting Xn the 3 equations (26) take the fol-2

W Yn (t)

lowing, simpler, form:

2 2+1) n = a qn (171 - 772 )
-2

(Yn Yn (Yn - Yn+I 2 '7n Yn -(171 + 772 ) Yn+1 (27a)

 n = -a 17n (771 - 772 )
-1

(Yn Yn+I ) (YI - Y2 ) (27b)

Yn(t)=(q2 _17I)YI(O)MON qn I YI(O)_Y2(0) jexp(-at)+[ 771Y2(o)-U YI(O) I I
(27c)

(y) Solve (27b) with n =I for y, (t), insert the expression of Y2W so obtained in

(27b) with n = 2, and obtain thereby the following single second-order ODE for

Y,W :

 ,=-a 1+2 ,21y, (28)

Note that there is now no restriction on the initial data, namely, for this evolution

equation, one can assign arbitrarily both y, (0) and Pj (0) (the latter assignment cor-
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responds to assigning y, (0) ). Also note that (28) does not contain the constants q,

and 172, and that (of course !) the same equation, (28), can be derived for y2 (t) (from

the 2 equations (27b)). (vi) Set

M0=l1ZW , (29a)

and obtain thereby, from (28), the following (linear!) equation for zQ)

i=-al
. (29b)

Verify, via (29a), the consistency of this equation with (27c).

IN Notes to Chapter 3

The main idea underpinning the results presented in Chap. 3 was intro-

duced in <C93a>; it is unlikely that the generalization of standard (one-

dimensional, polynomial) Lagrangian interpolation presented in this pa-

per, <C93a>, is entirely new, but its application to manufacture many-

body problems amenable to exact treatments, as described in Sect 3.2, is,

to the best of my knowledge, new, as well, perhaps, as its exploitation to

obtain identities, such as, for instance, (3.1.2.1-5 1), (A-62), (A-70).
Most of the many-body models discussed in Sects. 3.2.1, 3.2.2, 3.2.3

and 3.2.4 are gleaned from the following papers: <CJX-93>, <CJX94>,

<CJX95>, <C96a> (the last of these papers is the only one which fea-

tures elliptic fanctions). The diligent reader will find in these papers more

material than has been reported in Chapter 3. On the other hand some

findings reported in Chapter 3 are new, in particular the integrable many-
body problems with only (or, at least, mainly) one- and two-bodyforces
treated at the end of Sects. 3.2.1 and 3.2.2, see in particular the one-

dimensional models (featuring elliptic fanctions) (3.2.1-44) and (3.2.1-

49) (actually the second is a special case of the first) as well as the two-

dimensional model (3.2.2-33) (actually also the solvable many-body
model in the plane (3.2.2-16), featuring many-body forces, is new). Also

new is the material of Sect. 3.3.
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4 SOLVABLE AND/OR INTEGRABLE NUNY-

BODYPROBLEMS IN THE PLANE,
OBTAINED BY COMPLEXIFICATION

The findings reported and outlined in Chap. 4 are all based on the idea to

obtain two-dimensional models, i.e. models describing motions in the

plane, from one-dimensional models, i.e. from models describing motions

on the line, via a very simple trick: complexification. How that works is

explained in Sect. 4.1 The method is then illustrated by the discussion of

a solvable model in Sect. 4.2 and its subsections, of some other solvable

models in Sect. 4.3 and its subsections, and by a survey ofsolvable and/or

integrable many-body problems in the plane obtainable by such an ap-

proach in Sect. 4.4 and its subsections. In Sect. 4.5 we investigate a

many-rotator problem in the plane, which is rather closely related to the

solvable model treated in Sect. 4.2.5, that only features completely peri-
odic motions. A remarkable novelty is the possibility to treat variants of

this solvable model which are instead, presumably, nonintegrable, yet

exhibit sets of completely periodic motions which correspond to sets of

initial data having nonvanishing measure in phase space. The mechanism

which underlies this phenomenology, as analyzed in Sect. 4.5, brings to

light an interesting connection among analyticity properties in the time

variable, and integrable features of these motions, as manifested by their

complete periodicity. Finally, Sect. 4.6 provides an outlook on future de-

velopments; the enterprising reader might like to browse through it im-

mediately.
Let us end these introductory words with a remark, which we con-

sider sufficiently important to proffer it here and to repeat it in Sect. 4.6.

An important message entailed by the approach introduced and de-

veloped in Chap. 4 is, that it is in many cases worthwhile to investigate

many-body problems amenable to exact treatments in the complex, rather

than only in the real, domain. Indeed, as we will see, such an extension

yields a much richer gamut of behaviors: for instance in any one-

dimensional many-body problem with forces which are singular at zero

separation, if the motion is constrained to the real axis, the ordering of

the particles cannot change throughout the motion without the system

going through a singularity, and moreover (as well as because of this), in
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the case of unconfined motions, the scattering behavior is not too inter-

esting. The collection of allowed behaviors, without the system hitting
any singularity, is instead much richer if the particles are allowed to roam

throughout the complex plane, rather than being forced to move only on

the real axis; and the scattering phenomenology in the plane is clearly
richer, more interesting, than on the line.

However, physics deals with the real world, and many-body problems
are meant to describe motions taking place here. The main observation on

which the developments reported in Chap. 4 are based, is that one can, in

certain, appropriate, cases, iden* the complex plane with the physical
(real) plane, so that not only motions in the complex plane become mo-

tions in the physical plane, but the complexified one-dimensional many-

body problem becomes a (two-dimensional) many-body problem in the

physical (real) plane, whose (Newtonian) equations ofmotion are invari-

ant under rotations (in the plane). Indeed, we consider this latter re-

quirement -- invariance of the Newtonian equations ofmotion under ro-

tations -- a sine qua non condition for interpreting an (appropriate) set of

second-order ODEs as a many-body problem in multidimensional space.

4.1 How to obtain by complexification rotation-invariant

manye-body models in the plane from certain

many-body problems on the line

Let us consider a one-dimensional N -body problem characterized by
Newtonian equations ofmotion,

N

2 ":- f, (1)
(Zn; 2) (Z  ZM; in  ,' M) ,

n n
-n)+ I fn(m2

m=l,m#n

Here of course - is the coordinate of the n-th particle, and as usual,Zn
=

ZnW

throughout Chap. 4, superimposed dots denote time-differentiations, and the particle
indices (n, m,...) range from 1 to N unless otherwise indicated.

The N -body model (1) only features one- and two-body time-independent
forces. These restrictions are introduced here merely for notational simplicity (and
because such models are generally more interesting); the diligent reader will have no

difficulty in extending the treatment to more general cases.
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We now assume that the functions f
"I and f

I') depend analytically

on their arguments. Then the equations of motion (1) also hold for com-

plex values of the coordinates z,,; hence the one-dimensional problem (1)

describing motions on the real line can be extended to a two-dimensional

model describing motions which roam throughout the complex plane.
Trivial as this extension might appear, it generally entails, as we already

emphasized, a substantial qualitative enrichment of the permitted mo-

tions. It is on the other hand clear that, if the original model, see (1), is

solvable andlor integrable, the motion in the complex plane obtained by
this complexification procedure, is generally as well solvable andlor inte-

grable.
By identifying the complex plane with the real physical plane (see

below), one can identify in this manner solvable and/or integral two-

dimensional models which, in our opinion, do qualify as genuine N -body

problems in the plane iff the corresponding equations of motions are in-

variant under rotations in the plane. How to identify or manufacture

models that possess this property is described below, after an interlude

devoted to notational material.

Notation. The notation we employ for two-vectors has already been

introduced above (see Sect. 3.1.2.2), yet for the convenience ofthe reader

we report here the main formulas, as well as some new ones -- but with

minimal commentary.

7 =- (X, Y, 0) ,
k A F =- (-Y, X, 0), k -= (0, 0, 1) ,

(2a)

kA(kAj;)=-i; ; (2b)

F = r (cos 0, sin 0, 0) ,
(3a)

kA F = r(-sin 0, cos 0, 0) = r(cos (0 +,T/2), sin (0 +;T/ 2), 0) (3b)

x=rcosO, y=rsinO ,
(4a)

r2 = X
2 +Y2 tan(O)=y/x (4b)

F. - F. = F. - F" = C. = C. = X" X. + Y" Y. = r,, r. Cos (0" - 0.) (5)

F. 4AF, =-F, -kAF. =k-F, AF. =-k-F. AF =S,. =-S.,,

= X
, r. sin(Om - 0j. (6)

 Y. -XmYn = r,
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Note that both the scalar product (5), and the pseudoscalar product
(6), are invariant under rotations in the plane,

x-->5 =xcosV-ysin(p, y-->7=xsin(p+ycosV, (7a.)

- z

r --> r = r (COS (0 +  9), sin (0 +  o), 0) . (7b)

The above definitions entail the following identities (and many oth-

ers!):

2

C11 = ri , Sil =0 ; (8)

tan (01 - 0, ) = -s,, / c,, (9)

F (C12 S12 2)21 2 (10)

(r 2)2 = C11 C22 (C12)2 + (S12)21
r (11)

S12 ';3 = S23 F1 - S13 j;2 (12a)

S12 j;3 = C23kAj;l kA- C13 r2 (12b)

S12 S23 C12 C23 C13 C22 ; (12c)

S12 S34 C13 C24 C14 C23 = r, r. r3 r4 Sn (0, 192) Sn (03 - 04) (13)

C12 C34 + S12 S34 C13 C24 + S13 S24 = r, r2 r3 r4 COS (01 - 192 - 03 + 04) (14a)

- S12 C34 C13 S24 - S13 C24 -= r, r2 r3 r4 sin(ol -02- 3+04)C12 S34 0 (14b)

In the following we often use the convenient short-hand notation

(15a)

entailing

(r )2 r2 + r.2- 2 F,, - F. = c,,,, + c.,,, -2c_ (15b)
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The one-to-one correspondence, denoted hereafter by the convenient

symbol --,, among the physical plane spanned by the real 2-vector F, see

(2a), and the complex plane spanned by the complex number

Z=X+iy ,
(16)

is given by the following formulas:

Z
'

F, iZ --*k A F
,

(17a)

z-rexp(iO), lzl'=r2

,
0 = arg(z) ,

(17b)

which clearly entail the following identities (and many others!):

ZI / Z2 = (C12 S12 )/(r,)2 (rl / r2 ) eXPk (01 -02A (18)

(19)ZI Z2 /Z3 01 C23 + 2 C13 3 C12) / (r02

- S13 S24 (C13 824 + S13 C24 A/ (r r4)2 (20a)ZI Z2 KZ3 ZJ =[C13 C24 3

ZI Z2 /(Z3 ZJ = [rI r2 / (r3 rA [COS (01 + 02 - 03 - 04) + i sin (0, + 02 - 03 - 04)] (20b)

Note the mixed notation used here, in particular the fact that (19) features the

"correspondence" symbol, while (18) and (20) feature the standard "equality"

symbol, =.

Exercise 4. I-L Write analogous formulas for z, z2 z3 1(z, z,) and

ZI Z2 Z3 1(Z4 Z5 ZJ *

It is now obvious that, if the (complexified) equations of motion (1)

are invariant under the rescaling transformation z,, -> F" = c z,, ,
with c an

arbitrary (complex) constant (6 = 0), then the real 2 -vector equations of

motion in the plane, obtained from (1) via the correspondence introduced

above among real 2-vectors F and complex numbers z, are invariant

under rotations in the plane, since for c = exp (i qp), with V a real arbitrary

"angle", the rescaling transformation

Zn _+ 2 
n

= Zn eXP No) (21)
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corresponds to the rotation (7) in the plane. Hence a general prescription
to obtain, via the complexification technique described above, a rotation-

invariant N-body problem in the plane, is to start from a scale-invariant

model on the line. Several such models, amenable to exact treatments,
have been obtained in the preceding chapters; some of the two 

dimensional models that obtain from them are listed in Sects. 4.3 and 4.4.

There are moreover one-dimensional models whose equations of mo-

tion are not invariant under rescaling of the particle coordinates, but be-

come invariant under rescaling after an appropriate change of (dependent)
variables. Suppose for instance that the equations of motion (1), which

via a convenient notational change we now write as follows,

IV

ii" = I -U.; zizij,L", (U" (22)
M=1

are invariant under translations (u,, -* u,, + u,, , ii, = 0; (22) is written so

that this invariance property is immediately apparent; this equation is of

course a less general evolution equation than (1), but good enough to il-

lustrate the point we wish to make). It is then evident that via the change
ofdependent variables

u,, = log (z,,) , z,, = exp (uj (23a)

which of course entails

ff" = i" / Z,, , ii" = (Y" - !'- / z
n Z,, (23b)

one obtains new equations of motion for the new "particle coordinates"

z,, which are scaling-invariant:

IV

-n
/ Zn + Zn 1: fnm ['Og(zn /zm);Zn /zn " m /zml * (24)

M=1

The invariance of (24) under rescaling (z,, --> F,, = c z, 6 = 0) is apparent; it cor-

responds of course to the translation-invariance of (22), since clearly translation of

the coordinates u, u. -> u. +uO ) corresponds, via (23a), to rescaling of the coordi-

nates z, z,, --> c z, with c = exp (uj.

422



Hence it is clearly possible to obtain via this trick, from any one-

dimensional N -body problem that features Newtonian equations of mo-

tion which are analytic and translation-invariant, a two-dimensional N -

body problem that features rotation-invariant Newtonian equations of

motion, and therefore qualifies as a bona fide N -body problem in the

plane. Note however that this latter model generally turns out not to be

invariant under translations. Examples will be given in Sects. 4.3 and

4.4.

We have now seen how rotation-invariant N -body problems in the

plane can be obtained, by (appropriate) complexification, from one-

dimensional N -body problems featuring Newtonian equations of motion

which are analytic and either scaling-invariant or translation-invariant.

Of course, if the original one-dimensional IV -body problem is solvable

andlor integrable, the N -body problems in the plane obtained in this

manner are as well solvable andlor integrable; a survey of such examples
is provided in Sect. 4.4. But let us also mention that there is a way to ob-

tain, essentially from any one-dimensional many-body problem that fea-

tures Newtonian equations of motion which depend analytically on the

particle coordinates and their velocities, a corresponding many-body

problem in the plane whose Newtonian equations of motion are rotation-

invariant; although the method to achieve this goal is deemed by us too

artificial to warrant further elaboration beyond the description we now

provide.
The trick is to set, instead of (16),

Z=P,-F+ik-P,AF ,
(25a)

namely, for the particle coordinates,

n,
n=1,2,...,N (25b)Zn = P, 'Fn +'k'PO A Fn

with P,, the unit 2 -vector in the director of F,

P, = F. / r, ,
(26)

and to then supplement the Newtonian equations of motion for

Fn (t), n = 1, 2,..., N, obtained via this position, (25), from those (complexi-

fied) for ZnW see for instance (1), with the additional rotation-invariant

(and trivial equation

ro=0 (27)
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In Sect. 4. 1, as indeed often in this book, we have focussed on many-

body problems characterized by equations of motion of Newtonian type,
and we have discussed the complexification issue on the basis of its im-

pact on these equations of motion. Let us end Sect. 4.1 by discussing the

question of complexification in the context of many-body problems sus-

ceptible to a Hamiltonian, or Lagragian, formulation. In particular we
now show how any one-dimensional N -body problem which can be for-

mulated in Hamiltonian, or Lagrangian, form, with Hamiltonian and La-

grangian functions depending analytically on the particle variables (parti-
cle coordinates and canonical momenta in the Hamiltonian case, particle
coordinates and their time-derivatives in the Lagragian case), yields by
complexification. an N -body problem in the (physical, real) plane, whose
2 -vector equations of motion can be formulated in Hamiltonian or La-

gragian form (in fact, generally via two alternative but equivalent pre-

scriptions).
To this end, let us first make the following observation. Assume f(z)

to be an analytic function ofthe complex variable z,

Z=X+isy , (28a)

with s = +1 or s = -1, so that

df(z)1dz=af(z)1ax=-isaf(z)1ay (28b)

Then set

f(z)-=f(x+isy)=F(F)+iF(F) (29)

with F(F) and P(F) real functions ofthe real 2 -vector (see (2))

F _= (X, Y, 0) (30)

(note that, according to the notation introduced above, see (17), for

s = 1, z --- j;, while for s = -1, z* -- 7). It is then clear that (28b) and (29)
entail (see (2a)) the 2 -vector relations

(a / a F) F(F) = s (kAa / aj;).P(F)
, (3 la)

(a / a F) P(T) = -s (kAa / aF) F(F) . (3 lb)

Consider now a system characterized by the Hamiltonian equations of

motion
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(32a)

(32b)

where the Hamiltonian h(z unction of the AT canonical, ) is an analytic f

coordinates z,, and of the N canonical momenta 4 . We now set

Zn = Xn +'Y, 1  n -'77,, (33a)

namely

(33b)Zn n
 n =  n

and

h(z, H(,ro) + iA (!:,,o) (34)

Note that this formula, (34), defines 2 real functions, H(L, p) and A(r, P),

of the 2N real 2 -vectors

(35a)';n  (Xn'YnA

and

(35b) n  ( n  In 3 0) *

Then (32), via (3 1), yield

rn =(a / a  jH(E,6) (36a)

Pn =-(ala7n)Hff, ) ,
(36b)

as well as

(37a)r. A (a / a, n)

P,, kA(alaF,,) (37b)
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The equations (36) are real Hamiltonian equations for the (real) 2 -

vector canonical coordinates 7 and the corresponding (real) 2 -vector ca-

nonical momenta  , see (35). It is thereby seen that, under the sole as-

sumption of analyticity, the one dimensional Hamiltonian equations (32)
yield, by appropriate complexification (indeed, note the difference in sign

among the 2 equations (33a)), real two-dimensional Hamiltonian equa-

tions, see (36).
The equations (37) are instead not Hamiltonian. But they take the

standard Hamiltonian form via the following redefinition of the canonical

coordinates and momenta:

r,, = r,,,  ,, = k A  ,,; H(7,  ) =HCr,  ) , (38)

which indeed, see (2a,b), transform (37) into

P") P) (39a)

a; ',)H (F,;3) (39b)

It is thereby seen that the complex Hamiltonian system (32), with

analytic Hamiltonian fimction h(z, ), yields two distinct real Hamilto-

nian structures, see (36) and (39); and let us emphasize that these three

Hamiltonian evolutions, (32), (36) and (39), are completely equivalent.
Likewise, consider a system characterized by the (complex) Lagran-

gian evolution equations

(dldt) [RCz,3z1aij=R(z,3z1az', (40)

with the Lagrangian fanction  (z, i) depending analytically on all its 2N

arguments. Z. and 'n ,
n =1,2,...,N, and set

 ( z,3z=LCF,D +iZCT,: )
, (41)

with L Cr : ) and TCr : ) real functions of the real 2 -vectors F - z, ,

i,,. It is then easily seen that the two real 2 -vector Lagrangian evolu-

tion equations

(dldt)[(alarn)LCr :)]=(alaF)LGr :) (42a)
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(dldt) [(alaF,, (42b)

are both equivalent to (40).
Let us finally recall, for completeness, that equivalence among the

Hamiltonian and Lagrangian "complex plane" evolutions, (32) and (40),
is entailed by the relations

h 4 i,, -  (z, 3z (43a)

(43b)

The corresponding relations in the "real plane" cases read:

(44a)HCT,
,

( ,, - F,,) - LQ
n=1

LCF,: ) ; (44b)

(k A r,,) -.T(r,r) (45a)
n=1

(45b)k A (a / a rn) IfCrb

Exercise 4.1-1. Let h(Zn,4 ; n N) be a Hamiltonian function that depends

analytically on the N canonical coordinates Zn and on the N canonical momenta

 n, but is otherwise quite arbitrary. Construct a corresponding Hamiltonian entailing

motions in the real physical (two-dimensional) plane, characterized by rotation-

invariant (Hamiltonian) equations of motion. Hint. see (25, 26), and note that the

"equation of motioif'

(27) is produced by any Hamiltonian that depends on the ca-

nonical coordinate F, but not on the corresponding canonical momentum po.
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4.2 Example: a family of solvable many-body problems
in the plane

In Sect. 4.2, which is conveniently broken down into a few subsections,
see below, we discuss the (family o solvable many-body problems in

the plane that obtain by applying the technique of complexification de-

scribed in the preceding Sect. 4.1 to the subclass of many-body problems
characterized by the Newtonian equations of motion (2.3.3-2) which has

the property to be scaling-invariant (see (2.3.4.2-34)). As explained be-

low, the Newtonian equations of motion of this family of solvable many-

body problems read as follows:

rn =(a + a' k A) r. + (6 +,8' k A) F,,

N

+ k, ( .':nm) +
-

(. 'Fnm) - Fnm (
 '

* 4.2 rm T. r,, rn r

A-F + j; j;+ n- _( n
r+(A+A, kA)f ( 7

r. rM r. r.r,I rM +k
n
rm +

+(,U+P' kA)j F [r,2 -2(Fn -F.)]+Fm rn2

These equations of motion have been written using the short-hand nota-

tion (4.1-15), F =- F - F
,,m n m; they feature one- and two-body velocity-

dependent forces, and they contain 8 arbitrary (real) "coupling constants"

Accordingly we refer to a "family" of solvable

many-body problems, different members of this family being character-

ized by different choices for these coupling constants: for instance the

"simplest" member of the family (see Sect. 4.2.4) is characterized by the

vanishing of all the coupling constants. Depending on such choices, the

many-body problems feature different behaviors, and these are surveyed
in the following subsections.

Let us re-emphasize that, as it is evident from their structure, these

Newtonian equations of motion in the plane are rotation-invariant; they
are moreover translation-invariant iff 8 =,6'= A = A'=,u =,u= 0.

Exercise 4.2-1. Rewrite (1) so that the summand in the right hand side

is antisymmetric in the two indices n, m. Hint: use the identities

r2 - F = (rn2 - r.2 + r,,2 )/2 (2a)

2 2

Fn [ r2 -2(F -7
, .

) ]+ F. r,, rn P + F
n
r (2b)
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where ofcourse F,,. =- F, - F., see (4.1-15).

Exercise 4.2-2. Investigate the behavior entailed by (1) for the "'cen-

ter-of-mass" coordinate

r = Ar-'>
.

F" (3)
n=1

Hint: see the preceding Exercise 4.2-1.

4.2.1 Origin of the model and technique of solution

Let us consider the one-dimensional many-body problem characterized

by the Newtonian equations ofmotion

 n= (a + ia) -  n + 68 +'Pgf) Zn

Ar

Y - z.)-1 [2 + ip') Z'+
,_,

(Zn
n
 m + (/1 +'2f) (n + ' J Zn + (U

n

.=l,m#n

which features the 8 real coupling constants a, a',,8,,8', Clearly

this model is invariant under the rescaling transformation Zn --)' Yn = C Zn  

with c an arbitTary constant ( = 0). Hence, as explained in the preceding

Sect. 4.1, via complexification and the correspondence (4.1-17) it gets
transformed into a rotation-invariant Ar -body problem in the plane. It is a

matter of trivial algebra to check, using if need be appropriate formulas

from Sect 4.1, that the corresponding model is precisely (4.2-1). Hence

the technique of solution, and the behavior, of the many-body problem in

the plane (4.2-1), coincide with the technique of solution, and the behav-

ior, of (1) in the complexplane (identified, via (4.1-17), with the physical
real plane).

On the other hand we know that the equations of motion (1) are solv-

able. The technique of solution has been described in Sect. 2.3, and in

particular in Sect. 2.3.4.2 (indeed (1) coincides, up to trivial notational

changes, with the complexified version of (2.3.4.2-34)). Let us tersely
review the relevant results here.

The solution zjt) of the equations of motion (1) are the zeros of a

monic polynomial of degree N in z,
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IV

V (Z' t) = 1-1 [z - Z" (t)] , (2a)
n=1

N

N-MVI(Z,t)=Z'+l c.(t)z (2b)
M=1

whose N coefficients evolve in time as follows:

c. (t) c(+) exp[ v(+) t J+ c(-) exp[ v(-) t (3a)M M M M

VM a+A(N-m)+i[a+A(N-m)]A. 1/2 (3b)

a+A N_ ] 2_ +/If N_ M)] 2
1 M) a +2m[2,6+,u(2N-m-1)]

+ i f 2 [a + A (N - m)] [a+A'(N - m)]+ 2m [2fif +,u(2N-m - 1)] 1 . (3c)

Note the completely explicit character of these expressions, whose valid-

ity is only predicated upon the conditions

,&m:#O 9 m=l,...,N . (4)

Exercise 4.2. 1-1. Prove (3), and obtain the forinulas that replace (3) if the condi-

tion (4) fails to hold for some value of m
.
Hint: see (2.3.4.2-37) and (2.3.4.2-36).

The 2N constants c(+) in the right-hand-side of (3a) are of course re-
m

lated to the initial values of cm (t) and 6. (t) by the formulas

c()=+[6m(O)-v(:')c.(O)]1A. (5)M M

As for the initial values c.(O) and 6.(0), they can be obtained, in

terms ofthe original initial data, via the formulas

N N

E cm (0) Z' = _Z1V +H [z - Z" (0)] , (6a)
M=1 n=1

N Ar Ar

I 6in (0) ZN-m = _E 'n (0) 11 [Z _Z. (0)] , (6b)
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which are implied by (2), see (2.3.3-6,7), and which of course entail, see

(2.3.3-9,10),

N

C, (0) = -Y' Z. (0) (7a)
n=1

IV

C2 (0) z__ - I Zn (0) Zm (0) (7b)
2

Ar

C3 (0) = -6 E Zn (0) Zm (0) Zt (0) 1 (7c)

and so on, as well as

IV

6 (8a)1(0)= _J:  n (0)  

n=1

N

62 (0) 'n (0) Z. (0) (8b)
n'M=I;M#n

1 N

63 (0) = - Y -4n (0) Zm (0) ZI (0)  ' (8c)

and so on.

In conclusion we see that the motions yielded by the many-body
problem in the plane (4.2- 1) coincide, via the identification, see (4.1-17),
of the physical plane with the complex plane, with the motions, as the

time t evolves, of the N zeros of the monic polynomial (2b) in the com-

plex plane. Note how natural it is to interpret (4.2-1) as a many-body
problem in the plane, inasmuch as the natural environment to investigate
the behavior of the zeros of a polynomial is the complex plane, rather

than the real line. But also note that this choice is not merely suggested
by mathematical consistency; it acquires a legitimacy of its own, and a

sound physical interpretation, from the rotation-invariance of the equa-

tions ofmotion in the plane (4.2-1).
Finally, since the positions F (t) of the particles that move in the plane

according to (4.2-1), or equivalently (4.2.1-1), coincide with the zeros

z,, (t) in the complex plane ofthe monic polynomial of degree N (2b), let

us end Sect. 4.2.1 by reporting a standard result on the location of the ze-

ros of such a polynomial (see, for instance, Sect. 5.1 of<DM73>):

Proposition 4.2.1-2. All the zeros of the polynomial (2b) are located

ide the amulus, centered in the origin in the complex z -plane, whose
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inner respectively outer radii, r =- r(t) respectively R =- R(t), are given by
the following expressions:

r=11(1+B1jcj (9a)

R=I+C (10a)

with

B= Max [1,jcjj, (9b)
n=1,2,...,Ar-1

C= Max  Cnjj' (10b)
n=1,2,...,N

Note that in (9b) the index n ranges from 1 to N-1, in (10b) from 1 to

IV.

4.2.2 The generic model; behavior in the remote past and future

'fhe generic model is characterized by the equations of motion (4.2-1),
with generic values of the 8 coupling constants a, a,,fl,,8, 2, A%y,g' ,

namely values which do not satisfy any of the restrictions that character-

ize the "less generic" models discussed below. In Sect. 4.2.2 we discuss

the behavior ofthe solutions ofthis model, in particular in the remote past
and fature.

Clearly the parameters that play a key role in determining the behav-

ior at large, positive and negative, time of the polynomial V(z, t), see

(4.2.1-2b), hence of its zeros zjt), see (4.2.1-2a), are the exponents v(: ),

see (4.2.1-3), or rather their real parts. Hence we set

V() = PW + i r() (1a)
M M

and we rewrite (4.2.1-3) as follows:

C. (t) = C(+) expf [ P(+) H H
M M

+ I t I+ C(-) expf I P + iV (lb)
M M M M

It I

Here and v.() are of course real, and they are given, see (4.2.1-3), by

the following explicit expressions:

p() = [a + A(N - m) ,5m(+) ]/ 2 GO
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r() = [a'+ A'(N - m) iV-) ]/ 2 (ld)
m m

where (see (4.2.1-3c))

(le)

of course again with 5.1) real indeed nonnegative:

() 2 1/2

m
[(a +b2 )1/2 am] /2 1 >0

m m
Gf)

+A N_M)]2_[ i AIN_M)] 2+am a a+ ( 2m[2,8+,u(2N-m-l)] (19)

bm=2f[a+A(N-m)][a'+A'(N-m)]+m[2,6'+,u'(2N-m-1)]I (1h)

Note that these expressions, (1c-h), only depend on the parameters char-

acterizing the model -- namely, the number N of particles and the 8 cou-

pling constants a, a', 8, 8', A, A, p, y' -- they do not depend on the initial

values ofthe particle positions and velocities, z,, (0) and i,, (0), which only

affect the values of the coefficients c(), see (lb) and (4.2.1-5-.- 8), and
m

thereby characterize the particular trajectories in the complex z -plane of

the N zeros z,, (t), hence the particle trajectories, F
,
(t) --i- z,, (t) ,

of the N

particles in the physical plane which correspond to specific initial data,

F. (0) 1-

zm (0) and
-

(0) -:.- i. (0) (see (4.1-17)).r. -

Let us now consider the values of the 2N real numbers p(:)

m = 1, 2,..., N; since we are looking here at the generic case, we assume

they are all different, and we call p, the largest of all ofthem and m, the

corresponding value of m (of course 1:! m, < N); likewise we call p- the

smallest of all of them, and m- the corresponding value of m:

M (+)
Pm. P+; PM < P+ I

M .?-I M+' (2a)

H
PM- P-; Pm > P, M # M- (2b)

Genericity entails

gm(: ) > 0
, (3a)

see (1 ; hence
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N H
PM > PM (3b)

see (1c). Hence (2) entails

p(-) W
m <p,pm >p-, (3c)

The motion of the many-body problem in the remote past and future

is determined by the behavior in the complex plane of the zeros of the

polynomial (4.2.1-2b) with (1), as t ->:Foo. An analysis of this mathemati-

cal problem is provided in Appendix G, whose findings we hereafter as-

sume the reader to have mastered.

The motion in the remote future is mainly determined by the value of

p+, and of m+ if p, is positive. Indeed if p+ is negative,

P+<O , (4a.)

as t -> oo all N particles converge to the origin; and this happens for all

initial conditions. If instead p+ is positive,

P+>O , (4b)

then as t -> co generally m, particles escape to inflinity, and N-m+ con-

verge to the origin (except for the special initial conditions that cause c(+)
M+

to vanish).
The behavior as t --> --oo is analogous, with an obvious exchange of

roles: if p- is positive,

P_ >0
, (5a)

all particles tend to (or rather, in the remote past, came from) the origin
(for arbitrary initial data); if instead o- is negative,

P_<O , (5b)

generally m- particles tend to (or rather, in the remote past, came from)

infinity, and N- m- tend to (i.e., came from) the origin (except for the

special initial conditions that cause c(-) to vanish). Hence in particular, if
M_

P-<O<P, (6)
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then the generic solution of this generic model is characterized, in the re-

mote past, by m- particles incoming from large distance and N-m-

coming from the origin, and in the remote future, by m, particles outgo-

ing towards infinity while N- m, converge towards the origin.

Exercise 4.2.2-1. What happens for the special initial conditions that causel either

N H
CM, ,

or cm_ ,
or both these quantities, to vanish? Hint: see Appendix G.

Exercise 4.2.2-2. Verify that the many-body model (4.2.1-1) pos-

sesses the ring-like similarity solution

z,, (t) =,p(t) exp(2;r i n / N) , (7)

and find p(t). Hint: insert the ansatz (7) in (4.2. 1- 1), use the appropriate
identities to check its consistency, and solve the resulting ODE satisfied

by p(t). Solution: see Remark 4.2.3-14 below.

4.2.3 Some special cases: models with a limit cycle, models

with confined and periodic motions, Hamiltonian models,
translation-invariant models, models featuring equilibrium
and spiraling configurations, models featuring only

completely periodic motions

We now survey several solvable many-body problems in the plane be-

longing to the class (4.2-1), but with some restrictions on the 8 coupling

constants a, a', 8, fl', A, X,,u, u' which cause their solutions to exhibit

the gamut ofbehaviors indicated in the (long) title of Sect. 4.2.3.

The first model we consider is the borderline case which falls be-

tween the two instances (4.2.2-4a,b) considered above, namely the case in

which the quantity p,, see (4.2.2-2a), vanishes:

'0+=0 . (1)

Note that this entails a single (algebraic) constraint on the 8 coupling

constants, and that we are otherwise assuming the system to be generic, in

particular that one only of the N quantities p,. attains the maximal value

p+ = p., = 0 (see (4.2.2-2a) and (1)). It is then clear (see Appendix G)
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that, in the remote future (t --> cc), N - m, particles tend to the origin, and

m, approach (exponentially in time) the circular (limit-cycle) trajectories

F.(t)=exp(27rimlm,)(-c,)"m-exp(ir,tlm,) , m=I,...IM+ . (2)

Two comments about this formula are now in order.

First of all let us re-emphasize that here (and below) we identify a (real) 2 -vector

in the plane with the complex number that corresponds to it via (4.1-17). Clearly, via

this identification, (2) describes a circular ring of m, particles, equispaced on a circle,

of constant radius Ic, centered at the origin and rotating uniformly with anga-

lar velocity r, / m,.

Secondly, the notation Y. (t) emphasizes two points: (i) the "particle coordi-

nates" z,, (t) do not coincide with the quantities Ym (t) ; (ii) as t --> CO
, m, of the N

"particle coordinates" z,, (t) approach asymptotically (exponentially fast, see Appen-

dix G) the m, quantities F. Q) ,
see (2), but to ascertain whether, say, z, (t) tends to

the origin or to one of the quantities Y. (t) ,
and in such a case to which one, a more

detailed analysis of the motion is required than that given here (indeed, the choice

between these different outcomes depends nontriviaUy upon the initial data).
This behavior of the system in the remote fature emerges out of any initial data,

except of course (see (2)) for the special set such that c(') vanishes.
M,

Exercise 4.2.3-1. What happens as t --> oo if the initial data entail c(+) = 0 ? Hint:
M.

see Appendix G.

Exercise 4.2.3-2. What happens in this case (see (1)) as t --> --oo ? Hint: see Sect.

4.2.2.

There clearly exist a plethora of other, not-completely-generic, mod-

els; for instance it might happen that, for some value of m in the range

1,2,...,IV, there hold the equality v(+) =v.(-), in which case the formula
M

(4.2.1-3a) would have to be modified.

Exercise 4.2.3-3. How? Hint: see (2.3.4.2-36,37) and (4.2.1-3).

We forsake the investigation of such possibilities, and proceed to

analyze some other, more special, cases, to continue with the illustration

of the phenomenology outlined in the -title of Sect. 4.2.3.

Let us consider next the subclass ofmodels oftype (4.2-1) with

a=O,A=O,,8'=O,,u'=O (3a)
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and moreover with the remaining 4 nonvanishing coupling constants

a,, A% 8, u satisfying the following 3 inequalities:

(a,)2 > 2 IV [2,8 + (N - 1),ul , (3b)

[a,+(N_l)A,]2>4[,8+(N-l),u] (3c)

(a'+NA')2>- [11'(a+ NA') + 2,6 + (2N - l)/-i]2/(/1'2+2,u) (3d)

It is then clear that the equations of motion (4.2-1), for any initial condi-

tion, yield confined motions, namely trajectories which remain confined,
for all times, to a finite region ofthe plane.

Proof The above conclusion is clearly warranted by our treatment, see above, if

all the (real) exponents p() vanish, so that the exponents v(), see (4.2.1-3) and
M

(4.2.2-1), are imaginary, hence the coefficients c.(t) of the polynomial (4.2.1-2b)

remain limited, see (4.2.1-3a), for all time (including the limits t -> oo). But clearly

this condition is entailed by (3), since the equalities (3a) imply that p() is propor-

tional to see (4.2.2-1c), and that b., see (4.2.2-1h), vanishes for all values of

W
m ; and the vanishing of bm clearly entails, see (4.2.2- 1 t), that 5.() ,

hence pm ,
also

vanishes for all the values of m such that a. is negative (or zero). The 3 inequalities

(3b,c,d) guarantee precisely that a. is negative (or zero), a. :! 0
,
for all values of m

in the range L! tn:! N. (Verify!).
As implied by this analysis, the inequalities (3b,c,d) are best-possible, namely

they provide, together with (3a), sufficient and necessary conditions to guarantee that

all the motions entailed by (4.2- 1) remain confined for all time.

Note, however, that this statement is not quite correct.

Exercise 4.2.3-4. Provide a counterexample. Hint: the condition a. :! 0 need not

hold for all real values of m in the range 1:! m < N: it is enough that it hold for

m = 1,2,..., N. Moreover: what about the possibility that, for some value of m
,
the

quantity a. (see (4.2.2-1g)) vanish, entailing (together with the vanishing of b.) the

vanishing of both 15( ) and i5m(-), 15() = 0, hence the coincidence of 0) and 0-)
M M

v(+) = 0-) (see (4.2.2-la,c,d))?
M M

Exercise 4.2.3-5. Does it make sense, in a physics, mathematics, or mathematical-

physics context, to assert that a statement is not quite correct? Discuss the matter with

a colleague, taldng turns at arguing one way or the other.
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Clearly the simple requirements

fl:! - 0,,u < -A'2 /2 (4)

are sufficient to guarantee validity of (3b,c,d), hence they are sufflcient (albeit not

necessary), together with (3a), to also guarantee that all motions entailed by (4.2-1)
remain confined for all time.

Exercise 4.2.3-6. Try and suggest a more "physical", if less "mathematically
rigorous", interpretation ofthis conclusion, than the proof given above on the basis of

the exact solution technique. Hint: look at the form the equations of motion (4.2-1)
take for a particle that tries to escape to infinity.

Let us next look at a subclass, of the many-body problems (4.2-1),
which is certainly Hamiltonian. We already saw in Sect. 4.1 that any

model in the plane obtained via the complexification trick from a one-

dimensional Hamiltonian model is itself amenable to a Hamiltonian for-

mulation. We now remark that, in the context of the models we are now

considering, see (4.2-i) and (4.2. 1- 1), a condition sufficient to guarantee
that the evolution equations (4.2.1-1) satisfied by the N quantities zjt)

be Hamiltonian is that the corresponding evolution equations satisfied by
the quantities c. (t) be themselves Hamiltonian, since the relations link-

ing the N "canonical coordinates" ZnW to the N "canonical coordinates"

c. (t) can certainly be embedded in a canonical transformation: indeed, a

"point transformation7, which relates old and new canonical coordinates

without involving the canonical momenta. But the evolution equations
satisfied by the N quantities c. (t) are indeed Hamiltonian if

a=a'=A=A'=O
, (5)

since they then read (see (2.3.4.2-36))

d. = in [,6 + !,6+ (u+iq')(2N-m-1)]c. (6)
2

namely they are the ("Newtonian7) equations of motion yielded by the

Hamiltonian

1
2 C2h( c, 7) - Y in [,6 + i,6'+- -m-1)](# + iu') (2N (7)

2 2
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Proof The Hamiltonian equations yielded by (7) read

6. =ahlar. =r,,, , (8a)

=-ahlac. =m[p+i,8'+
1
(,u + ip') (2N - in - 1)] c, (8b)

2

and time-differentiation of (8a) yields, via (8b), precisely (6).

Exercise 4.2.3-7. What about the Hamiltonian H(z, ) that yields, when (5)

holds, directly (4.2. 1-1) ?Hint: see <CF97>.

Exercise 4.2.3-8. Prove that all the motions of the (Hamiltonian) N -body prob-

,rlem (4.2-1) with (5) are completely periodic, with the same period T = 2, (2/ P)
1/2

(or an integer multiple of it, no larger than N!), ifthere hold the following restrictions

(additional to (5)) on the coupling constants:

,8'=,u'=O, 2,8+,u(2N-1)=O, u>O (9)

Let us emphasize that the conditions (5) are sufficient, but not necessary, to imply
that the system (4.2,1-1) be Hamiltonian; indeed examples are given below (see, for

instance, Sect. 4.2.5) which violate (5) yet are amenable to a Hamiltonian formulation.

The next subclass of models of type (4.2-1) we single out for addi-

tional consideration are characterized by the following translation-

invariant equations ofmotion:

(a + akA) j;,,

N

2 [ 
-

+2 FM F _Fr
rj

Fnm) + ( n ' ';nm )
nm

( __

(rnm
M n

'rMA (Fnm = Fn M) (10)
M=I'M#n

which of course correspond to (4.2-1), hence as well to (4.2.1-1), with

'fl =,8' = A = A' =,a = P, = 0.

These equations of motion clearly imply that a particle is acted upon by a non-

vanishing forces, and contributes by its presence to the force acting on other particles,
only if it moves (with nonvanishing velocity; except possibly at the instant of a two-

body collision, see (10)). Hence, in the context ofthe initial-value problem, only par-

ticles whose initial velocities do not vanish need be taken into account, those whose

initial velocities vanish can simply be ignored, since they will never move nor will

they influence the motion ofthe other particles.
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In this case, see (10), the solution of the initial-value problem is of

course still given by (4.2.1-2) (with (4.1-17)), but now with (4.2.1-3) re-

placed by

c.(t)=c.(O)+6.(O)(a+ia')'Iexp[(a+ia')-'t]-if

The initial values c (0) and 6.(0) are still related to the initial particle

,,(0) and to the initial particle velocities "(0) by (4.2.1-6,7,8)positions F r.

(via (4.1-17)), and it is easily seen that these formulas, together with (11),
yield the following compact prescription for the solution of (the initial-

value problem for) (10): the complex coordinates z,, (t) (related to the real

2 -vector particle positions F (t) by (4.1-17)) are theN roots of the fol-

lowing equation in z:

N

i.(O)I[z-z.(O)]=(a+ia')Ifexp[(a+ia')t]-lI (12)
M=1

Exercise 4.2.3-9. Prove this statement. Hint: see (2.3.4.2-20).

Let us now discuss the motion of the N particles, with coordinates

F -

,,
(t) -- zn,(t) ,

as entailed by this finding. But before doing this, let us note

that the equations ofmotion (10) entail, for the center-of-mass coordinate,

M

 (t) = N-1 1] F" (t) , (13a)
n=1

or equivalently, via  Q) i(t), for the complex coordinate Y(t),

N

1(t) = N-1 z. (t) (13b)
n=1

the evolution equation

F(t) = (a + a'k A) F(t) (14a)

or equivalently,

At) = (a + i (14b)
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entailing

Y(t)=Y(O)+z -(O)(a+ia')-'Iexp[(a+ia')t]-lI (15)

The evolution of Y(t), see (15)? all but coincides with the evolution of the quan-

tities c. (t), which in the case under present consideration all evolve in the same way,

see (11). This coincidence is not surprising: compare (2.3.1-2a) with (13b).

Clearly the main element determining the qualitative character of the

motion is the value of the coupling constant a, and in particular its sign:
see (12).

Let us consider firstly the case ofpositive a,

a>O
. (16)

Then, as t --> cc
,
one of the particles escapes to infinity, and N -I do not,

approaching asymptotically, up to corrections of order exp(-at), N-1

fixed positions, whose configuration depends on the initial conditions:

they are the N - 1 zeros of the function of z appearing in the left hand

side of (12) (which, up to a common factor, is indeed a polynomial in z

of degree N - I). As for the particle that escapes to infinity, its coordinate,

say 7, (t) --*
z, (t) ,

coincides asymptotically, up to finite corrections, with

that of the center-of-mass multiplied by N, see (15):

zj(t)=NT(t)Jl+0[exp(-at)]J , (17a)

zj(t)=N(a+ial)-'Y(O)exp[(a+ia')tl+0(1) (17b)

Note that we have attached the label j to the particle that escapes to in-

finity; which one of the N particles does so depends nontriviaUy on the

initial conditions. It is clear, see (17b), what the character of the asymp-
totic motion of this particle is.

The outcome we just described obtains for a generic set of initial data. There are,

however, special initial data that entail other, different, outcomes. Indeed a necessary

and sufficient condition to yield the asymptotic outcome we just described is the re-

quirement that the center-of-mass of the system not be initially (hence, throughtout
the motion: see (15)) at rest,
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IV

Y,  n (0): 0 (18a.)
n=1

or equivalently (see (2.3.3-9a) and (13b)), and more significantly (see below), that the

initial value, 61 (0), of the time-derivative of the coefficient cl (t) (see (4.2.1-2b)) not

vanish,

6,(0)#0 .
(18b)

Exercise 4.2.3-10. Prove this statement. Hint: consider (12) for large t and large

z and remember (2.3.3-9a).

If instead (18) does not hold, indeed if, for some positive integer M:! N,

6.(O)=O, m=1,2,...,M-1; em(O):?-,O , (19)

then, as t --> co
,
N -M particles remain confined and M escape to infinity. Specifi-

cally, the N-M particles that remain confined tend asymptotically, as t -> oo
,
to the

N-M zeros ofthe polynomial in z,

N

16.(0) ZN-. = 0 (20)
M=M

while those which escape to infinity are characterized by the asymptotic formulas

Z' W = YjW + OG) , (21a)

Yj (t) = exp (2)r i j / M) [-6m (0)]'/m exp [(a + i a') tIM] j M (21b)

Exercise 4.2.3-11. Prove these statements, see (20) and (21). Hint: as for the pre-

ceding Exercise 4.2.3-1q, or see Appendix G.

This concludes our analysis of the behavior of the system (10), with

a positive, see (16), as t --> oo. As for the behavior in the remote past

(t --> -, o), clearly in this case all particles approach asymptotically the

configuration corresponding via (4.1-17) to the N (complex, finite) roots

ofthe polynomial equation in z

N

ZN + C. (--00) Z'V-' = 0 (22)

with (see (11) and (16))
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c. (--co) = c. (0) - 6. (0) / (a + i a') (23)

Let us summarize our findings re: the qualitative behavior in the re-

mote past and fature ofthe translation-invariant system (10) with (16).
In the remote past, the N particles are almost at rest at some positions

(which could of course be arbitrarily assigned); it is of course essential

that none ofthem be completely at rest (in which case, they would remain

so throughout time and they could simply be ignored). Then the particles
begin to move, and N - 1 of them always remain in a finite region of the

plane, approaching asymptotically, in the remote fature, fixed positions;
while one of them shoots eventually off to infinity, around a straight di-

rection if a= 0 or a spiraling one if a;,- 0. This outcome is the generic
one; in special cases (corresponding to special initial, at t = 0, or asymp-

totic, as t -), --cx), conditions), only N-M (with 2:! M:! N) particles al-

ways remain in a finite region of the plane, approaching asymptotically,
as t -> oo, a configuration determined by the initial data, while M shoot

eventually off to infinity along outgoing stellar straight (if a'= 0 ) or spi-
raling (if a'# 0) lines.

This ends our discussion of the case with a positive, see (16). The

opposite case, with negative a, a< 0, need not be discussed, since the

analysis is essentially identical to that just given (for the a > 0 case), ex-

cept for an exchange of the behaviors as t -> +00 with that as t -+ -00, and

viceversa.

Let us finally consider the case in which a vanishes,

a=O (24)

(with a':# 0; the case a = a'= 0 is treated in the following Sect. 4.2.4; the

case with a = 0, a'..?,- 0 we consider now will be treated in more detail in

Sect. 4.2.5).
In. this case the right hand side of (12) is periodic in t, with period

T=27cla'
. (25)

Hence the roots of this equation are also periodic, with the same period.
One therefore concludes that in this case, see (24), all solutions of the

system (10) are completely periodic, with (at most) the (same) period
T' = T - N! (the factor N! accounts for the possibility that the correspon-

dence between individual particles and roots of (12) get permuted through
the motion).

Let us now return to the general model (4.2-1), to investigate the

cases when there exist nontrivial equilibrium configurations, namely
time-independent solutions of (4.2-1),
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Q) = 0, n N (26a)Q)

or equivalently (see (4.2.1-1)),

ZnW = Yn I  nW= 0, n N (26b)

Hereafter we exclude from consideration the unphysical solution

ZnW = 0
1

n = N
 (27a)

corresponding, see (4.2.1-2,3), to

C. Q) = 0
,

M = N
. (27b)

It is clear (see (4.2.1-2,3)) that a necessary and sufficient condition

for the existence of such nontrivial equilibrium solutions is that, for some

value m = M (with M a positive integer not exceeding N; but we shall

find below that only m = N or M = N - 1 are actually acceptable possi-
bilities), either v(+) or 0-) vanish:

M M

V1+)
M

= 0 or VH =0 (28)M

Via (4.2.1-3b,3c), this requirement corresponds to the following two con-

ditions:

(2M-M-1),u+2,6=0 (29a)

(2N-M-l),u'+2,8'=O (29b)

Indeed insertion of (29) in (4.2.1-3c) yields

M =fa 'Z N_M +j[ 1+'Z/ N_M 2,Y + ( a (30)

and this, via (4.2.1-3b), entails (28).
Note that the conditions (29) only constrain the 4 coupling constants

,6, 8', u, a'; indeed the other 4 coupling constants, a, a', A, A, play no role at

equilibrium, since the corresponding forces vanish when the particles are at rest, see

(4.2-1).
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Let us then assume that the 2 conditions (29) hold, for some positive
integer value of M not exceeding N. Then clearly the equilibrium con-

figuration is characterized by the condition that all the coefficients c. (t)

with m # M vanish,

c.(t)=O, m=l,...,N, m#M (31)

(corresponding to c(+) = cH = 0 for m:p-- M, see (4.2.1-3a)). Hence the
M M

equilibrium configuration, see (26b), is identified by the condition (see
(4.2.1-2b))

N

1-1 (Z - Y") = Z' + CM Z'M = Z
N-M (ZM +CM) 1 (32)

n=1

where cm is an arbitrary complex constant.

Clearly, if v() vanishes, see (28), the equilibrium configuration (corresponding
M

to a nonvanishing time-independent cm) obtains for vanishing c(-) and nonvanishingM

CM ,
see (4.2.1-3a):

VW - 0 CH 0 CN = C
M (33a)

M M M

likewise, if v(-) vanishes,M

VH = 0
,

CW 0 CH = C (33b)
M M M M

For M = N (32) has (up to permutations) the N distinct roots

i,,=exp(2,Tin/N)(-c,)"'v ,
n = N ; (34)

for M = N- 1, (32) has (again, up to permutations) the N distinct roots

i,=exp[2,Tin1(N-l)](-c,,)"(") ,
n = N - 1; i, = 0

, (35)

while for M: IV - 2 (32) has at least two vanishing roots, yielding there-

fore a solution, with two or more particles sitting at the origin, that we

rule out as "utiphysical", see (4.2-1).
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We see, in conclusion, that the many-body problem (4.2-1) admits a

nontrivial. equilibrium configuration only in two cases. If the 4 coupling
constants fl, ff, a, u'satisfy the 2 constraints (see (29), with M =N )

(N-1),u+2,fl=(N-l),u'+2,8'=0 , (36)

then the system admits the equilibrium configuration (34): the Ar parti-
cles sit equispaced on a circle, of arbitrary radius, centered at the origin.
If instead the 4 coupling constants satisfy the 2 constraints

(see (29), with M = N -1)

N,u+2,6=N,u'+2,6'=O , (37)

then the system admits the equilibrium configuration (35): one particle
sits at the origin, and N-1 sit equispaced on a circle, of arbitrary radius,
centered at the origin. Of course, in each case, there exist N! such con-

figurations, corresponding to all possible permutations of the N particles
on their equilibrium positions.

Exercise 4.2.3-12. Check directly that, at such configurations, the forces in the

right hand side of (4.2-1) do balance off. Hint: use (4.2.1-1) (rather than (4.2-1)), and
use the appropriate trigonometric identity.

Exercise 4.2.3-13. Investigate, by the standard approach, the behaviors of these

systems around their equilibrium configurations and, by comparison with their exact

behaviors, discover some "remarkable matrices". Hint: see the treatment that led to

(2.1.3.3-46).

These equilibrium configurations cannot be completely stable, due to

the invariance of the equations of motion under rotations and dilations

(rescalings). Indeed it is clear that the equilibrium configurations (34) re-

spectively (35) are special cases of the following circularly symmetrical
solutions ofthe equations ofmotion, (4.2. 1 - 1):

Z.w= J-C.w]"M , (38a)

with  ,, given by (34) respectively (35) and

cm(t)=cm(o)+6.(O)v-'[exp(vmt)-l] (38b)M
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vm = a + Aff -M) + i [a'+ A'(N-- M)j , (38c)

with M =N respectively M = N-1. And of course an additional element

of instability of the equilibrium configuration (34) and (35), and as well,

more generally, of the spiraling configuration (38), arises from the possi-
bility that a perturbation excite other "nonlinear modes", namely that it

induce other coefficients c. (t), with m#- M, to become different from

zero. Whether such perturbations would grow or decay depends of course

on the sip ofthe corresponding real exponents o(*), see (4.2.2-1).
M

Remark 4.2.3-14. Clearly these circularly symmetrical configurations
of type (38a) are featured even by the most general system (4.2-1), with-

out any restriction on the 8 coupling constants: in such a case, of course,

the quantity c, (t) would be given by (4.2.1-3) (rather than by (3 8b,c)).

Exercise 4.2.3-15. Consider the system (4.2.1-1), with the following circularly

symmetrical initial conditions:

z,, (0) = i,, (0) = 0
,

n = L..., p ; (39a)

Zn (0) = x,(O)expf2;ri[n-p -(j-1) q]lq

i,(O) =.i,(O)expj27ri[n-p-(j-1)q]1q 1,

n=p+l+(j-i)q,p+2+(j-l)q,...,p+jq;j=1,2,...,k , (39b)

where x, (0) and i, (0) are arbitrary real numbers and p, q, k are arbitrary positive

integers (N = p + q k; p could also vanish, and it should be restricted to be less than

2 to avoid the "unphysicar' piling up ofparticles at the origin, although this is hardly

relevant, since the particles there will not move), (i) Draw this initial configuration in

the plane, to make sure you have understood its layout. (ii) Clearly, for reasons of

symmetry, this configuration is preserved throughout the motion, hence the solution

will read

z,,(t)=x,(t)expf21ri[n-p-(j-l)q]l, n=p+l+(j-l)q,...,p+jq;j=l,...,k.

(39c)

Find the equations of motion of the (real) quantities x. (t) , j k. Since the sys-

tem (4.2.1-1) is solvable, the equations of motion satisfied by the quantities xj(t)
must also be solvable. Is this a new system! If not, what is its relation with the tech-

nique of solution of (4.2.1-1) ?
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Remark 4.2.3-16. 'fhere are other models, more general than that con-

sidered above (namely, than (10) with a = 0, see also Sect. 4.2.5), which

generally lack translation-invariance, but also possess the remarkable

property to only feature completely periodic motions. 'fhey are charac-

terized by the restrictions

a =,6 = A =,u = fl= p'= 0, a'= p a), A'= q co (40)

with ct) > 0 and p, q two arbitrary integers (not both vanishing), so that

the corresponding Newtonian equations ofmotion read

IV

P64A + (r,,.
-2

( 2 [ . (T. - F,,. ) +
m=I,m_-n

r, A nrm*(* + ' F r. * (' + A 1)2 A+
M
r

4.

(41)+qcokA + r. r
;
_(

n
01-F r,I rM r,' r.

Exercise 4.2.3-17. Verify that the conditions (40) are consistent with

the conditions (3) that guarantee confined motions.

Exercise 4.2.3-18. Prove that all the motions entailed by (41) are

completely periodic. Hint: insert (40) in (4.2.1-3).

4.2.4 The simplest model: explicit solution (the game of musical

chairs), Hamiltonian structure

In Sect. 4.2.4 we discuss the simplest of the models (4.2-1), characterized

by the vanishing of all 8 coupling constants:

Its equations ofmotion read

IV
L:

r.

' *

r,, 2 nm) + r. (r,' nm) (2a)
nm

m) I' rnm
M=I'M#n

or equivalently, via (4.1-17),

N

-F,, = 2 Y i, i. / (z,, - zm) . (2b)
M=I'M#n
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The solution of the initial-value problem for these equations of mo-

tion, (2b), is given by the following neat recipe: the N (complex) coordi-

nates z,, (t) are the N roots ofthefollowing algebraic equations in z

N

i.(O)1[Z-Z.(O&l1t (3)
M=1

Exercise 4.2.4-1. Prove this statement. Hints: see Exercise 4.2.3-9; or show di-

rectly that the N roots of (3) coincide with the N zeros of the polynomial

IV

V(Z' t) = ZjV +L C. (t) Z' (4)
M=1

with

E.(t)=O (5a)

C. (t) = C. (0) + 6. (0) t
,

(5b)

c. (0), 6. (0) being related to Zn (0)  - 'n (0) by the standard relations between the co-

efficients and the zeros of a monic polynomial such as (4), see (4.2.1-7,8) (as for the

validity of (5a), see for instance (2.3.4.2-36) with (1)); or see the Remark 2.3.4.2-3.

Note that the equations of motion (2) are invariant under translations,
and that they entail that the center-of-mass,

N

Y(t) = N-1 z,, (t) (6)
n=1

moves uniforn-Ay:

Z=O (7a)

i-

0) t
-YW = 40) + Z( (7b)

Let us now discuss the main qualitative features of the time-evolution

of the system (2), focussing firstly on the (generic!) case in which the

center-of-mass is not at rest,

i (O) # 0 (8)
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It is then easily seen that, as t -> -o, N- 1 particles approach asymptoti-

caUy (up to corrections o (t-1) ) N - 1 fixed locations, whose configuration

depends on the initial conditions, consisting of the N - 1 values of z for

which the left hand side of (3) vanishes; while one ofthem goes to infin-

ity, approaching asymptotically (again, up to corrections 0(t-1)) the free

trajectory

IV N

2V)=J i,,(O)ft+[Z,,(0)1J] i.(Offl , (9a)
n=1 M=1

Y(t) = N (O) t +E i. (0) z,, (0) / [N (O)] . (9b)
n=1

Exercise 4.2.4-2. Prove this statement. Hint: (3) possesses, at all (finite) times, N

solutions; as t --> oo, its right hand side vanishes, Alternatively, see (4) with

(5b).

Hence the system looks overall exactly the same in the remote future

as in the remote past C'solitonic behavior": for this terminology see, for

instance, <CD82>). Note however that the particle that escapes to infinity
in the remote fature need not be the same one that came in from infinity
in the remote past, and moreover that, through the motion, some particles

may change location C'garne ofmusical chairs": the locations of the N -I

"chairs" remain fixed through the motion, the identity of their N-I occu-

pants -- who are "seated7' only at the beginning and at the end -- may

change, from the time t = --o when they begin to wander off in the plane
and an extra player comes in from afar, to the time t = +x when N-I of

them sit down again and one player -- the same or a different one -- goes

off, along the same straight line, and with the same speed, as the player
who came in from afar in the remote past).

This concludes our discussion of the behavior of the system (2) in the

(generic) case when the center-of-mass moves, see (8). If instead the

center-of-mass is at rest, namely (8) does not hold, then the generic be-

havior sees only N - 2 particles tend to finite locations as t = oo, and 2

go to infinity (but they move no more as free particles; see below). And if

the initial data are fluther specialized by requiring them to satisfy appro-

priate additional conditions, the number of particles that go to infinity in-

creases. This phenomenology is analogous (albeit with a difference: the

symmetrical behavior now as t and t --> + -o) to that already dis-
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cussed for the system (4.2.3-10): if the initial conditions entail (see

(4.2.3-19))

6. (0) = 0
,
m = 1, 2,...,M - 1;  , (0)#- 0 ,

(10)

then, as t = -o, N -M particles converge asymptotically to fixed loca-

tions, whose configuration consists of the N-M zeros of the following

polynomial of degree N -M in z,

Ar

16. (0)
AI-M

0

M=M

while M particles go to infinity approaching (up to multiplicative correc-

tions, generally 0(r)) the asymptotic stellar trajectories

Yj (t) = exp (27riflM)[- m(O)t]", j=l,...,M . (12)

Exercise 4.2.4-3. Prove these results. Hint: see Exercise 4.2.3-11.

But let us again emphasize that, while these analyses allow to predict that the N

particles are asymptotically distributed so that N -M approach the N -M roots of

(11) and M approach the M trajectories (12), a more detailed investigation is

needed of the solution entailed by (3), or equivalently by (4) with (5), to ascertain the

individual fate of each specific particle, and/or to correlate the individual behavior of

the particles in the remote past and fature.

Exercise 4.2.4-4. Can you imagine some special initial conditions for which the

outcome, in the remote past and future, is easily predicted for each individual parti-
cle? Hint: think of the real subcase, or ofanalogous one-dimensional configurations.

The system (2) is clearly a special case of the Hamiltonian systems

considered in Sect. 4.2.3: indeed (5a) is the special case of (4.2.3-6) en-

tailed by (1) (which is itself a special case of (4.2.3-5)). But it is also, up

to complexification, a special case of the RS model (see (2b) and

(2.1.10-1), as well as (2.1.12-1,7a)). Hence the results of Sect. 2.1.12.1

entail that the Newtonian equations of motion (2b) follow from the

Hamiltonian equations

(Z" - Z.) (13a)tn = a exp(a, 
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N

=a
-1

1]
..'

(i" + i.) / (Z' - Z.) , (13b)
m=l,m#n

which are themselves yielded by the Hamiltonian fanction

N N

H Cz, Z exp(a4 ) fj (Zn - Z.) (14)
n=I

IM=I'M#n I
with a an arbitrary (possibly complex) constant.

Exercise 4.2.4-5. Prove these two statements, see (2b), (13) and (14), noting that

the second set of Hamiltonian equations, (13b), has been written in more compact
form by taking advantage of (13a). Hint: to derive (2b), differentiate the logarithm of

(13a) and use (13b).

The procedure described in the last part of Sect. 4.1 can now be used

to obtain (two, real) Hamiltonians, each of which yields the real, two-

dimensional, equations of motion (2a) (rather than the complex, one-

dimensional, equations of motion (2b)). For instance, for N = 2 the two

real Hamiltonians

_;;
-2

H(F, F,;J51 1  2) 71 11

* f (XI - X2) [eXP ( " A) COS(k *' A A) - exP(a *  2) COS(k *  ' A  2)1

+ (YI - Y2) eXP '151) sin(k - ZiA ,)+exp(ii-,5,)Sin(k' 'A, 2)]I (15)

-2

OF2;,01 -1,P2) il 21

in(XI - X2) [eXP (-k."AP1)sin(ii.,;ol)-exp(-k."A; 2)S ("-PA

+ (y, - y,) [- exp(-k. a A
;3'

) cos(d -

 -_

) + exp(-k-iiAAP2A A cos(d - (16)

both yield the equations of motion (2a) (with N = 2). Here a is of course

an arbitrary (constant) 2 -vector. Note that neither one of these two

Hamiltonians, nor indeed the corresponding Hamiltonian equations, are

rotation-invariant, while the Newtonian equations of motion (2a) are

themselves, of course, rotation-invariant.
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Exercise 4.2.4-6. Derive (15) and (16). Hint: see the last part of Sect. 4. 1.

Exercise 4.2.4-7. Verify by explicit computation that both these Hamiltonians,

(15) and (16), yield the equations ofmotion (2b).

4.2.5 The simplest model featuring only completely

periodic motions

In Sect. 4.2.5 we discuss another, very simple, special case of the family
of models (4.2-1), which is characterized by the remarkable property to

feature only completely periodic trajectories. It obtains from (4.2-1) by

setting all the coupling constants to zero except a',

a'= co#- 0, a =,8 =,8'= A = A'= p ='U' = 0
,

(1)

so that its equations ofmotion read (see (4.2-1))

IV
'

[ ';n j;nm) + r r (i. 7 _jM)r,, = cok A F,, + 2 ),
m

'F _F rm r,r. n
nm)

nm
V_n

M=I'm# 

(2a)

or equivalently (see (4.2. 1 - 1)),

N

F,,=icoi,,+2 n
 m / (Z. - Zm) (2b)

m=I,m-_n

The solution of the initial-value problem for these equations of mo-

tion, (2b), is given by the following neat recipe: the N (complex) coordi-

natesZn(t) are the N roots ofthefollowing algebraic equation in z:

Ar

1: -i.(O)I[z-zm(0)1=icol[exp(icot)-l] . (3)
M=1

Exercise 4.2.5-1. Prove this result in more than one way. Hints: see (2.3.4.2-20);

apply the transformation (2.1.13-2,4,5) to (4.2.4-2, 3).
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Since the right hand side of (3) is periodic in t with period

T = 27r1co
, (4)

clearly the set of roots of (3) is also periodic with the same period. Hence
all solutions of (2) are completely periodic, with period (at most)
f = T - N!, where the factor N! accounts for the possibility that the one-to-

one correspondence between the N positions z,, (t) of the particles and the

N roots of (3) get permuted through the motion.

Exercise 4.2.5-2. Try and understand this phenomenon, namely: granted that all

motions are completely periodic with period (at most!) f = T - N!, are there motions

periodic with periods f = T - M, where the positive integer M is larger than unity
(but ofcourse smaller than N!, M < N!, and such that N! is a multiple of M); and if

there are such motions, how are they separated, and how are they identified in terms

of their initial data? Hint: try some numerical experiments (and see below Exercises

4.2.5-3 and Exercises 4.2.5-4, as well as Sect. 4.5).

Exercise 4.2.5-3. Obtain (and discuss) the general solution of (2a) with N = 2.

Hint: solve (3) (which, for N = 2, is a second-degree algebraic equation), and use

(4.1-17).

Exercise 4.2.5-4. Obtain (and discuss) the general solution of (2a) with N = 3.

Hint: as for the preceding Exercise 4.2.5-3.

The equations of motion (2b) can also be obtained (as (4.2.4-2b))
from a Hamiltonian. Indeed the Hamiltonian

N N N

H (z,  ;) = i (co I a)I Zn +I exp(a4 ) fj (zn - zm) (5)
-1 n=1

L=I,m#n I
yields the Hamiltonian equations ofmotion

'V

i,,=aexp(a4 ) fl(Zn-Zm) (6a)[m=l,m#n
N

=i cola+a-' Z (' n+' J*n-Zm) (6b)
m=l,m--n

and logarithmic differentiation. of (6a) yields, via (6b), precisely (2b).
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Exercise 4.2.5-5. Verify!

As in the preceding Sect. 4.2.4, two real, Hamiltonians can now be

obtained from (5) by using the procedure described in the last part of

Sect. 4.1, each of which yields the real, two-dimensional, equations of

motion (2a) (rather than the complex, one-dimensional, equations of mo-

tion (2b)). For N = 2 clearly they coincide with (4.2.4-15) respectively

(4.2.4-16), except for the addition of a term k - iiA(F, +F,)Ia
2 respectively

- ii - (F, + F.) la2

Actually in this case it is also of some interest to display the two real Hamiltoni-

ans that yield (2a) for N = 1. They read

H (F,  ) = exp (ii -,6) cos (k - d A  ) + (co / a2) (k. ii A F) , (7a)

respectively

Z 2

(7, p;) = exp (k - d A sin (d. p) - (co / a (8a)

and they yield the Hamiltonian equations

r =exp(5- ) [a cos(k-,iA )-kAa sin (k.dA, )] (7b)

4.
- 2)kAiip= (cola (7c)

respectively

r=exp(k-dAp)[5cos(d.'-_)+kA d sin (d -  3)] ,P P (8b)

(co /a') (8c)

Both these Hamiltonian equations of motion, (7b,c) and (8b,c), yield the same New-

tonian equation,

r=cokAF (9)

whose general solution reads

F(t) = 7(0) + r(O) co-'sin (co t) + kA T '(O) co-' 11 - Cos (CO t)] (10)
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Note that both Hamiltonians, (7a) and (8a), and both sets of Hamiltonian equations,
(7b,c) and (8b,c), depend on the 2 -vector J hence lack rotation-invariance (ii pro-

vides a preferred direction), while the Newtonian equation of motion (9) is independ-
ent of ii and rotation-invariant. Moreover, (9) is invariant under translations

(F --> F + F,,,
-

= 0 ), again in contrast to (7a) and (8a) (but not to (7b,c) and (8b,c)).ro

And (9) has a clear physical interpretation: it is the equation of motion of a charged
point particle moving in the plane, under the influence of a constant magnetic field

orthogonal to the plane Ceyclotron7'): indeed the right hand side of (9) corresponds
then to the Lorentz force, and co to the "Larmor" circular frequency.

Exercise 4.2.4-6 Verify these formulas, from (7) to (10).

Since the many-body system in the plane characterized by the Newto-

nian equations of motion (2a) is Hamiltonian, and all its trajectories are

completely periodic, it is natural to conjecture that there exist corre-

sponding quantum systems whose spectrum is equispaced (perhaps up to

a continuous quantum number, corresponding to the translation-invariant

character ofthe equations ofmotion (2a)).
As already hinted at above (under Exercise 4.2.5-2), additional insight

about the behavior of this integrable indeed solvable system, (2), is pro-
vided in Sect. 4.5, where a nonintegrable generalization of it is discussed.

4.2.6 First-order evolution equations, and a partially solvable

maity-body problem with velocity-independent forces,
in the plane

The results discussed in the preceding subsections of Sect. 4.2 are all

based on the findings of Sect. 2.3.4.2. But the transition from one-

dimensional to two-dimensional space via complexification, see Sect. 4. 1,
can be applied as well to certain results of Sect. 2.3.4. 1. In particular it is

easily seen that, by complexification and via (4.1-17), the first-order
evolution equations (2.3.4.1-38) read

'V

2

r. =(a + akA) F,' + (y + 71A) fF, [r,, - 2 (F,, - F.)] + F. r,,2 r2

These evolution equations follow readily from (2.3.4.1-38), after we set

in it

a=a+ia', c=r+ir' (2)
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Hence the solutions of (1) are given, via (4.1-17), by the N zeros of the

time-dependent polynomial, of degree N in z,

N

V(Z't) = Z" +I CJO Z' , (3)
M=1

where

c.(t)=c.(O)expfm[(,v+i,v')(2N-m-1)12+(a+ia')]tI (4)

(see (2.3.4.1-4 1)). Here of course the quantities c. (0) are given, in terms

ofthe initial data z,, (0), by the polynomial equality

N N

ZIV +Y Cm(0) Z'V_M = ]FI [Z - Zn (0)]  
(5)

M=1 n=1

entailing (4.2.1-7). Note that the motion in the plane of all the coordinates

F,, (t) is always (even as t --> -o) confined to a finite region ofthe plane if

a=,,=o ,
(6a)

and it is moreover completely periodic, with a period independent of the

initial data, if there holds the additional condition

2 a'lr= p Iq (6b)

with p and q integers.

Likewise, from (2.3.4.1-44) we obtain the N-body problem in the

plane characterized by the Newtonian equations ofmotion

F, = (A + A'k A) F,,

iv

2

,

2 (F,, - Fm + Fm r,,2 rn2m+ (V + Vk A)
n

[ rn
m=l,m#n

'V

2 (u +,u'k A) N'
" .'

I F, rm2 3 r,2 r.2 - 2 rm2 (F,, - F. rn4
m=l,m#n

F. r
2 [ 3 r

2 rm2 - 2 rn- (Fn - F, - r.2
n rm
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N

F [ 4(F -F+ (U +PkA) I

+r2 [ r2

r2 [ r2 2 [ r.2+ 11(r r
n " n e ne )2 (7)

where the 6 constants A, v, v' are given, in terms of the 4 (a pri-
ori arbitrary) constants a, by the following rules:

/I a2 - a'2 A=2aa' (8a)

2 f2

IV IV (8b)

V _r2 +rr2 -2(ay-a,v), v=2(ar+ar-y7') (8c)

Note that (the right hand side of) (7) features one-, two-, and three-body
velocity-independent forces. This N -body problem, (7) with (8), is par-

tially solvable; indeed any solution of (1) is also a solution of (7) (since
(7) is obtained, by t -differentiation, from (1): see (2.3.4.1-44) and

(2.3.4.1-38)). Hence the partially solvable character of this N-body
problem, (7) with (8), entails, in the context of the initial-value problem,
the freedom to assign the initial positions, F (0), of the N particles in the

plane, but the restriction to then choose the N initial velocities (0) so

that (1) hold (at t = 0). These restrictions (as well as (8)) must be enforced

in order that the technique of solution described above, see (3 +5), apply:
then the solutions not only satisfy (7) with (8), they satisfy as well (1), for

all time. Of course the N -body problem (7) is well-defined more gener-

ally, namely even when these restrictions do not hold.

Note that the conditions (6a) entail, via (8),

Af ='U,.=Vf=o , (9a)

12
< 0A=-a
_ 'a = _r,2 <-O, v=,v"+2a'r' (9b)

The derivations of (1) from (2.3.4.1-38), and speciaRy of (7) from (2.3.4.1-44), is

facilitated by the following identities (see (4.1-17)):

2 (Z* _ Z* F [2 -2(F -F
2

m) ] + Fr,, 00a)
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2 2 *

.)' : : F r2[ 3 r,,2 r.2 - 2 r.2Z" Z. (Z" - Z. n
r,,4

- Fm r,' [ 3 r,,2 r.' - 2 r,2
"

) - r.2 I ,
(10b)

Z3 (Z
*

-Z*) (Z* -Z* )
n n i n ni

2 [ r,,2 - (F, .7.) - 2 (F2
 

) (Fn F.) + r, n
F,

2 2 [ r,2+ r., ]+ r (10C)2 [ r.

Exercise 4.2.6-1. Prove these identities. Hint: see (4.1-16,17).

4.3 Examples: other families of solvable many-body

problems in the plane

In Sect. 4.3, and in its subsections, we manufacture three families ofsolv-

able many-body problems in the plane, and we indicate how they can be

viewed as the first specimens of an infinite hierarchy of such models. The

methodology we follow is to manufacture firstly appropriate solvable

(one-dimensional) many-body models on the line, and then to reinterpret

them, via the complexification trick (see Sect. 4.1), as solvable (two-

dimensional) rotation-invariant many-body problems in the plane. These

models, of which the Newtonian equations ofmotion are displayed below

(in Sect. 4.3) and are derived in the subsequent subsections, are presented
here mainly to illustrate the kind of methods and tricks that allow to

identify them as solvable models.

The first model obtained in this manner is characterized by the fol-

lowing Newtonian equations ofmotion:

r. =[2 ]/r,,2 +(an +a' kA)Frn rn ";n ) - ';n ( Fn rn n

Ar

f j;m) +in ( FM)_ M(+1 f0nm +J8nm  A) IrM (Fn 'j;
M

which features the 2N(N + 1) arbitrary (real) "coupling" constants

an, a', This abundance of arbitrary coupling constants - justify

our mention of afamily of models. Note that these Newtonian equations
of motion C'acceleration equal force") are of course invariant under plane
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rotations; they are also invariant under rescaling of the particle coordi-

nates (F,,(t) ->
"

(t) = CF,, (t), 6 = 0), while they are not translation-invariant.r

They feature only one- and two-body forces. The former are of two (or
rather three) Idnds: a contribution that is quadratic in the velocity, and

depends nonlinearly on the coordinate, of the moving particle, and an ad-

ditional velocity-independent term linear in the particle coordinate (actu-
ally a one-body term linear in the velocity of the moving particle is also

entailed by the term in the sum with m = n). The latter depend linearly on
the particle velocities and nonlinearly on the particle coordinates.

A translation-invariant generalization, involving two types of parti-
cles, reads

=+ [2 j; j; ]/r2
n
Q. * n) 0, (a,, +a' kA)r r, r, n

j; j; r-(,Bnm + flnm  A) [ r. Fm) + Fn FM -

M* n) I/
M

M=1

Ar

+I (r. + r, kA)Rm (2a)nm

M=1

with, in the right-hand-side,

(2b)

+ 1/ 2 (2c)n

These 2N equations of motion for the 2N particle positions
F,(+) (t), F,,(-) (t) feature the 2N(2N + 1) arbitrary (real) coupling constants

a., a', 6,,m, Y,,m, r' .
Note however the presence of 4-body forces, asn nm

demonstrated by the presence in the right hand side of (2a) of terms that

depend on the coordinates of4 different particles, say Fn(+), F(+), m(-)
M

The equations ofmotion ofthe third model read

 n() = '7 (  n() I  n() ; j;n() )

LU (j;(+) _)) I  A
n I j; ( - /" ( Fn(+) I Fn(

- [ ii (  n() ,  n() ; Fn() ) + - (  n() ;  ,(  ); Fn( _) ) - 2 ii  n(-); j;n(::) ) ]
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a,' + + a,, kA
n n n

Ar

FH )nf-); F ;T J6
r

m
V  n(+) ; j;n( mkffinm V(Fn(+); Fn( m m

M=I

+) kA-)
; Fk + i8nm V ( Fn(+) ; Fn(-) ; 7 7+ [ Am V' ( Fn(+) ; ':n(

m mm m
;  m

(+); F(+) n() I Fm m
-'4;n();  m

m

IV

(r,m + r' A) Fn()  m(+) ; F(+) + Fn() I  m
mnm m

M=I

(F F
2 (3b)3)+ F

2 1
*F3) 3( 1

*

2 319 2; 73)=[ 71( 2
* j

.F(FI, F2; F, T, [2 (F2 ')2 - r2' r 2]+ 272 3)( , 3)-2 3( 2)( 2 3) r34
3

(3c)

F r r (3d)2 (Fi 2) 2 1) log( 1/ 2)

(3e)-A'0721 1) 0 - 192 1(j;l 1 ;:2 1

ju g( _02)2
I /r2)/[ 10g2(r,2) = IU (;21 F -10 r /r,)+(Ol (30

I g2( )+(01 -02 )2
11 2) = F i (3g)

21 1 (01 - 02) 0 rl r2

F2;;3; F -V F F F F VV 0 1' 4) 2; 1; 3; 4) F F F i -V( 1; 2; 4; 3) 2; 4; 3)

= [ log(r, /r,)Iog(r3 /r4) + (0, -02)(03 -04) 1/ [ jOg2 (r3 / r,) + (03 _0,)2 ] , (3h)

j7 j7F j; 7 -V'(F 1; T3; 4) = -V'(FI; 2; F4; 3) = V 2; 1; 4; 3)VVI; 2'; 3; 4) 2;F 7 7 F F F 

3/r )+ 0 (3i)=[I g(j/ 4)(01 _02) 10g2(r _0 )20 r r.2)(03 -'94)-109(r3. /r 4 ( 3 4

Note that, in (M-4), we found convenient to use the circular coordinates

r, 0, see (4.1-4).
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4.3.1 A rescaling-invariant solvable one-dimensional

many-body problem

In Sect. 4.3.1 we manufacture the scale-invariant solvable one-

dimensional many-body problem that corresponds to (4.3-1) via the com-

plexification trick of Sect 4. 1.

We take as starting point the system of N linear ODEs

IV

a,, + g.
M=1

which feature in their right-hand-sides the N arbitrary constants a,, and

the N' arbitrary constants b..

We then set

&W = i"W / Z"W , (2a)

entailing

(t) = _F (t)/Zn (t) _ [i" (t) /Zn W] 2

(2b)

and we thereby get from (1) the system of second-order ODEs

y =i2/Z"
'V

n
+ a,, zn + z,, b. i,,, / zm (3)

These equations are clearly scale-invariant, and it is easily seen that,
via the complexification trick, see (4.1-17), they yield (4.3-1), with the

identification

a,,=a,,+ia', b =)6
n (4)nm +'finmn nm

Exercise 4.3.1-1. YerifY I

On the other hand these equations, (3), are easily solved by algebraic
operations. Indeed (1) entails

N

gn(t) c. (0) exp (A(?n) t) + (1j"), az) [ exp (A(n) t) - 11/P) jV(M) (5)n

M=1
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where the N numbers A-' are the N eigenvalues of the (Nx N)-matrix
B having matrix elements

B v(-) =.I(') V
(M)

(6)

the quantities v(m)
,
n N, are the N components of the eigenvectorsn

of B, see (6), the N N -vectors u
(n)

are ordionormal to the N N -vectors

V

IV

(U(-), V(M) U(n) V(M) gnm (7)

ofcourse

IV

(u(', a) u,(,n) a. (8)

and the N constants c. (0) are defined by (5) at t 0:

M

gn (0)- E C. (0) V(.) (9a)n

M=1

hence (see (7))

N

CM (0) U(M) (9b)
n gn (0) '

n--O

Proofs. Let us rewrite (1) in N -vector form:

k(t)=a+Bg (10)

Then set

IV

9W =I C W V(n)
n=1

so tha via (6),

IV N

Y, 6 W y
( ) =a+j] I(n) Cn (t) V(n) (12)

n=1 n=1
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hence, via (7)

(t) = ( i(n) , a) + P) c,, (t) (13)

hence

U(n)'aexp(11(n) t) +CCn (t) '- Cn (0) [exp(P) t) (14)

Insertion ofthis formula, (14), into (11), yields, componentwise, (5), which is thereby

proven.

As for the derivation of (9b) from (9a), it is plain, via (7).
Note however that we have implicitly assumed that the (constant) (Nx N) -

matrix B is diagonalizable,

B v
(n)

) = 8". AN ,

and that it possesses N distinct (possibly complex) eigenvalues (A(n)
#_ A(M) if

n #- m ).

Exercise 4.3.1-2. Discuss how the solution formulas written above get modified

when these assumptions cease to hold.

The next step to solve (3) is via the integration of (2a) with (5). This

clearly yields

Zn(t)`_Zn(O)eXPfY HCJO)1eXP(11(m)t) ']'A(
M=1

+ (U (M), a)[ eXp(/1(.)0_l_ /1(.) t ] I [ A (M) ]2 1 V(m) (15a)
n

with

'V

U(M)  n (0) 1 Zn (0) (15b)C. (0) =I n

n=O

(see (9b) and (2a)).
The time-evolution of these coordinates ZnW in the complex plane

corresponds directly, via (4.1-17), to the motion of the particles Fjt) that

satisfy the Newtonian equations of motion (4.3-1) in the physical plane.
While a detailed analysis ofthese motions is left as an instructive exercise

for the diligent reader, we tersely outline here some of its most interesting
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features, focussing on the case treated above, characterized by a diago-
nalizable (generally complex) (N x N) -matrix B.

Clearly the most important elements that characterize the behavior of

the system (4.3-1) are (see (15a)) the eigenvalues P) of the (NxN)-

matrix B, whose elements are the two-body coupling constants,

(B)n. =,6. + iflnm  (16)

as well as the values of the one-body coupling constants an = an + i a'. For
n

instance, if all the eigenvalues P) are imaginary,

A(M)* = -A(M) # 0, M = N
, (17)

and moreover the Ar constants

N

lin /A(Vn (18)
M=1

are also all imaginary (or vanishing)

P. = -Pn (19)
n

then clearly (see (15)) all solutions of the many-body system (4.3-1) re-

main confined to a finite region of the plane for all time, including the

asymptotic limits t --> oo. The behavior of such a system depends quite

sensitively on the initial data (which enter exponentially in the solution,
see (15)). Note that sufficient (but not necessary) conditions to guarantee

(17) are the following (symmetry and antisymmetry) properties of the

two-body coupling constants:

(20a)fin. = -,flmn I finin = fln

as well as

det rBI # 0 (20b)

(indeed (20a) guarantees that the (N x N) -matrix B be antihermitian,

namely that iB be hermitian, while (20b) excludes that any one of the

eigenvalues A(-) of B vanish), while the simpler way to satisfy (19) is to

assume, see (18), that all the one-body coupling constants vanish,
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a,,=a'=O .
(21)

Likewise, if any one ofthe eigenvalues P) is imaginary, say

,I(k)* = _,Z(k) 0 (22a)

(without any restriction on the other eigenvalues, Xm) with m # k) and the

corresponding value, 'U
(k) ,of the constants.p1m), see (18), is congruent to

,Z(k)
,

Y
(k)

= (p /q) A(k) (22b)

with p and q both (arbitrary!) integers (q # 0; p might also vanish), then

clearly (see (15)) the many-body system (4.3-1) possesses a periodic so-

lution (with period T = 2)r q / A(k) if p:p,- 0, T = 2,T / A(k) if p = o), character-

ized by initial data, see (15b), such that cm (0) = 0 for m # k.

Exercise 4.3.1-3. Show that all solutions of the many-body problem in the plane

(4.3-1), with all one-body coupling constants vanishing, see (21), and with the fol-

lowing values ofthe two-body coupling constants,

jsin[ 2;r(m -n)IN ] /I 1-cos[2,T(m -n)IN (23a),6,,. c (I - 8,,,,

'6"'. c (I + N 5".) ,
(23b)

where c is an arbitrary (real, nonvanishing) constant, are compIetely periodic, with

period T = 7r1c; and construct other many-body problems of type (4.3-1) that also

feature only completely periodic motions of a given period T. Hint: see Sect. 2.4.5.1.

Another interesting instance of the system (4.3-1) is characterized by
the vanishing of the one-body coupling constants, see (21), and by appro-

priate restrictions on the two-body coupling constants, such as to guaran-

tee that all the eigenvalues of the matrix B, see (16), have negative real

parts,

Re [ P) ] < 0, m N (24)

Then clearly (see (15)) all solutions of the many-problem (4.3-1) remain

confined as t -o and tend to stand-still configurations,
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IV

z,, (oo) = z,, (0) exp
(M) / A(M) (25)Cm (0) Vn

M=1

while the velocities of all particles vanish asymptotically (exponentially
fast) as t -+ co

.

If instead one or more of the eigenvalues P) of B have positive real.

parts, the behavior of the system (4.3-1) in the remote future depends
dramatically on the initial conditions: as t -> CO, one or more particles
may shoot off to infinity doubly-exponentially fast, while others may

converge to the origin (doubly exponentially fast: this entails no diver-

gence of the forces, since the corresponding velocities also vanish, even

faster, as t -> co : see (3) and (15)).

4.3.2 A rescaling- and translation-invariant solvable

one-dimensional manyv-body problem

In the preceding Sect. 4.3.1 we have manufactured, and tersely analyzed,
the solvable one-dimensional many-body problem, see (4.3.1-3), which

by complexification yields the first many-body problem in the plane re-

ported in Sect. 4.3, see (4.3-1). As noted above, these models, (4.3.1-3)
and (4.3-1), are not invariant under translations. In Sect. 4.3.2, via a sim-

ple trick which involves a doubling of the number ofparticles, we manu-

facture a translation-invariant extension of (4.3.3-3), which involves the

introduction of two different types of particles, and whose two-

dimensional version, obtained by complexification, coincides with the

second model reported in Sect. 4.3, see (4.3-2).
The trick is to introduce, in parallel to (4.3.1-3), the set of ODEs

N

2n = I C.
M=1

Here the N' constants c. are generally complex,

CnM = 1 (2)r. +'Ynm

Note that these equations of motion are translation-invariant, and that

they are, rather trivially, solvable:

N

Z' (t) = Z" (0) + (0) 1 exp[ q() t 77(m) I Vn (3a)
M=1
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1. (0) = U"") 2" (0) ,
(3b)I n

n=1

where u(m) respectively y() are the left- respectively right-eigenvectors of

the (N x N) -matrix C
,
with elements c.. .

see (1), and 77(r") are the corre-

sponding eigenvalues:

C v(m) = 77(m) Y(m) (4a)

u(m) C= 77(m) -u('n) (4b)

(! (m)' V(n) (4c)

oi(M)
I -C -V(?I) 0 (m) -C., E(n) (5nm 7(n) (4d)

Exercise 4.3.2-1. Prove the solution formula (3), whose validity is conditional on

the two assumptions (i) that the (N x N) -matrix C be diagonalizable and (ii) that its

N eigenvalues U(m) be all distinct (77( ) # U(m) if n#- in); find how it must be modi-

fied when these assumptions do not hold. Hint. see Sect. 4.3. 1.

We now introduce two Idnds of particles, respectively characterized

by the coordinates z(+) (t) and ZH (j), by setting
n n

Z
n

":: ZnW ZnW (5)W

entailing

Z(+ W - ZnZnW :-z

n
(t) ]/ 2 (6a)

Z
n

) n-) (t) ]/ 2 ,,,
(t) = [ z(+ (t) + z( (6b)

and we assume that Zn (t) respectively Zn(t) evolve according to (1) re-

spectively (4.3.1.3). These implies that these coordinates, z()(t), evolve
n

according to the following equations ofmotion:

E() = +f i' / z,, + an zn + zn 1] (7)
n

[bi.lz. Jj+ECnm
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where, in the right-hand-side, z,,, z. and Z. must be expressed in terms

of z(+) and zl-) (or zl+) and z(-)) via (6).
n n m M

These equations are invariant under translations

(Z(: ) (t) Z(`) (t) + Z, i,, = 0); and they are clearly solvable via (5),n n

(6), (3) and (4.3 .1-15). And it is easily seen that, by complexification,
they correspond to (4.3-2) (via (2), as well as (4.3.1-4) and of course (4. 1-

17)).

Exercise 4.3.2-2. Verify!

Exercise 4.3.2-3. Discuss the behavior of the solutions of the many-

body problem in the plane (4.3-2), making appropriate hypotheses on the

coupling constants featured by this model. Hint: see (3) and (4.3.1-15).

Exercise 4.3.2-4. Generalize the treatment of Sect. 4.3.2 by adding N

arbitrary (complex) constants to the right-hand side of (1) (note that this

does not spoil the translation invariance of (1)).

4.3.3 Another rescaling-invariant solvable one-dimensional

manywbody problem

In the preceding Sect. 4.3.2 we manufactured a solvable one-dimensional

many-body problem, see (4.3.2-7,6), that is invariant under (common,
time-independent) translations of all particle coordinates. This model is

also invariant under (time-independent) rescaling of the particle coordi-

nates, hence, by complexification, it yields the rotation-invariant many-

body problem in the plane (4.3-2).
But, as explained in Sect. 4.1, the property of translation-invariance

can be turned into rescaling-invariance by the change of variables

Zn = 109( J 7 4,n = eXP(Zn ) I (la)

which of course entails

' n = en / 4n I 2n  n  2 / 4n I/ 4n
n

(lb)

We now perform this change of dependent variables on the model

(4.3.2-7,6), namely we set

Zn n
exp[ zn() (2)log[

469



and we thereby obtain a new many-body problem, which is now no more

translation-invariant, but it is instead invariant under rescaling of the par-

ticle coordinates (t) .
It reads:

 .') 1 2 /

2
/ ()

+ 12
n

 n 4n en  n 2en(+) e,(-)I og

a,, Q() log[ Q(+) / Q(-)

M
N

og4n(+) 4'n(-) og
n

b e. t
M=1

IV

M
+ e.+ 4 (3)Cn.

M=1

This-model is obviously solvable, and it is easily seen that, via the

complexification technique of Sect. 4.1, it yields the third of the many-

body problems of Sect. 4.3, see (4.3-3).

Exercise 4.3.3-1. Verify! Hint: prove firstly the identities

-

: j; (4a)Z1 Z2 / Z3 111 2; j;3)

/Z3)2 (4b)ZI (Z2 2;F3')

F (4c)109(ZI/ZO 2 (FD F2)+'/I'( 11, 2) 1

[109(ZI/Z2W (4d)

[109 (ZI / Z2)1/ [109 (Z3 / Z4)1= V (FI; F2; F3; F4) + 'V(FI; F2; F3; F4) (4e)

with the quantities in the right hand side of these equations defined by

(4.3-3b --3i) (see (4.1-17,18), and note that (4a) coincides with (4.1-19,5)

Exercise 4.3.3-2. Discuss the behavior of the solutions of the manym-

body problem in the plane (4.3-3), making appropriate hypotheses on the

coupling constants featured by this model. Hint: see Exercise 4.3.2-3, and

use (2).
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The model (3) is not translation-invariant. But a translation-invariant

model can be manufactured from it by using the same trick, involving a

doubling in the number of particles, that was used in Sect. 4.3.2 to manu-

facture the translation-invariant model (4.3.2-7,6). Then, having obtained

in this manner a translation-invariant model, a rescaling-invariant model
can be manufactured using the trick (1).

In this manner a hierarchy of translation-invariant, and rescaling-
invariant, models can be manufactured, and each of the rescaling-
invariant models yields, by complexification, a rotation-invariant model

in the plane. And all these models are of course solvable. They do how-

ever look more and more artificial (the equations of motion feature loga-
rithms of logarithms of logarithms ...), and their solutions become more

and more complicated (they feature exponentials of exponentials of expo-

nentials
...).

Exercise 4.3.3-3. Manufacture the next many-body problem in the

plane yielded by this procedure, and discuss the behavior of its solutions,

making appropriate hypotheses on the coupling constants featured by this

model.

4.4 Survey of solvable and/or integ,rable many-body
problems in the plane obtained by complexification

In Sect. 4.4 and in its subsections we list several many-body problems in

the plane which have been obtained by the complexification. technique
described in previous sections of Chap. 4, see in particular Sect. 4. 1. Our

presentation follows closely (sometimes verbatim) <C98c>, and it is lim-

ited to exhibiting the relevant equations of motion, all of them (except
those of Sect. 4.4.10) of Newtonian type and satisfying the essential re-

quirement to be invariant under rotations in the plane. We do not elabo-

rate on the techniques to solve them, much less do we discuss, except for

some occasional remark, the behavior of their solutions. We do however

mention, for each model, the extent to which it can be treated (in particu-
lar whether it is solvable or integrable). Bibliographical clues that shall

suffice for the diligent reader who wishes to pursue the matter in more

detail than is provided herein -- an incentive to do so is the fact that, for

several of the models exhibited below, a detailed analysis of the behavior

ofthe solution has not yet been done-- are provided in Sect. 4.N.
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Throughout the following subsections

j;,,. = F,, - F. , r,,.- = r,,2 + r.2 - 2 F,, - F. .
(1)

In those examples, see Sects. 4.4.5 -- 9, which feature nearest-neighbor

interactions, we deliberately leave vague the "end-point" conditions,

namely how the relevant equations of motion are to be interpreted for

n = 1 and for n = N, and, in the expressions of the Hamiltonians and La-

grangians, the range ofthe sums.

4.4.1 Example one

The Newtonian equations of motion of this solvable many-body problem
in the plane read as follows:

I -12 ]/r2 -(a+arkA)
'v

-6,
rn 2 j;,,) - F,,rn rn r,

_ 2)2 2[ r2 2
+ r.2) - 2 (r,,2 _ 2)22 2) + 2 (r,,2 r.Fn r.2 [ r,,4. - r

2
r

,,.
(rn - 3 r. + F. r,, n.

(r,,

(1)

Here a and a' are two arbitrary (real) coupling constants.

This model features one-body velocity-dependent forces (quadratic in

the velocities), and two-body velocity-independent forces. It is obviously

rotation-invariant; it is not translation-invariant; it is invariant under

rescaling of the particle coordinates (Fn -> ' = c F,, ,
6 = 0).

The complex version ofthe equations ofmotion (1) reads as follows:

Z.)
3

7IZn+(a+'a')
n Zm (zn +Zm)l(zn'2. = 'n z (2)

or equivalently, via

zn =exp(2qn) 1
(3)

4n (a+ia') cosh(qn-qj[S11h(qn-qm)] -3

(4)
8

m=l,m#n

Exercise 4.4.1-1. Verify that, via (3), the equations of motion (2) and

(4) are equivalent.
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Note tile coincidence of (4) with (2.1.5-5) (with a = 1 and

92 =(a+ i a') 116). This justifies the claim made above about the solvability
ofthis model. It also entails that this model is Hamiltonian, see (2.1.5-3).

Exercise 4.4.1-2. Write Hamiltonians and Lagrangians that yield (1).
Hint: see Sects. 2.1.5 and 4.1 Solution: see <C98c>.

Exercise 4.4.1-3. Discuss the motions in the plane entailed by (1), in

particular the behaviors as t --> oo. Hint: use (3), and see Sect. 2.1.5.

Exercise 4.4.1-4. Verify that the equation of motion (2) admit the N!

similarity solutions

z,, (t) = Aexp(b + ct + 27c i m / N) ,
n N, m N, (5)

where n and m are matched by an arbitrary permutation and A, b and c

are 3 arbitrary (complex) constants, and analyze the corresponding con-

figuration and its time-evolution in the plane. Hint: use the identity

Ar

exp[27ri(m+n)1N][ exp(27rin1N)+exp(2,Tim1N)

[exp(2;r i n / N) - exp(2g im / N) ]3 =0 (6)

which can be proven by first showing that its left hand side is in fact in-

dependent of n (dividing by exp (6 7r i n / N) and setting m = j + m' mod(N)),

and by then summing over n from I to N, which yields a vanishing re-

sult due to the antisymmetry of the summand under the exchange of the

two dummy indices m and n.

Exercise 4.4-5. Show that the system (1) possesses the following two

constants ofmotion:

N

2
C=I rn.Fn / rn (7a)

n=1

N

C1=1 r2 (7b)rn A j;n /
n

n=1

Hint: note that the equations of motion (2) entail

N

(dldt) [1: O nIZJFO (8)
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4.4.2 Example two

The Newtonian equations of motion of this many-body problem, written

in complex form, read as follows:

i' / z,, + a i,, +4i, i. z,, (z,, + z.) (z,, - z.) [4 z,, z. + b (z,, - z.)2
n

with a and b two arbitrary complex constants. These equations of mo-

tion, via the position

z,, (t) = exp[2 Un (t) (2)

take the form

N

ii, = ak + 2 1: k ' m Cotanh(Un - um) / [1'+ b sinh2(Un -U.) IZ 1(3)

hence they are integrable, indeed solvable, see Sect. 2.1.12.4.

On the other hand these equations of motion, (1), are clearly invariant

under rescaling of the particle coordinates, hence, by complexification,
they yield a rotation-invariant many-body problem in the plane.

Exercise 4.4.2-1. Write the Newtonian equations of motion of the

many-body problem which obtains by complexification from (1). Hint:

see Sect. 4. 1.

Exercise 4.4.2-2. Discuss the motions in the plane of the many-body
problem of the previous Exercise 4.4.2-1, and note the special (com-

pletely periodic!) behavior if a = ico with co real and nonvanishing. Hint:

see Sect. 2.1.12.4.

Exercise 4.4.2-3. Verify that, if one sets

WW
.'

[ i" (t) / Z" (t) I , (4)
n=I

then (1) entails

w(t)=w(0)exp(a0 (5)
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Exercise 4.4.2-4. Verify that the system (1) possesses the N! similar-

ity solutions

z,, (t) =  p (t) exp(2 7c i m /N) (6)

with the indices m and n matched to each other according to any permu-
tation ofthe N numbers 1, 2,..., N, and with

 o(t)=Aexpf,u[exp(at)-111aj , (7)

where A and u are two arbitrary complex constants. Hint: first show that

(6), with some appropriate (o(t), indeed provides a solution to (1) (hint:
see Exercise 4.4.1-4); then note that (6), (4) and (5) entail the ODE

NO(t)1(o(t)=w(O)exp(at) . (8)

Exercise 4.4.2-5. Verify that the Hamiltonian

IV

H(z,i ) = Y
,

f- (a / s) log(z,)
n=1

N

+eXP(S Z b(z' +Z2 )-2(2+b)zn z. ]112 1(z. -z.) (9)
n

yields the equations of motion (1) (s being an arbitrary constant that does

not show up in (1)).

Exercise 4.4.2-6. Verify that the Lagrangian

X

L(z,3z=1: f(als) 109(Zn) - I n / (S Zn) I
n=1

N

(Z211 + log[ ' n / (S Zn logf [ b +z2)-2(2+b)ZnZm 1112/(Zn
n M _zM) I I I

M=I'M#n

(10)

yields the equations of motion (1) (s being again an arbitrary constant

that does not show up in (1)).
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4.4.3 Example three

The Newtonian equations of motion of this integrable (indeed, solvable)
many-body problem in the plane read as follows:

2 F,,) - F,, 1' ' 12 ] Ir,,+rA
2 +[ g,, rrn rn rn rn

or equivalently, in circular coordinates

n)2 IrF =(  +r (2a)
n gnr

k" o (2b)

with

'V

j - a' (on - 0.)g.Cr):-- falog(r,,Irr

+ log(rn rM )I [10g(rn /rM )]2 -3(0,, _021

- -0 3 [Iog(rn )]2 +(0 _0 )
2 1-3 1,8' (0,, /rA 2

+ (on - Om) 2111 1109(r. /rnM

(3a)

'V

knr ja'Iog(r,,1r.)-a(O,-O.)
m=l,m#n

10 /rm) f [10g(rn/rM )]2- 3 (On _ 19M) 21+ g(r

/ )]2+(o _0 )21 f[jog(r/r)]2 + 0 _0 )
2 1-3 1+ P (On -Oj 1- 3 [Iog(rn rMnM n M n M

(3b)

Note that we use here preferentially circular coordinates (see Sect. 4. 1).
This model is Hamiltonian (see below); it features one-body velocity-

dependent forces (quadratic in the velocities), and two-body velocity-
independent forces. It is not translation-invariant, but it is of course in-

variant under both rotations and rescaling, indeed it is easily seen that, if

r'n (t), On (t) is, in circular coordinates, a solution of (1), then

7 jt) = r,, exp(u t) r
n

(t) (4a)
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OJO = 0 +vt+O,,(t) (4b)

is also a solution, with r., 0, u, v arbitrary (real) constants.

The Newtonian equations of motion (1) feature the 4 arbitrary (real)
coupling constants a, a, 8,6'. If a < 0 and a= 0

3
the generic solution is,

up to a transformation of type (4), completely periodic with period
T = 2.T (-a)

"' (see below for a justification of this statement).
If the quantity b /a is real and negative, with a and b defined as fol-

lows

a=a+ia' b =,8 + i,8' (5)

this model, (1), possesses the following N! similarity solutions:

"
(t) ro exp(u t) (6a)r

0,, (t) 0, +vt+ [-bl(2aN) (6b)

which are conveniently written here in circular coordinates. These for-

mulas, (6), feature 4 arbitrary (real) constants r,,0,,,u,v; the indices n and

m in (6b) are related by an arbitrary permutation; and the N real numbers

 . are the N zeros ofthe Hermite polynomial of order N,

H, ( .) = 0
, (7a)

hence (see Appendix C)

(7b)
n=1

,V

-3
21 ( n -  J (7c)
M=1

Exercise 4.4.3-1. Verify that (6) satisfies (1). Hint: first try directly,
then see below.

The "complex-plane" avatar of (1) reads

N

,7-2 [log(Zn / Zm
-3

2'n
n
IZ +Zn

,
f a log(zn / z.) + b1] (8)

m=l,.#n
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with the 2 complex coupling constants a, b related to the 4 real coupling

constants a, a,,6,,B' by (5).

Exercise 4.4.3-2. Verify

These (complex) equations of motion are produced by the Hamilto-

nian

IV

Z2 4 2 + VUZhLz (9a)
2

j

as well as by the Lagrangian

-2 i2 V Lz3Z Zn n
Oz (9b)

2n=l

with

Ar

V (z) a [ 109(Zn / Zm) ]2 + b [ log(z,, / z.) 1-21 (9c)
4

m,n=l;m#n

Exercise 4.4.3-3. Verify!

Exercise 4.4.3-4. Write 2 real Hamiltonians, and 2 real Lagrangians,
that yield the Newtonian equations of motion in the plane (1). Hint: see

Sect. 4. 1.

The integrability (in fact, solvability) of this model, as well as quite
straightforward proofs of the results stated above, follow from the find-

ings of Sect. 2.1.3.3, since, by setting

Z'#)=eXP[U"(t)] , (10)

the equations ofmotion (8) become

"n [a (u,, - u.) + b (un - u.)

Exercise 4.4.3-5. Verify!

478



4.4.4 Example four

The Newtonian equations of motion of this solvable many-body problem
in the plane read

r,,2+(a+a'kA)r" rII rI r,, rIF.

N

+ 2

m=l,m#n

g / )/f g( 2+ 0 _0 )2(r r r r (2a)F F2) 2
F 10

1 2 [10 1 2 1 2

?( :
-

I /r) ]2 -02)2il,j; - 02 1 1109(r 2 +(01 (2b)2) = P F21 FI) = (01

Hence they feature one- and two-body velocity-dependent forces (to write

the latter we conveniently employed circular coordinates, see (2)).
This many-body problem is Hamiltonian (see below). Its equations of

motion are of course invariant under rotations in the plane (in circular co-

ordinates: on -->W,=O,+OO,d,,=O), and under coordinate rescaling
- ;;:

Fr ,
6 = 0). They contain 2 arbitrary (real) coupling constants,rn _ '

n

== C
?n

a and d; if a vanishes and a' does not, a = 0, a:;,- 0, its generic motions

are completely periodic, with period (at most) T = T - N!, T = 2,T /I dj.

Exercise 4.4.4-1. Prove the last statement made above. Hint: see

Proposition 2.1.13-1, and (8, 4) below together with Sect. 4.2.5.

The "complex plane" avatar of the Newtonian equations ofmotion (1)
reads

N

n
/ z. + a n

+ 2 1:  n -'m / [zn 109(Zn / Zm) (3)
m=l,m#n

with

a=a+ia' (4)

Exercise 4.4.4-2. Verify!

Exercise 4.4.4-3. Verify that the complex equations of motion (3)

possess the N! similarity solutions
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z,, (t) = expI c [ b + exp(at) ] " "'

exp(2)r im /N) I , (5)

with b and c arbitrary complex constants, and the indices m and n re-

lated by an arbitrary permutation.

Exercise 4.4.4-4. Verify that the equations of motion (3) are yielded
by the Hamiltonian

'V

h (z,,;)=E I -(als) (6)1Og(Zn)+eXP(SZn n) fj [109(Zn'Zm)]-l I  

n=1 M=I'M#n

as well as by the Lagrangian

N

4IZ3Z=j f(alS)109(Zn)
n=1

-1- [-+ log[ Z.MI (7)nl(SZn)lf -1+109["nl(SZn)]+ Z log (Zn/

where s is an arbitrary complex constant (that does not show up in (3)).

Exercise 4.4.4-5. Write out two (real) Hamiltonians and two (real)
Lagrangians, that yield the (real) Newtonian equations of motion in the

plane (1).

The equations of motion (3), hence (1) as well, are integrable, indeed

solvable, since, via (4.4.3-10), they take the form (see (4.2.3-10), or

equivalently (4.2. 1-1) with a = a + id, 8 =,8'= A = A=,u =,u'= 0)

IV

a z , + 2 Z i n i m / (u. - um) (8)
M=I'M# 

Exercise 4.4.4-5. Verify!

Exercise 4.4.4-6 Discuss the behavior of the many-body problem (1).
Hint: see the discussion after (4.2.3-10).
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4.4.5 Example five

The Newtonian equations of motion in the plane of this solvable model

read as follows:

nj- - 1 2 2

T. 2 ( rnr,, rI rn

+(a+a'kA) fF,,, - [ 2 Fn (Fn - F 2 2-1) + Fn, rn ]/r,_1

Hence they feature velocity-dependent one-body forces and velocity-

independent "nearest-neighbok" two-body forces.

These equations of motion, (1), are obviously invariant under rota-

tions and rescaling, but not under translations. They feature (rather trivi-

ally, see below) the 2 arbitrary real coupling constants a and a.

These equations of motion, (1), are yielded by either one of the fol-

lowing two Hamiltonians, HGr  ) and F1 Gr
'

), as well as by either oneP

ofthe following two Lagrangians, L (T: : ) and Z (:T 

2
AHGr F")

2
+ V (:r) (2a)

2
n

;z
.

z 2]+ Ff Gr [(Pn Fn) (k Ion r (2b)A Fn) 0
n

-

.

2 2]/r4 _Vr (3a)L Cr, [(rn ':n rn A F
n

2

4.

A F
4 (3b)Crb = (rn Fn r,, n)lr r

n

with

(a2 +a, I

)
-1

V -a(F -F -F (4a)[
,

n,) + a'(k
n
A Fn,) I/ rn,

n

r= (a2+a' 2) -1 [af F k.j; AF 2

--1)+a ( - n-1) P rn-I (4b)
n n n

Exercise 4.4.5-1. Verify that (2) or (3) with (4) yield (1).

The "complex plane" avatar of (1) reads as follows:
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_F =12/Z" + a (z,,,, _Z2/i +1)
n n 12

with

a=a+ia' (6)

By setting

z,, =anexp (UJ (7)

it goes into the integrable (indeed, solvable: see Exercise 2.1.7-5) "Toda"

equations

"n=eXP(Un+I-Un)-eXP(Un-Un-1) (8)

Note that the complex constant a has dropped out ofthese equations.

Exercise 4.4.5-2. Verify!

Exercise 4.4.5-3. Verify that the complex equations of motion (5)

possess the similarity solutions

z,(t)=exp[(b+nc)t] , (9)

with b and c arbitrary complex constant, and analyze the behavior of the

corresponding solutions of (1).

4.4.6 Example six

The solvable Newtonian equations of motion in the plane of the first ex-

ample exhibited in Sect. 4.4.6 read

* j; ('
.

(4- r2(a + a'Ak) r. - r. r'" nm)+r. r. r,, r.

of course with (4.4-1). Hence they feature velocity-dependent one-body
and nearest-neighbor forces. The similarity, and especially the difference,
should be noted, among these equations of motion, (1), and, say, (4.2-1)
(the latter, of course, with 6 =,6'= A = A'=,u =,u'= 0): not only, of course,

in the range of the sum, but as well in the factor in front of it, which is -I

here, + 2 there.
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These Newtonian equations of motion are obviously invariant under

rotations in the plane, under rescaling ofthe particle coordinates, and also

under translations. They feature the two arbitrary (real) coupling con-

stants a and a', and it is clear (see Proposition 2.1.13-1, and below) that

their generic solution is completelyperiodic if a = 0 and a':# 0.

The complex-plane avatar of (1) reads as follows:

Y,,, = ai,, -i,, in / (z, - z.) (2)
M=n1

with

a=a+ia' (3)

Exercise 4.4.6-1. Verify!

Exercise 4.4.6-2. Verify that the (complex) equations of motion (2)

possess the similarity solutions

z,,(t)=A" expl b+c[ exp(at)-l Ila 1 (4)

with A, b and c arbitrary complex constants, and discuss the behavior in

the plane ofthe corresponding solutions of (1).

The integrability (indeed, solvability) of the many-body problem in

the plane (1) is entailed by the coincidence, up to trivial notational

changes and to the insertion of the term proportional to the constant a

(for which, see Proposition 2.1.13-1), of (2) with (2.1.13-24).
As suggested by the treatment of Sect. 4. 1, we now set

ZnW = 109kW I ) u. (t) = exp[z. (t) 1 (5)

and thereby transform the translation-invariant system (3) into the fol-

lowing rescaling-invariant system:

= i12 (6)
n n

/Un +a Yj Z n fim Um 109(Un lUm) I
m=nl

Then we complexify this system, and we thereby get the following solv-

able many-body problem in the plane:
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1 12 2
+ +akA) -

r. (a

[Iog(r. r.) - (0. - 0.) kA

J-j;FM) r ,lrrM r. r,' r,,, ?+(0n_0
In
)2 (7)r, rM M

log(r

which we have conveniently written using, in part, circular coordinates.

These Newtonian equations of motion, (7), are obviously rotation-

and rescaling-invariant, but they are not translation-invariant. They fea-

ture again the two arbitrary (real) coupling constants a and a, and, if

a = 0 and a'# 0, their generic solution is completely periodic with period
T = 27r1l all.

Exercise 4.4.6-3. Verify that the (complex) equations of motion (6)

possess the similarity solution

u,,(t)=nA+b+c[ exp(at)-i Ila (8)

with A, b and c arbitrary complex constants, and discuss the behavior in

the plane ofthe corresponding solutions of (7).

Exercise 4.4.6-4. Verify that the following Hamiltonian h(z and

Lagrangian i (, , 3z yield the (complex) equations ofmotion (3):

h (z, (a / s) z,, + exp(s 4 ) (Z +I -zn) I 1 (9)

(,z 3Z
..,

f a zn +   1091  n (Zn+l - Zn) I I 1 (10)
n

where s is an arbitrary (nonvanishing) complex constant that does not

show up in (3).

Exercise 4.4.6-5. Write out two (real) Hamiltonians, and two (real)
Lagrangians, that yield the equations ofmotion (1). Hint: see Sect. 4. 1.

Exercise 4.4.6-6 Write out Hamiltonians and Lagrangians that yield
(6) and (7). Hint: see (5).

Exercise 4.4.6-7. Write the rotation-invariant (real) equations of mo-

tion in the plane that correspond by complexification to
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='2/Z -Zn-l)+n+IZ,I[Z,,+I(Zn-Zn+l)ll 3 (11)
n n +ai, n

f 'n-I / (Zn
n

and discuss their integrability/solvability. Hint: see (2.1.13-23) and

Proposition 2.1.13-1.

Exercise 4.4.6-8. Verify that the following two Hamiltonians, as well

as the following two Lagrangians, yield the equations ofmotion (11):

h(O')(z, )=J] -(als)log(Zn)+eXP(SZn n)['-(Zn+(l+o-)12IZn+(l-o-)12)]I ,(12)
-

.,
t

n

 3 J + Un IZJ 109fiCz z Y, I (a/ S) 109(Z
n Zn+(I+o-)/2 /[ (z,, -z,,+,)

n

Here a = +1 or u = -1, while s is an arbitrary (complex) constant, that

does not show up in (11).

Exercise 4.4.6-9. Write out 4 (real) Hamiltonians, as well as 4 (real)

Lagrangians, that yield directly the real equations of motion obtained in

Exercise 4.4.6-7. Hint: see Exercise 4.4.6-8 and Sect. 4. 1.

4.4.7 Example seven

The Newtonian equations of motion of this integrable manyw-body prob-
lem in the plane read as follows:

+ r +,V'k A) [ 2r, ., i;n
2 rn2+ (a + a'kA) + +,8krn rn n-)-'; rn rn

(,v +,v'kA) [2 'j;nm) _'nm rnrn rn
- 1 1 2

2
+ (a +d  A) f rn (Fn 'j; j; j; rm)+rn 1_j;

n
(rn J +

m
(

n

* j;n)

m

r2 2J+F+ (,6 +,8'k A) t F,, [ -2 (F - 7
 , ,,

) + rn2 rn

where of course 7,,,n = Fn - Fm, see (4. 1- 1).

Hence this N -body problem features velocity-dependent one-body
and "nearest-neighbor" forces. The 6 (real) coupling constants

a, r' are arbitrary.
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The equations of motion (1) are obviously rotation- and rescaling-
invariant. They are, generally, not translation-invariant (see, however,
below).

The complex-plane avatar ofthis system reads as follows:

(1 + C) j 2 / Z + a i,, + b z,,_(C i2 + ai,, z,, + b z2 (zn - z,,+, )
-1
+ (z,, - z,,,n n

(2)

with

a=a+ia', b=fl+i,6', c=,v+ir' (3)

Exercise 4.4.7-1.Verify!

These equations ofmotion, (2), are yielded by the following Hamilto-

nian h Cz, and Lagrangian  (z z

hLz ;)=E fAz,,,; +vfulog[sinh(z,,4 iv)]+plog[l-(z, (4)
n

 (Z'3z=vz f IP [(Wn + 1) log (Wn + 1) - (Wn - 1) log(Wn - ')I- P log [I -(Zn+l / Zn) I I  

n
2

(5)

with

Wn
 [(' n / Zn) 11Y (6)

and with the 4 (complex) constants A,,u, v, p related to the 3 (complex)
constants a, b, c (see (3)) as follows:

a=2Ap1(uv), b=p(u'-A )1(,uv), c=-pl(,uv) (7)

Exercise 4.4.7-2. Verify that the (complex) Hamiltonian (4) and La-

grangian (5) yield the (complex) equations of motion (2), and write out

real Hamiltonians and Lagrangians that yield the real Newtonian equa-
tions ofmotion in the plane (1). Hint: see Sect. 4. 1.

The integrable nature of the equations ofmotion (2) (hence as well of

(1)) is demonstrated by setting

ZnW = eXPP CUn Q) (8)
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Thereby the equations ofmotion (2) become the integrable equations

"n = R("n) [ 9(Un+1 - Un) - Aun - Un-1) (9)

R (v) -= Ev2+Av+B
,

(10)

9(u) = [ 91 - 92 eXP(-CU) I / [ 1 - exP(-CU) ] ) (1 la)

entailing

g'(u)=E[g(u)-gj][g(u)-gj (1 lb)

with

c=E(g,-gj), a=A92-g,), b=B(92 - 91) (12)

Exercise 4.4.7-3. Verify that (9) with (10), (11) and (12) correspond
to (2) via (8).

Exercise 4.4.7-4. Verify that (2) admits the similarity solution

ZnW = 7n exp (-- t) ,
(13)

with 77 and - two arbitrary (complex) constants, and analyze the behavior

in the plane ofthe corresponding solution of (1).

An interesting variation of the many-body problem in the plane (1)
reads

1:

=

' - '

1 2 2+ (a + akA)rn (1+,v+r,kA) [ 2r, (rn - F, ) - F" I r. ] I r,, r.

2
-'

( n T I- 1 2 ] /r2- (,v +,v'kA) rn r,, .
I .

.,,.n
(14)

M=n1

In can be obtained from (1) by firstly setting a = a'=,8 =,8'= 0, and then

by applying the change of dependent variable (2.1.13-5a) with a = a + i a'.

Hence if a = 0 and a:;,- 0, one can assert (via Proposition 2.1.13-1) that

the generic solution of this many-body problem in the plane, (14), is

completelyperiodic.
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Exercise 4.4.7-5. Verify that the equations of motion (14) possess the

similarity solution (written in circular coordinates)

r 'on (15a),,
(t) = r,, expf exp(a t) [ A cos(at) -p sin(dt) ] I ,

0,, (t) = 0, + 77 n + exp(a t) [ # cos(at) + A sin(a't) I , (15b)

featuring the 6 arbitrary real constants ro,p, A,,u, O ,, q (r. > 0, p > 0; the

presence of r,, and 0,, reflects merely the invariance under rescaling), and

discuss the corresponding motion in the plane (in particular, consider the

3 cases: a>O, a<O, a=O).

Let us end Sect. 4.4.7 by highlighting certain special cases of (2) and
of (14) that deserve to be singled out.

If c = a = 0, and by setting in (2)

z,, (t) = exp [u,, (t) ] , (16)

one gets equations of motion which are translation-invariant and which

feature only velocity-independent forces:

ii,,=bli-[I-exp(u,,,I-un)]-'-[I-eXP(Un-l-Un)]-II 3, (17a)

"n = b [ exp (u,+, + u,_, - 2uj - 1] -

(17b)

On the other hand, if -1 and y'= 0, the Newtonian equations of

motion (14) become translation-invariant and read

+ Y
-

-F 1-12 ]/ 2(a +akA) r. r. rrn
n

r. I
 

1 [2 Fnm)
nm (18)

m=nl

Note the similarity (and difference!) between these equations of motion,
(18), and (4.4.6-1) as well as (4.2-1) (the latter, of course, with

,8 =,8' = A = A' ='U ='U' = 0).

Of course the complex-plane avatar of these equations of motion,
(18), is also translation-invariant and it reads
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+ i' (19)Y,, =ai n
z,,,,)

_'
+ (z,, - z,,,)

m=nl

Exercise 4.4.7-6. Use the transformation (4.4.6-5) on this equation,
(19), and thereby obtain an equation similar to, yet different from, (4.4.6-

6), which provides via complexification another instance of integrable
many-body problem in the plane.

4.4.8 Example eight

The Newtonian equations of motion of this integrable many-body prob-
lem in the plane read as follows:

(4-
- - 1 2 2

+ ('fl +,8tkA) f r2rn rn 7 j; rn rnrn n n-

2

2(- p F
, ]-2Fn_,(' Fn,)n_j)

2
r rn rn rn, 12 rr,' rn r,-, * Fn-) + j;n-i rn n

2 2r2 F-r;41 2- -F -F --,[2(- -

"
]+2Fn(-r, r. ,

) , r., r,' r. rn rnr. 'j J(
n

n)

Hence they feature one-body forces quadratic in the velocities and near-

est-neighbor forces cubic in the velocities, and, rather trivially (see be-

low), the two coupling constants 8 and 8'.

These equations of motion are obviously rotation- and rescaling-
invariant. They are not translation-invariant.

The complex-plane avatar ofthese equations of motion reads

")2[(" /Z2 /Z2)
2

lZn (j, ;n = 'n + b
-1 n-I (n+l

n
(2)

with

b =,fl +iB' (3)

Exercise 4.4.8-1. Verify! Hint: prove first the identity

3)2_ 2 2 4.)2Z3 r2 r. r,=f F,[2(F2 J+2 7, (F, F3)(F2 -; 3) -2F, - FE - 7 ZI (Z2 3 3 (FI 2)(FI 3) 3

(4)

Remark 4.4.8-2. lf ZnW satisfies (2), so does

YnW = Cn Zn (C0 (5)
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with c any arbitrary (complex) constant.

Exercise 4.4.8-3. Verify that the equations of motion (2) admit the

similarity solution (4.4.7-13).

Exercise 4.4.8-4. Verify that the (complex) equations of motion (2)
are yielded by the Hamiltonian

h Cz, log I z,, b (z,, / z,,,) (6)
n

as well as by the Lagrangian

 CZ,3Z = 1 (7)
..,

[ b (n / Zn-I ) - 109('n / Zn ) I I

n

Exercise 4.4.8-5. Write out two real Hamiltonians, and two real La-

grangians, that yield the (real) equations of motion in the plane (1). Hint:

see the preceding Exercise 4.4.8-4, and Sect. 4. 1.

The integrability of this many-body problem in the plane, (1), is dem-

onstrated by setting

z', = b-n

exp (uj , (8)

whereby (2) become the integrable equations

"n -= ("n )z [lin-IeXP(un-Un-l)-' n+IeXP(un+I-Un)I (9)

Exercise 4.4.8-6 Verify that the equations of motion (2) are invariant

under the transformationZn W -)' [ZN+I-n 00- t) I ' , namely that if one sets

F" (t) = [Z',- (t - t) I -,

, (10)

with t(, an arbitrary constant, then (2) entail

,Z L, 2
/ y'?Zn =zn + b (%z t" Yn2 (11)

Exercise 4.4.8-7. Set

 jt)=exp(At)zjt), b=alA' (12)
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and write out the (autonomous) equations of motion entailed by (2) for

 ,, (t). Then take the limit A --> w, and show that, up to trivial notational

changes (i,, (t) --> z,, (t)), these equations ofmotion reduce to (4.4.5-5).

4.4.9 Example nine

The Newtonian equations of motion of this integrable many-body prob-
lem in the plane read as follows:

") _j;
'

1 2 ]/ r2 +[2 A) rrn rn "n rn n nn

 , ]+2j; .7 .7 -2F
-

- F - ') I I- f [2 (F F _r2 2

rn n
n-1)

2

r" n
(rn, n, ) (Fn nI) n-I (r.-1 n

) (Fn Fn

+(,6
2 -fir2 + 2,#,#' kA) f r,-2 - 2 Fn+, (Fn - 7,,+, ) + j n rn2+, ]

2 rn2 I-2F 2(F F-_1)
2

+ r, , f Fn [ 4 (Fnn rn r,, n n-I

Hence they feature a one-body term quadratic in the velocities, a nearest-

neighbor term linear in the velocities and another nearest-neighbor veloc-

ity-independent term. They contain, linearly and quadratically, the two

arbitrary real coupling constants 6 and 6'. They obviously are both rota-

tion- and rescaling-invariant; they are not translation-invariant.

The complex-plane avatar of these equations ofmotion reads

_'n )2 J+b2[ _

2 3 /Z2 (2) 

2
/ z,, + b [ in+1 -  n-l (zn / Zn-1 (zn+l / Zn ) + Zn n-I

n

with

b=,6+i,8' (3)

Exercise 4.4.9-1. Verify! Hint: see (4.4.8-4).

Exercise 4.4.9-2. Verify that the Remark 4.4.8-2 applies also to these

equations ofmotion, (2).

Exercise 4.4.9-3. Verify that the equations of motion (2) admit the

similarity solution (4.4.7-13).
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Exercise 4.4.9-4. Verify that the (complex) equations of motion (2)
are yielded by the Hamiltonian

h(,z ) (S Z
2  .2 + b z,,, (4)n

n

where s is an arbitrary (complex) constant that does not show up in (2),
as well as by the Lagrangian

(Z' DZ Zj
2
- 2 b -in zn,, /Z2 + b2(Z 'j/Zj2 (5)n

n

Exercise 4.4.9-5. Write out two real Hamiltonians, and two real La-

grangians, that yield the equations of motion in the plane (1). Hint: see

the preceding Exercise 4.4.9-4, and Sect. 4. 1.

The integrability of this many-body problem in the plane, (1), is dem-

onstrated using (4.4.8-8), since (2) is thereby transformed into the inte-

grable equations

"n = 1 n+l eXP(Un+l - Un) 'n-I W(Un -Un-1)

- exp[ 2(Un+I -Un) ]+exp[ 2(u,, -unj (6)

Remark 4.4.9-6. The equations of motion (2) are invariant under the

transformation Zn W -4 [zN+1-n (t0- t) namely if one sets

-1

Y" (t) = [zN+I-n (to - t)I, (7)

with t, an arbitrary constant, then (2) entail

2 2 2 2
+g

3
/y 21)Z. Z. + b [ z,+, -Yn-I (Yn I+ b (2n 120 (8)n n-

Exercise 4.4.9-7. Set

 JO=eXP(2t)Zn(t), b=aI2 (9)

and write out the (autonomous) equations of motion entailed by (2) for

. ., (t). Then take the limit A --> oo, and show that, up to trivial notational

changes ( , (t) -> z,, (t)), these equation ofmotion reduce to (4.4.5-5).
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4.4.10 A Hamiltonian example

In the preceding subsections of Sect. 4.4 we generally focussed on

Newtonian equations of motion in the plane, although we often also pro-

vided the corresponding Hamiltonians and Lagrangians. In this Section

we exhibit an example in which one must deal directly with the Hamilto-

nian equations of motion, since they cannot be easily written in Newto-

nian form.

Let us start from the Hamiltonian

HL
1

Z (Z' _ Z.)2

whose solvability is guaranteed by its coincidence, up to trivial notational

changes, with (2.1.15.2-6,4) (with a = 1, A = 1, p = -1; we stick hereafter,

for simplicity, to this simple choice of these 3 constants, the diligent
reader is welcome to consider the more general, albeit essentially

equivalent, case when they have generic complex values).
The corresponding Hamiltonian equations ofmotion read

N

i" = 11 41M (Z -Z.)2 ,
(2a)

M=1

e, = -2 4 1  ,. (z,, - z.) .
(2b)

M=1

Hence, via (4.1-33,15) they can be rewritten as the following Hamiltonian

equations in the plane:

N
2 (3a)r [2 j;nm ( m ' j;nm) -  m j;n.

n

M=1

(3b)2

M=1

Note the obvious invariance under rotations, and also under translations

--> r,, = r, of these equations ofmotion, (3).0 11 "
+ F" 7, = 0; P" -> P, =

Exercise 4.4.10-1. Verify that (3) corresponds to (2). Hint: see (4.1-

33,15).

An equivalent version of these equations ofmotion, (3), reads
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2

T" -27 P. A F.) + k A r, . (4a)
M=1

21 [kAF.( ,,-P.)+P.(k-P.AF.)+P'.(k-;P.Ai; (4b)
M=1

with

p,, = k A -k A (5)

Exercise 4.4.10-2. Verify that the following two real Hamiltonians,
obtained from (1),

1 N

Hr, )=- (6)

respectively

Z I N
Z - ^ ZFIGr P)=- I ( ,,,) (k A F.) (7)

.,
[ p,, A 7,.) +

2
m,n=l

yield the Hamiltonian equations (3) respectively (4) (equivalent via (5)).

4.5 A many-rotator, possibly nonintegrable,
problem in the plane, and its periodic motions

In Sect. 4.5 we discuss the many-body problem in the plane characterized

by the Newtonian equations ofmotion

r', =CO k A r.

'V

M)-2(anm +al. kA) 4.

)++ 2
 _,

r,' rM rM )], (1a)nm
(

n nm)
nm

M=I'M#n

where of course (see (4.1-15))

F,, - Fm ,rn2. = r,,2 + r.2 - 2 F - 7 (lb)
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These equations characterize the motion of N, generally different,
particles, all having the same mass (set conveniently to unity), all inter-

acting with the same one-body force ( first term in the right hand side of

(I a) ), and also interacting pairwise via forces whose strengths may vary
for every particle pair. The dynamics is clearly invariant under both rota-

tions and translations (in the plane), but not under Gahleian transforma-

tions ( ;:,, (t) -->;(t) = F"r "
(t) +   ,t ).

The one-body force is of Lorentz type: it suggests interpreting the N

particles as point-like massive charges moving in a plane in the presence
of a constant magnetic field orthogonal to that plane ("cyclotron" con-

figuration). The (real) "coupling constanf'

co is then the "Larmor circular

frequency". We assume, without loss of generality, that this quantity is

positive, co > 0, and we denote by T the corresponding period,

T = IrIco. (2)

Ifonly this one-body force is present, namely ifthe two-body interactions

are switched off by setting to zero all the corresponding coupling con-

stants (anm = a'. = 0), then the n -th particle rotates (of course, independ-

ently of all the others) on a circular trajectory whose center j., and radius

pn are determined by its initial position F (0) and velocityrn (0)

j;n W = ZFn +  n Sinoo0A  n COS(Co0 (3a)

En =Fn(o)+ A n (3b)

-1 r ' n = Co M' (3c)

Ofcourse in this case the motion is completelyperiodic, with period T.

Exercise 4.5-1. Verify that (3) satisfies (1) with a,,. = a. = 0.

If the two-body interactions are not altogether switched off, namely if

not all the 2N(N - 1) (real) "coupling constants" a,,,.n  a'nm in (Ia) vanish,

then the motions are much more complicated, since every particle inter-

acts pairwise with every other particle, via two-body forces proportional
to the speeds of the two interacting particles and depending nonlinearly
on their (relative) positions. Previous results entail the following infor-

mation on this model.

Ifthe coupling constants depend symmetrically on the two particles of
the relevant interactingpair,
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anr. = a., aInm = almn  
(4)

the Newtonian equations of motion (1) are Hamiltonian (see below). In

this case the center-of-mass of the system,

r(t) = N-1 FnW (5)
n=1

moves itself as a single rotator:

T(t) = c- +;Y sin(co t) - k A;5 cos(co t), (6a)

ZT  (O) + k A P (6b)

P co-,  (O) (6c)

Exercise 4.5-2. Prove this result. Hint: note the antisymmetry ofthe summand in

the right hand side of (1a), under the interchange of the two indices n and m
,
when

(4) holds.

If moreover all the constants a'n. vanish and all the coupling con-

stants an. equal unity,

a. =1, a. = 0, (7)

then the system of interacting particles (1) is integrable indeed solvable,
and all its motions are completely periodic, with period (at most)
T = T - N!; note that this does not exclude the presence of completely peri-
odic motions with period T, = T - M where 1:! M < N!, provided N! is an

integer multiple of M (so that periodicity with period Tm automatically

entail periodicity with period T ).

Exercise 4.5-3. Trace these findings! Hint: see Sect. 4.2.5, and below.

The mechanism whereby the initial data for the solvable model (1) with (7) divide

into sets of finite measures which yield motions with different periods T,, see above,

will be evidenced below via the analysis of the periodic character of the motions of the

system (1) (in the generic case, without (7) ), which constitutes the core of Sect. 4.5.
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The equations of motion (1) are clearly invariant under (time-
independent) rescaling of the dependent variables F(t). Indeed, via the

standard correspondence (4.1-17), they can be conveniently recast in the

complex one-ditnensional. format:

N

co z,, + 2 a,,. i, i. / (z,, - z.), (8a)

with

anm = aM + laInm (8b)

Hereafter, we use this avatar of the equations of motion (1), and we

moreover exploit its connection, via the change ofvariable

Z"W = 4 (r) ,
r = [exp(i CO t) - 111 (i CO) , (9a.)

with the system

N

2 a. 4 ' 4-,m' / ( n - 4 (10)
m=l,m#n

Here and below, the primes denote of course differentiations with respect
to the independent variable r. Note that the constant co has completely
disappeared from (10); nor does it feature in the relations among the ini-

tial data for (8) and (10), which read simply

Zn (0) = 4 n (0)
n
(0) = 4

n
(0) (9b)

All this of course entails that, to obtain the solution z. (t) of (8) corre-

sponding to a given set of initial data, one can instead solve (10) with the

same set of initial data, thereby determine  'n (r), and -then use (9a.) to ob-

tain zn (t) (hence, as well, the solution ofthe initial value problem for (1) ).

Exercise 4.5-4. Verify the connection, via (9a), among (8a) and (10), as weR as

the validity of (9b).

Exercise 4.5-5. Verify that the (complex) equations ofmotion (8a) are yielded by
the (complex) Hamiltonian
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N N

HCz,p)=X[i(co1c)z,,+ex:p(cp,,) jj(z,,-z.)---],
n=1 m=l,m#n

with c an arbitrary (non vanishing) constant, provided the constraints (4) hold, namely

a,,. =am,,; (I lb)

and note that this fact entails (see Sect. 4. 1) the Hamiltonian character of (1) with (4).

Exercise 4.5-6. Review all other spots in this book where the change of inde-

pendent variable (9a) has been used, and ponder on the fact that it is now being ap-

plied in the context of (possibly) nonintegrable many-body problems (namely, (1) or

(8) possibly without (7) ).

Let us now proceed and discuss the motions in the plane entailed by
the (presumably nonintegrable) Newtonian equations of motions (1) de-

scribing N pairwise-interacting rotators, or equivalently the motions in

the complex plane entailed by (8a), without any restriction on the cou-

pling constants amn I
see (8b). The cornerstone of our findings is the con-

nection among (8) and (10) via (9), and the following property entailed

by the change ofindependent variable (9):

Lemma 4.5-7.- If  Jr), considered as a function of the complex vari-

able r, is analytic in the closed disk C, with radius I I co, centered, in the

complex r -plane, at r = 1-0 = i / co
,
then z,, (t), considered as a function of

the real variable t, is periodic in t with the period T, see (2),

z,, (t + T) = z,, (t). (12)

This Lemma is merely a special case of Proposition 2.1.13. 1; ist validity is im-

plied by the observation that r(t) ,
see (7a), is itselfperiodic in t with period T,

r(t + T) = r(t). (13)

The diligent reader is in any case advised to draw the disk C in the complex r -plane.

But on the other hand the standard existence/uniqueness/analyticity
theorem, applied to the initial-value problem for the system (10), entails

that the solution 4 (r), corresponding to given initial data 4'(0), C'(0)

(arbitrarily assigned at 0, but of course nonsingular, namely such that
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i(0) #  JO) if j:;,-- k, see (10) ), is an analytic fanction of the complex
variable r in a disk D centered at r = 0, whose (nonvanishing!) radius d

depends on the given initial data, and on the coupling constants a., see

(10) (note that d cannot depend on co 'since this quantity does not ap-

pear in the evolution equation (10); also note that the dependence of d on

the initial data  (O) and  '(O) entails, via (9b), a completely analogous

dependence on the initial data, K(O) and  (O), of (8) ). It is moreover clear

that, if the coupling constant a,, or the initial data K(O) and  (O), are

changed by setting

4-

a. = a Zi, Z. (0) = A Y. (0), i. (0) ='U 'Z' (0) (14)

and by then letting the (scaling, real) parameters a, A, p vary while keep-
ing the barred and tilded quantities in (13) fixed, then d diverges, d -> oo,

as a -> 0 or A -> c)o or p -+ 0.

These assertions follow clearly from the structure of the right hand side of

(10): the radius d ofthe disk D is determined by the closest singularity to the origin,
in the complex r -plane, that is developed by the solution 4 (r) of (10), due to the

nonlinear character of the evolution equations (10); clearly this singularity gets
pushed farther away from the origin by "making smallee' the right hand side of (10),
and this is precisely what the changes detailed above achieve, by decreasing the scale

of the coupling constant a,,. or of the speeds i., or by increasing the scale of the

coordinates z.,

Exercise 4.5-8. Write out a formal proof of the statements made above, about

the behavior of the radius dwhen the coup g constants a., or the initial data z,,lin JO)
and i. (0), are varied as indicated above. Hint: see the proof of the standard exis-

tence/uniqueness/analyticity theorem for (systems o ODEs.

But clearly, as soon as the radius d of the disk D exceeds the diame-

ter, 21co, of the disk C, it encloses C and this entails, via Lemma 4.5-7,
that Zn (t) is periodic in t with period T ,

see (2) and (12). Hence we can

state the following

Proposition 4.5-9. Let F (t) be the solution of (1) with

anm -=a Yn. , anm = a d"n,., co = b U, (15a)
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and with assigned initial data

71, (0) = 2 ii" I r., (0) = P: n I [ ii, :;-- 5. if n # in 1, (15b)

where the positive numbers a, b, A, u play the role of scaling constants

(as we shall see immediately). Then the solution F (t) is completely peri-

odic with period T, see (2),

7,, (t + T) (t), (16)

provided one ofthe following conditions hold:

(i) for given a., a'., (o, FJO) and   n, the scaling number u, hence

as well the initial velocities (0), are sufficiently small: o:5,u:! ,uc, where

,ac is a positive number, uc > 0, whose value depends on the given quan-

tities;

(H) for given a.. , a',,. ,
co

, r"(0) and ii, the scaling number A is suf-

ficiently large, A >A. (hence the initial positions of the N particles in the

plane are sufficiently well separated), with Ac a positive number, Ac > 0,

whose value depends on the given quantities;

(iii) for given Y a7ln, cv Fn(O) and Fjo), the scaling number

a, hence as well the magnitude of the coupling constants a., a',,m, are

sufficiently small, 0:! a:! a, where a. is apositive number, ac > 0, whose

value depends on the given quantities;

(N) for given a., a,,  i, F" (0) and rnp, the scaling number b,

hence as well the Larmor circular frequency co, is sufficiently large,
b > bc, where bc is a positive number, bc > 0, whose value depends on the

given quantities.

Note that we have chosen to formulate this Proposition 4.5-9 in terms of the

physical system (1) rather than the (equivalent) complex system (8). As for its valid-

ity, clearly in its first three formulations (see items (i), (U), (iii) above) it is implied by
the discussion given above, hence it requires no additional elaboration here. As for the

last formulation (see item (iv) above), its proof follows even more directly from our

treatment: since the (positive!) radius d ofthe disk D is independent of CO, for suffi-

ciently large co (indeed, precisely for co > coc = 2 / d) the disk C gets completely

inside the disk D (draw diagram!), hence the corresponding solution of z,, (t) of (8)

(or, equivalently, the solution F (t) of (1) ) is completely periodic with period T, see

(2).
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The first two aspects of this Proposition 4.5-9 ( see items (i) and (ii) ) refer to

a given system of equations of motion, (1), and to different choices of initial data: we

have formulated this Proposition 4.5-9 imagining to vary, and in a very special man-
ner (by a common rescaling), either only the initial velocities, or only the initial posi-
tions; clearly the essence of the results holds much more generally, and it amounts to

the statement that, for any given system of type (1), there exist sets of initial data,
having nonvanishing measure in phase space, which yield completely periodic mo-

tions, with period T, see (2). Qualitatively, these initial data are characterized by the

requirement not to entail too much interaction among the (interacting!) rotators,
which should be sufficiently far apart from each other, and not move too fast. On the

other hand it is clear (see below) that, if the initial data entail a sufficiently strong
interaction among the rotators, in the nonintegrable case (when (7) does not hold) the

corresponding motions cease to be periodic.
And even in the integrable case (namely when the restriction (7) on the cou-

pling constants does hold), if the initial data entail a sufficiently strong interaction

among the rotators, the corresponding motion ceases to be periodic with period T,

although in that integrable case it remains completely periodic, but with a larger pe-

riod which is a multiple of T, at most T = T - M. We will revisit this issue below,
after we have gained a better understanding of the mechanism that underlies this phe-
nomenon via the discussion of a simple example.

The other two aspects ofProposition 4.5-9 ( see items (iii) and (N) ) refer in-

stead to the (somewhat less "physical") consideration of a variation in the parameters,
be they the "coupling constants" a,,., a,,. or the "Larmor circular frequency" co, that

characterize the model (1); a variation performed while keeping fixed the initial data

that determine the motion.

Remark 4.5-10. Of course Proposition 4.5-9 does not exclude that there might
also be some values of the parameters C0, a,,,,, a',,. of the model (1) (or equivalently

co, a,,. in (8) ), or of the initial conditions E(O), k(O) (or K(O),  (O)) which do not

lie within the bounds dictated by Proposition 4.5-9, yet do yield solutions completely
periodic with period T, see (2).

ple.

Let us now pause to consider a simple, but quite illuminating, exam-

Exercise 4.5-11. Show that the solution of the equations of motion (8)
with N = 2, in the (Hamiltonian) case with

a12 = a2l ::- a =_ a + ia', (17a)

and with the restriction that the center of mass, Y(t) = (1/ 2) [z, (t)+ Z2 (01 9

not move (indeed, without loss of generality, let it sit just at the origin of

coordinates in the complex z -plane, Y(t) = 0, so that

ZIW = _Z2W = ZW ; (17b)
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4.

and check that the condition that the center-of-mass not move, z(t) = 0, is

in this case, see (17), consistent with the equations of motion (8); hint:

see (6) ), is given by the following formula: if a

9 /(,0-
11(1+a) (18a)z(t) = z(o) exp(i a 0] W

with

p = 1 - i co z(o) / [(I + a) i(0)1; (18b)

if a=-I,

z(t) = z(o) exp( f i 1(0) / [co z(O)i I [I - exp(i co t)]). (18c)

Hint: rather than looking at the ODE satisfied by z(t),

_F =icoz-ai21z, (19a)

focus on the ODE satisfied by  (r) (see (9)

 ;ff = -a r2 / ; (19b)

then divide this ODE by  ' and integrate (twice, sequentially, using the

initial conditions, see (9b) ); finally use (9a) to recover z(t).

Let us now analyze this solution, (18). Clearly, if the initial conditions

entail IpI > 1 (see (1 8b) ), z(t) is periodic in t with period T, see (2) and

(12) or (16) (if this conclusion is not evident see below). Note the con-

sistency ofthis result with Proposition 4.5-9.

Exercise 4.5-12. Compute the (minimal respectively maximal) values of the

quantities u, and a. respectively A. and b, see Proposition 4.5-9, for this case, see

(18a,b).

Exercise 4.5-13. Use this example, see (18), to illustrate a case in which Remark

4.5-10 becomes applicable. Hint: see (1 8c).

If instead the parameters of the model (namely, the real number co

and the, possibly complex, number a), and the initial conditions (namely,
the generally complex numbers z(o) and !(0)) yield a value of p ,

see
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(18b), such that 1,ol < 1, then z(t) is not periodic in t with period T. Let us

look in detail at the mechanism whereby this happens.
But firstly let us dispose of the special case a = -1. In this case, see

(I 8c), the solution z(t) is always periodic in t with period T, see (2). In-

deed, this case ( (1) with N = 2 and a = -1 ) corresponds to the integrable
(indeed solvable) model (4.4.6- 1), of course with N = 2 and FO (t) = 73 (t) = o

(see (2.1.13-24)), and this periodicity property had been already pre-

dicted, see the second paragraph in Sect. 4.4.6 (beware of the notational

differences. the parameters a respectively a' of Sect. 4.4.6 should now

be replaced by zero respectively co).
Hereafter we assume a # -1, so that the solution z(t) is given by (1 8a)

with (18b), which, for the purpose of the following discussion, we re-

write as follows:

ZW = Z(O) (P - 1)-""') AW(t)], (20a)

1(1+a)f(W) W, (20b)

w(t) =- [p - exp(ico t)]. (20c)

Let us now discuss how z(t) behaves as a fanction of (real) t. For a

generic value of a, the fimction f(w), see (20b), of the complex variable

w, has a branch point at w = 0 (and another one at w =oo); while w(t) is a

periodic function of (real) t, which, as t varies over one period, say from

0 to T, travels in the complex w -plane over a circle c of radius 1, cen-

tered at w = p. If IpI > 1 the branch point at w = 0 lies outside this circle c;

hence f (see (20b)), considered as a fanction of t, is periodic in t with

period T, see (2), and the same conclusion applies to z(t), see (20a), as

already noted above. If instead jpj < 1, the branch point at w = 0 lies inside

the circle c, hence, when w completes its travel over the circle c and

comes back to its original value (say, it goes from p - 1 to p - 1, as t

varies from 0 to T, see (2) and (20c) ), the function f does not come

back to its original value, because now the contour c over which w trav-

eled crosses necessarily the branch cut of the function f(w), that starts

inside the circle c (at w = 0) and ends outside it (at w = oo). However, if

the exponent 1 / (I + a) is a rational number, say

I =P (21)
1+a q
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with p and q integers (and relatively prime, namely such that their de-

composition into primes contains no common factor), then clearly f ,

considered as a function of t, is periodic with period Tq (since in this

case the Riemann surface associated with the branch cut has a finite num-

ber of sheets, q; hence by traversing the branch Cut q times in the same

direction one gets back to the original sheet).
The integrable case of (1) corresponds, in the example under present

consideration, to a = 1; hence in this case p = 1, q = 2, see (2 1). We thus

conclude that, in the integrable case of the example under consideration,
the solution z(t) is periodic in t, with period T if IpI > 1, with period 2T if

IpI < 1. Note the consistency of this finding with the general result, based

on the exact technique (see Sect. 4.2.5) of solution of (1) in the integrable
(indeed solvable) case (see (7)), according to which all solutions of (1), in

this integrable case (see (7)), are completely periodic in t, with period
T = T - N! (for N = 2, T = 2 T; of course a solution periodic with period T

is also periodic with period 2 T).
And what about the boundary case with IpI =I? The subcase with

p =I is of course forbidden, since it corresponds to singular initial data

(either z(O) = 0 or i(o) = oo, see (I 8b) and (I9a) ). If IpI = 1, p:# 1, let us

uniquely define the "critical time" t, by setting (see (2))

P = exp(i CO tj, 0 < t,: < T. (22)

Then clearly, at t = t., w = 0 (see (20c) ), hence, as t -> t., either z(t) -> 0

or z(t) -> oo (see (20)); hence we conclude that, in this case (Ipl = 1, P:?-, 1),

at t = t, the evolution equation (I 9a) becomes singular. There is, how-

ever, at least in the integrable a = I case, a "natural" continuation of the

solution, as a function of t, beyond the singularity; the resulting solution

is then periodic (with period T or 2T, depending on the sip convention

for the square root adopted to perform the continuation), and it displays
of course a recurring singularity at t = t,, mod(T).

In conclusion we see that, for the special example we are now dis-

cussing (see Exercise 4.5-11), in the integrable case (a = 1) the initial data

get divided into two sets, both clearly of nonvanishing measure in the (re-
stricted) phase space under consideration: the first set, identified by the

condition IpI > 1, see (I 8b), yields solutions periodic with period T, see

(2); the second set, identified by the condition IpI < I
,
see (I 8b), yields

solutions periodic with period 2T; and these two sets of initial data are

separated by a (lower dimensional) set of initial data, characterized by the
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condition IpI = 1, p # 1, that yields singular solutions (which may be made

periodic, with periods T or 2T, by providing an appropriate prescription
to continue them beyond the singularity). The physical significance ofthe
singularity is a collision of the two particles, at the finite time t,: indeed

as t -+ t, Z(t)_(t_t )II2, i(t)_(t_ty112, _F(t) _ (t _ t )
112

; note the con-

sistency of this behavior, entailed by the solution (20) with a = 1, with the

equation ofmotion (19a).
An analogous phenomenology occurs in the general case, with arbi-

trary a (:;-- 1); but of course with a difference. Again the initial data are

divided into two sets, characterized respectively by the relations IpI > 1

and IpI < 1, see (18b). In the first case the solution is again periodic with

period T, see (2); in the second, it is instead, generally, not periodic, ex-

cept in the special cases (21), when it is periodic with period T q. And

these two sets are again separated by the (lower dimensional) set of initial

data characterized by the condition IpI = 1, p .# 1, see (18b), which defines

via (22) the value t, of the critical time, t = t., when the solution develops
a singularity, whose physical significance is again a collision of the 2

interacting rotators.

We have discussed at considerable length this very special example,
see Exercise 4.5-11, because it provides a neat illustration of the mecha-

nism - the interplay of analyticity in the complex variable -C andperiodic-
ity in the real time variable t -'that underlies the validity of Proposition
4.5-9, and indeed evidences a phenomenology whose validity may well

extend beyond the particular many-body model treated in Sect. 4.5, see (1).

In this connection let us emphasize that, in the particular example we just dis-

cussed (see Exercise 4.5-11), the case with a generic, possibly complex, value of

a = a + ia' (see (17) and (19)) may be considered to mimic the generic, hence pre-

sumably nonintegrable, case of the model (1); in spite ofthe fact that the specific ex-

ample ofExercise 4.5-11, mainly due to the N = 2 restriction, is of course integrable
for generic a (at least in the subcase with fixed center-of-mass), as evidenced by the

fact that we did indeed integrate it, see (18).

Let us end Sect. 4.5 by pointing out that the same kind of results ex-

pressed by Proposition 4.5-9 for the system (1) or (8) can be extended (in
some cases with minimal modifications; but not in other cases) to more

general systems than (1).

Exercise 4.5-14. Formulate and prove results analogous to Proposition
4.5-9 for the system ofODEs (more general than (8)
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IV

-F,, = i CO i" + I i", it V.,UZ ,
(23)

Hint: see <CF2000c>.

Exercise 4.5-15. Verify that the change of dependent and independent
variables

ZnW = eXP(_'CO 0  ;n ("')  
r = [exp(2 i co t) - 1]/ (2 i co), (24)

transforms the system

,V

i. + co2z, = 21 g2 (z
 
_Z.)-3, (25)

nm

m=l,m#n

(which, for

2
=

2

gnm 9 (26)

is integrable indeed solvable, and in this solvable case only possesses, for

real co, completely periodic solutions with period T, see (2); see Sect.

2.1.3.3), into the system

,V

4 " = 2 g2 (27)
n.

M=I,M#.

which does not feature at all the parameter w.

Exercise 4.5-16. The possibility to transform (25) into (27) via (24)

suggests that an analogous result to Proposition 4.5-9 (which has been

shown above to be applicable to the system (1) or (8) and to (23), see Ex-

ercise 4.5-14) be also applicable to (25), entailing the existence of a set,

having nonvanishing measure in phase space, of initial values which entail

that the corresponding solutions of (25) are completely periodic with pe-

riod T, see (2), even in the, presumably nonintegrable, case with different

coupling constants g2 for different particle pairs, namely when (26) does
nm

not hold. Why is this hunch (presumably) false (at least for the "physical"
model (25), with real particle coordinates zn)? Hint: the transformation

(24) entails

4 (0) = Z,, (0) 4 JO) = 'n (0) + 'CO Z. (0) (28)
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(and note that this is different from (9b)).

Exercise 4.5-17. Show that the main results about the many-rotator
model in the plane (1) (in particular the existence of completely periodic
motions, both in the integrable and in the nonintegrable cases) are as well

valid, up to obvious notational changes, for the (of course rotation-

invariant, but not translation-invariant) many-oscillator model in the

plane characterized by the following Newtonian equations of motion (see
(1b)):

11

+g22i;rn =2 (rnm)-
m=l,m#n

(a. + a
F kA) [

_: 

(_ - Fn. ) + '7nm j;nm
2 2)+ C12 (F

nm rn rm rm rn rM n
r _'m rn

F F - M-(a' -a.kA)f2[ (F. - F,.) +
`

(Fn . Fnj - F rn rM r F
nm rn r. + D +

m
On + Y n)

(29)

Hint: note that via the position

z. (t) = w, (t) expQQ t) (30a)

with

Q=col2 (30b)

the equations ofmotion (8a) become

1V

+ 92'w,, = 2 E a.[ *n*m +'Q(*nWm+*mWn)_Q2WnWm J1(Wn_WJI
m=l,m#n

(31)

and that via the relation (see (4.1-17))

W F (32)
n n

these equations ofmotion, (3 1), coincide with (29).

Exercise 4.5-18. Verify that the 3-body problem in the plane charac-

terized by the following (rotation-invariant!) Newtonian equations of

motion is solvable:
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2(a+a'kA) + (,8 +,B'kA) F + [ 2 (r, + r'kA)- +(r2 +72'kA)F,, ]ID,I rnr

(33a)

rI =rI(F F r 7 F F F r) (33b)1-1 2,F3;rl r2 r3 3;r,, 2. 3)+r/0II 21 3;F11 2 3

I,r r r r r 7
1 0 2, 3;r 19 2, 3;rl, 2,-:,) (33c)ri = MP 2 A(719 2, 3;r,, 2, 3)-,VA(F r r r r3

4.

r2 = r2 (FI 9 F2 ':3 51

 '

I (F r - I, I
r r2-1 3;r r Fr  _r' 2(F1,F2,,F3;':1,F2,r3)1 r2, 3 _7V i 2.1 3) V (33d)

r
4. -: 

*

F F r r rV r r i: (33e)F F F
11 21 3) _7 1(- 3; 11 2 (7I', 2 3;r rl , r2 r.

2.1 3)+JVV 1.1 '21 3; 1,, 2,r3

3

-

(33f),Ul = A (FI I r2 I r3; rl I r2 I F3 F, ) (F. - i:j n

3

A FI) + A (33g)r, r2 r3 r. r.

2_(k.4- Ai;1)2VI = VI(F11F1IF3;r1Ir.2Ir3) r. (33h)
I,M=l

3

V2 -= V2 (711 711 F3 ; r, I rk' I r' '3 12 j;,) (k AF,), (33i)

3

D = D(F, , F2, 73; ,

_ '

,

-

- 1: [ r.' r,2 - 2 (k-Fm A FI)2 ] ; (331)r, r2 r3
I,M=l

(ii) find conditions on the 6 "coupling constants" a, a',,6,,8',,Y, r' suffi-

cient to guarantee that all nonsingular solutions of these equations ofmo-

tion, (33), are completely periodic, and conditions on the initial data,

F,, (0),
-

(0) ,
sufficient to guarantee that the corresponding solution of (33)r

is not singular. Hints: use the results of Sect. 5.1 below, in particular (i)
identify (33) with the complexifted version ofthe solvable 3 -vector equa-
tion of motion (5.1-29), by considering each component of the 3 -vector

satisfying this solvable equation of motion, (5.1-29), as a separate "parti-
cle variable", say p, _= pn (t), n = 1, 2,3, and by then identifying the complex
numbers & with the real 2 -vectors F

,,,
see (4.1-17) (with z,, replaced by

gj, and of course by also setting a = a + i a', b =,8 + ifil, c r + ir' in

(5.1-29); (U) see Exercise 5.1-14.
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4.6 Outlook

In Chap. 4 it has been pointed out that the technique of complexification
- amounting to the consideration of evolving systems in the complex,
rather than the real, field - can in appropriate instances be interpreted as

giving rise to genuine, rotation-invariant, many-body problems in the

physical two-dimensional space: real motions in the plane. Several such

systems amenable to exact treatments have been exhibited, but clearly

many more can be introduced by this approach. Few of these systems

have been studied in any detail: much therefore remains to be done in this

direction as well, both for the systems described in Chap. 4, and for new

ones which can be manufactured by analogous techniques (for instance,

by complexifying the partially solvable 3 -body problem (2.5-44c), and/or

the solvable translation-invariant N -body problem (2.5-50) (for instance

for N = 2 and N = 3), and/or the solvable N -body problem (2.5-67) with

A0 =A, =A, =B0 =0,... ).

Several of the systems exhibited above are characterized by remark-

able behaviors, for instance by the presence of many, in some case of

only, completely periodic motions. Especially such systems are interest-

ing candidates for quantum mechanical treatment.

Finally, let us once more emphasize that the gamut of possible mo-

tions is much richer in the plane than along the line; hence, even when the

technique on which these results are based corresponds merely to an ex-

tension from the real to the complex, it entails a physically very interest-

ing step.
And let us end Chap. 4 by drawing attention to the results of Sect. 4.5,

both because they, remarkably, are also applicable to systems which are

not integrable (nor linearizable), and because they uncover and display
certain relations among analyticity in the time variable and the emergence

of integrable behaviors (in particular, in this specific case, completely pe-
riodic motions), which might have a much wider relevance, namely pro-

vide illuminating insights in other contexts, well beyond the specific
model treated herein.

4.N Notes to Chapter 4
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investigation is the complexplane rather than the real line; and this hunch

was reinforced by the discovery that certain complex deformations of

certain exactly treatable many-body problems feature the remarkable

property to possess only completely periodic motions <C97c>, <C97d>,
<CF2000a>.

The treatment of Sect. 4.1 is based on the three papers <C96b>,
<C98c> and <C97d>.

The material of Sect. 4.2 and its subsections (except the last one, Sect.

4.2.6) is gleaned from the first of these three papers, <C96b> (for a re-

view of results associated with the "simplest" models treated in Sects.

4.2.4 and 4.2.5 see also <C99b>).
An extension (of possible interest in fluid dynamic) of the results re-

ported in Sect. 4.2, corresponding to the limit in which the number of

particles, N, diverges giving rise to a continuum distribution of particles
in the plane is treated in <C97b>.

The material of Sect. 4.3 and its subsections is largely based on

<C98d>, but it also contains new results.

The material of Sect. 4.4, as indeed indicated there, is mainly reported
from <C98c> (with several corrections!), as well as from <C98a>. The

integrability of (4.4.7-9, 10,11) has been reported by R.I. Yamilov (on the

basis of previous work with A.B. Shabat) <Y92>. The integrability of

(4.4.8-9) and (4.4.9-6) has been discovered by Yu. B. Suris <S97> (see
also <AS97>).

The treatment of Sect. 4.5 follows closely <CF2000c> (except for the

last four exercises).
For some follow-up to the remarks proffered in the last paragraph of

Sect. 4.6 see <CF2001>.
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5 NUNY-BODY SYSTEMS IN ORDINARY

(THREE-DIMENSIONAL) SPACE:

SOLVABLE, INTEGRABLE, LINEARIZABLE

PROBLEMS

In Chap. 5 we outline a technique to manufacture many-body problems in

ordinary (three-dimensional) space amenable to exact treatments, and we

exhibit a fairly large collection of such examples, generally characterized

by rotation-invariant equations of motion, mostly ofNewtonian type (see
(1.1-18)).

Of course throughout Chap. 5, a superimposed arrow identifies three-

vectors, namely vectors in ordinary (three-dimensional) space, say

j; -= (x, y, z) ; the exceptions are in Sects. 5.3, 5.5 and (mainly) 5.6.5, where

we also use (with appropriate warning!) this notation to denote S -vectors,

with S an arbitrary positive integer.
The main idea from which the results of Chap. 5 flow is (i) to identify

treatable evolution equations for matrices, (U) to parametrize the evolving
matrices in terms of three-vectors (and perhaps also of scalars), and (iii)
to obtain thereby evolution equationsfor three-vectors. This simple rec-

ipe yields equations of motion of Newtonian type for three-vectors (see
(1.1-18)), provided the evolution equations for the matrices are suitable

(for instance, they should be of second-order in the time-derivative), and

provided moreover the parametrization of these matrices in terms of

three-vectors is compatible with their time-evolution, in the sense of

transforming it into a covariant (hence obviously rotation-invariant)
time-evolution for three-vectors. Several examples are given below.

Most of these examples feature equations of motion of Newtonian

type C'acceleration equal force"); these equations are generally covariant

(rotation-invariant); in some cases they are translation-invariant as wen.

In most cases the forces are velocity-dependent, although some cases with

velocity-independent forces are also presented (see in particular Sect.

5.6.5). Some models only feature one- and two-body forces. Some models

are Hamiltonian.

The plan of the presentation is clear enough from the titles of the fol-

lowing sections (see Contents), not to require additional elaboration here.

Let us emphasize that our presentation below is aimed at explaining how

solvable and/or integrable and/or linearizable many-body problems in
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5.1 A simple example: a solvable matrix problem,
and the corresponding one-body problem
in three-dimensional space

In Sect. 5.1 we illustrate the methodology outlined above on a simple ex-

ample.
Firstly, we exhibit an explicitly solvable nonlinear matrix evolution

equation. It reads

A =2ak+bM+ckM-1k

Here M =_ M(t) is an invertible square matrix of arbitrary rank and a, b, c

are 3 arbitrary (possibly complex) scalar constants (the factor 2 in front

of a is introduced for notational convenience, see below).
The solution of (1) reads as follows:

M(t)=exp[at1(I-cj

.fcosh(At)+esinh(At)[(I-c)Ai(O)LM(O)]-'-all"'-c)At(o) (2a)

A=[ a2+b(I-c) ]112 , (2b)

where of course M(O) and k(O) are the (arbitrary; but of course M(O)

must be invertible) input data of the initial-value problem for (1).
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This solution, as written, is applicable provided c # 1. The c = 1 case

can be obtained by a limiting process, but the corresponding solutions

deserve to be displayed explicitly: if c = 1 and a:;-- 0,

M(t) = expf [b / (2 a)] [- t + exp(at) a
'

sinh(a t)] I.

- expf exp(a t) a' sinh(a t)R(O) LM(0)] ' I Af(O) ;
.

(3)

if c =1 and a=O,

:K(t) = eXP(b t2 /2)expjtR(O&M(O)]_'jM(O) . (4)

Exercise 5.1-1. Verify that (2), and, in the respective special cases, (3) and (4),
solve the initial-value problem for (1).

To discuss the behavior of the solution (2) of the matrix evolution

equation (1) it is convenient to introduce the matrix

A =S' f (1 - c),k(O) LMO( )]-' - a 1 (5)

and, assuming for simplicity it is diagonalizable, to denote by a,, its ei-

genvalues and by W the matrix that diagonalizes it:

A=Ediag(a,)W-1 .
(6)

Then (2) can be conveniently rewritten as follows:

AI(t) = W diag[,u,, (t)] W` ,
(7)

so that the time-dependence is all carried by the diagonal elements U, (t),

defined by one ofthe following three equivalent expressions:

,u,,(t)=exp[at1(l-c)j[ cosh(At)+a,,sinh(At) I
(8a)

At,, (t) = exp[ (a - A) t / (1 - c) (1 +aj / 2
11(1-c)

exp(2A t) -,B,, (8b)

g, (t) = exp[ (a + A) t / (l - c) (1 -aj /2
11(1-c)

exp(-2 A t) -,8,-,' (8c)
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where

= (a,, (a,, + 1) (9)

Exercise 5.1-2. Verify!

Exercise 5.1-3. Show that, if the three "coupling constants" ab,c are

all real (which entails that A, see (2b), is either real or imaginary), a

condition on the initial data sufficient to guarantee that the solution (2) be

nonsingular for all (real) values of the time t is the requirement that the

matrix A, see (5), possess no real eigenvalues. Hint: see (8a).

The expressions (8b,c) are particularly convenient to discuss the pos-

sibility that (1) possess periodic solutions,

:g(t + T) =:g(t) - (10)

Let us to this end consider values of the three coupling constants a, b, c

such that A, see (2b), be imaginary,

A= ico12
, (l 1)

assuming hereafter, without loss of generality, that the quantity CO is

positive, co > 0, and denoting by T the corresponding period,

T=2;rlco
. (12)

But before proceeding with this discussion, let us pause to state two

elementary results.

Lemma 5.1-4. The function

f(t) = [exp(i co t) -,61' (13)

is periodic in the (real) variable t, with period T, see (12),

f(t + T) = f(t) , (14)

if the modulus ofthe complex number 6 exceeds unity,

1,#I> I
. (15)
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Note that no assumption is made on y, which might be an arbitrary

(complex) number.

Lemrna 5.1-5. If

'fl=(a-lMa+l) (16)

(see (9)), the conditions Ifil > 1, 1,81 = 1, respectively 1,61 < I correspond to

Re(a) < 0, Re(a) = 0, respectively Re(a) > 0.

ProofofLemma 5.1-4. Clearly the complex number

z(t) = exp(i co t) -,6 (17)

is periodic in the real variable t with period T, see (12), indeed as t varies over a

period it travels fall circle on a circular contour in the complex z -plane, centered at

,8 and of unit radius. Hence, if (15) holds, this contour does not include the origin,

z = 0 (draw diagram!). Hence

f(t) = [Z(t)]" (18)

(see (13) and (17)) is periodic as well, with period T. This completes the proof of

Lemma 5.1-4. But note that this conclusion would not have been warranted if (15) did

not hold, because in such a case the circle traveled by z(t) would traverse the branch

cut, from z = 0 to z = oo
,
of the function z I, see (18). It is indeed clear that, if

1,81 = 1, hence

,8 = exp(i V) (19a)

with  o real, the function f(t) would hit the branch point at z = 0 whenever t = t,,

t = (p / co mod(T) ; (19b)

while if 1,61 < 1, the function f(t) would be periodic only if r were rational,

,v = p I q, but then-with period T' = q T (because by traversing the branch cut z(t)

would get on a different Riemann sheet of the function z,; only if r were rational,

,v = p / q, the number q of different sheets would be finite, hence by traversing the

cut q times z(t) would return to the origin sheet).

Exercise 5.1-6. Prove Lemma 5.1-5. Hint: compute 1,612 from (16).
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Let us return to our discussion of the solution (2), or rather (7) with

(8), in the case (11). The following results are now plain.

Proposition 5.1- 7. If (11) holds and moreover

a=A+i(I-c)(plq)co=i[1+2(1-c)(plq)](ct)12) , (20a)

then all solutions (2) of the matrix evolution equation (1) which ensue

from initial data A (O), :k(o) such that all the eigenvalues a,, of the matrix

A, see (5), have (strictly) negative real parts,

Re(aJ < 0
 (20b)

areperiodic, see (10), with period

Y =qT ; (21)

if (11) holds and moreover

a=-A+i(I-c)(plq)o)=i[-1+2(1-c)(plq)](col2) (22a)

then all solutions (2) of the matrix evolution equation (1) which ensue

from initial data :M(o),Rp such that all the eigenvalues a,, of the matrix

A, see (5), have (strictly) positive real parts,

Re(an) > 0
, (22b)

are periodic with period T, see (2 1). Here p and q are the two integers
which define the (arbitrary) rational number p / q, hence they are arbi-

trary, except for the requirement that q be positive, q > 0
,
and that they be

relatively prime (namely, such that their decompositions into products of

primes possess no common factor).

Exercise 5.1-8. Prove Proposition 5.1-7. Hint: insert (11) and (20a)
respectively (20b) in (8b) respectively (8c), and use the Lemmata 5.1-4

and 5.1-5.

Remark 5.1-9. If (11) and (20a) or (22a) hold (namely, two relations,
or rather one and a half -- since co, see (11), is constrained to be real, but
is otherwise arbitrary -- for the three, a priori arbitrary, and possibly
complex, "coupling constants" ab,c), while, say, c is generic (possibly
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complex; certainly not rational), then the matrix evolution equation (1)

possesses a lot of nonperiodic solutions; but there also are sets of initial

data, clearly having nonvanishing measure in phase space, that yield pe-
riodic solutions, as detailed by Proposition 5.1-7.

Proposition 5. 1-10. If the three coupling constants a, b, c in (1) can be

expressed as follows:

a = i [ (q, P2 + q2p,)I(q, P2 -q2p,) ] (co / 2) (23a)

' (23b)b '= [A P2 I(q, P2 -q2 A) ICO 2

,

c=1-q1q21(q1P2-q2P1) I
(23c)

where co is positive, o) > 0, and p,  p2 q1, q2 are 4 integers, arbitrary except

for the following restrictions: p, and q, and likewise P2 and q2, are

relatively prime, q, and q2 are positive, and q, P2 - q2p1
#- 0 (namely,

p, / q, and P2 / q, are two arbitrary different rational numbers; note that

a,b,c, as given by (23), only depend on these two rational numbers, in

addition to the positive real number co); then all nonsingular solutions of

(1) are periodic, see (10), with the period T given by the following rules:

if the initial data M(O), k(O) are such that all the eigenvalues an of the

matrix A, see (5), have (strictly) negative real parts, Re(a,,) < 0, then

T = q, T, see (12); if the initial data M(o), R(o) are such that all the ei-

genvalues an of the matrix A, see (5), have (strictly) positive real parts,

Re(a,,) > 0, then T = q, T, see (12); if the initial data M such(0), A!(O) are

that all the eigenvalues a,, of the matrix A, see (5), have nonvanishing

real parts, Re(an) 9 -'O
,
which however do not all have the same sign, then

T = q T .
with q the minimum common multiple of q, and q2 .

Note that

the cases we just enumerated exhaust all the initial data g(O), k(O) which

yield nonsingular solutions of the matrix evolution equation (1): indeed,

if the initial data, 9(0), k(O), entail that one or more of the eigenvalues

an of the matrix A
,
see (5), are imaginary, say Re(a,) = 0

,
then there ex-

ist one or more (finite, real) values t. .
defined mod(T), see (19), at which

times, t = t, ,
the solution M(t) becomes singular (divergent and/or nonin-

vertible).

Exercise 5.1-11. Prove Proposition 5.1-10. Hint: note firstly that (23)
entail (1.1) (via (2b)), as well as the simultaneous validity of both (20a)
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,with(W
q -= q, p = p, ) and of (22a) (With q = q2 I P = P2); then use Proposition

5.1-7.

Remark 5.1-12. The expressions (23b) respectively (23c) entail that b

is real, respectively that c is (real and) rational, while (23c) entails that

a is imaginary, unless it vanishes, which is indeed the case if the 4 inte-

gerS A 9 P2 q, q2 satisfy the single restriction q, P2 + q2 A = 0, namely if the

two rational numbers p, / q, p2 / q2 are equal in modulus and opposite in

sip, entailing, say, q, = q2 = q > 0, p, = -P2 = p, hence

a=O
, (24a)

b =
1
(p1q) ,,02

, (24b)
2

C=1+ IWp) (24c)
2

(note that in this case the 3 periods q, T, T = q2 T, T = qT coincide,
hence all nonsingular solutions (2) of (1) are, in this case (24), periodic
with the same period T, while of course the matrix evolution equation (1)
is real).

Exercise 5.1-13. Discuss the consistency of these findings (see
Proposition 5.1-7, Remark 5.1-9, Proposition 5. 1-10 and Remark 5.1-12)
with Proposition 2.1.13-1.

The next step is to introduce a convenient parametrization of the ma-

trix AI(t) in terms of (one or more) 3 -vectors, as well as, possibly, of (one
or more) scalars. An analysis of various such possibilities is given below

(see Sect. 5.5). Here we assume ffit) to be a (2 x 2) -matrix, and we set

AAt)=P(t)I+iF(t)--& - (25)

Here and below I is the unit (2 x 2) -matrix, and the 3 components of the

3 -vector & are the standard Pauli matrices:

1 =
0

"
0.

'

=0 1

, Cy = (0 i i),  Z = (1 0

(26)CO 1) -  I 0)
- 0 0 -1) -

Generally, in the following, the unit matrix is omitted.
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This parametrization, (25), entails the following relation (see Appen-
dix H):

k [A&'k ={,b [ p+2(r'-7) ]-p(r .r)

[  P + (-:-. i;) i; [ b
2
+ (-.

- -

]). & I/ (P2 2)+i (2 r r r r)
-

+r (27)

Hence (1) gets transcribed, via (25), into the following evolution equa-

tions:

jb =2ab+bp+cfb [ jbp+2( -F) ]-p(F-r') 11(p' +r2) (28a)

2)r =2a F+b F+cJ2
F [ bp+(-.F) ]_7 [ 2+(-.- ]11(p+rr r r T) (28b)

These Newtonian equations of motion describe the (coupled, nonlinear)
time-evolutions of the scalar p(t) and of the 3-vector F(t). They are

clearly rotation-invariant. They are not translation-invariant. Their solv-

able character is entailed, via (25), by the solvable character of (1).
These equations of motion, (28), are clearly compatible with the re-

duction p (t) = 0 (namely, if initially p (0) =,b (0) = 0, then p (t) = 0 for all

time), in which case they take the simpler, 3 -vector form

r =2 a F + b 7 + c [2 r (r- - F) - F r-)] / r2 (29)

Exercise 5.1-14. Verify that (27) corresponds to (1) via (25). Hint: verify firstly
that the following relations are entailed by (25) with (26):

M-1 =(P_i F_&)/(p2 +r2) (30)

M_' F) + i [p T ' - p r + FAF].& J/(P2 +r2) (31a)

I& +(r .7)+i[p r -p r-r A F ]_ CT J/(P2 +r2) (3 lb)

Exercise 5.1-15. Show that, if a, b, c are (real, as) given by (24) (with q > 0
, p

relatively prime to q, and of course both integers), then (i) all nonsingular solutions

of the Newtonian many-body problem (29) are completely periodic with period

T = q T, see (12), and (ii) the necessary and sufficient condition for the motion to be

nonsingular is that the initial position and velocity not be aligned,

JF(O) A r-'(O)l #: 0 (32)
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Ifthis condition, (32), does not hold, compute the time t, (defined mod(T), see (19))

at which the solution F(t) ofthe (reaO equation ofmotion (29) vanishes (if p < 0) or

diverges (if p > 0 ). Hint: see Proposition 5. 1-10 and (25) (with p = 0 ).

Exercise 5.1-16. Verify that the Newtonian equation of motion (29), in the a = 0

case, yielded by the Hamiltonian

H(F,  ) =P2 f(r2) + g(r2)(;;.,5) + h(r2) , (33a)

with

f(s) = ks', (33b)

(I_C)g2(S) + 2 s g'(s) g(s) - 4ks' h'(s) = b. (33c)

Here k is an arbitrary (nonvanishing) constant; and note the ample choice permitted,
by the single constraint (33c), for the two arbitrary functions g(s), h(s) (for instance a

very simple choice consistent with (33c) is g(s) = [b /(1 - c)1112 , h(s) = 0).

Exercise 5.1-17. Formulate and solve the analogs of the preceding Exercises 5. 1-

15 and 5.1-16, but for the scalar/vector equations of motion (28) (rather than for the

three-vector equation ofmotion (29)).

5.2 Another simple example: a linearizable matrix

problem, and the corresponding one-body problem
in three-dimensional space

In Sect. 5.2 we illustrate again the main idea on which the results of

Chap. 5 are based, via another simple example.
The matrix evolution equation that serves as point of departure for our

treatment reads now

&=G(0,0+[& F(D] . (1)

Here U =   (t), the dependent variable, is a square matrix of arbitrary
rank; dots denote of course differentiations with respect to the independ-
ent variable t Ctime"); and GCU, 0, FUU are scalar/matrix functions,

namely they depend on scalar arguments (including possibly various

"coupling constants", as well as the time t, although for notational con-

venience these dependencies are not indicated explicitly) as well as on
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their indicated matrix arguments (in the case of G(a, 0 their order is of

course important, since & -= a(t) and U =-   Q) need not commute), but

they do not depend on any other matrix, so that there holds the essential

property

W GLU0 W-1 =G(W&W-',WUW-') (2a)

W F(D W-1 =F(WUW-I) ,
(2b)

for any matrices &, U and W (the latter being, of course, invertible). Of

course both G(U, 9) and FUU are matrices (of the same rank as & and

U), while G(a, b), F(c) are scalars when a, b, c are scalars.

We moreover assume that the matrix evolution equation (1) with

F = 0, say

U = GLU, 0, (3)

is solvable and/or integrable; this is, for instance, the case if

GCU,D=2a&+bU+c&U-'U (4)

with a, b, c three arbitrary constants, see the preceding Sect. 5. 1.

The first point we now make is that (1) is then linearizable, for any

arbitrary choice of the scalar/matrix function F(D; in some special

cases, see below, it might itselfbe solvable and/or integrable.

Indeed, let us introduce the matrix U =-! (t) related to  L(t) by the

similarity transformation

Fj=WUW'
,

(5a)

U=W-1 i9w
,

(5b)

with the matrix W.E(t) satisf  ing the first-order matrix differential

equation

W=WF(U) (6a)

gr =F(o W (6b)

The equivalence of (6a) and (6b) is of course entailed by (5) (see (2)).
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This linear differential equation, (6a) respectively (6b), defines

uniquely the matrix W(t) in terms of the matrix U(t) respectively FI(t),

provided it is supplemented by an initial datum W(O). Hereafter, for sim-

plicity, we assume this to be given by the simple rule

E(O) = i - (7)

It is now easily seen that (5) and (6) entail the relations

U= WUW (8a)

&=W-,U:,w (8b)

as well as

U Wf&-[&,FUU ]jW (9a)

&=W_'fCT+[CT,FOU ]jW (9b)

Here and always below LA,A] is the commutator of the two matrices

A, B:

[A,A]=_AB-BA (10)

Proofs. Time-differentiation of (5a) yields

U=WUW
-1 +WUW-'-WUW-'WW-1 (11a)

CT=Wf&+[F(U),UjjW_' . (11b)

Here the second step is a consequence of (6a), which clearly entails

FUU = W -'Pk
. (6c)

But FUU clearly commutes with U (since it is a fanction ofno other matrix but U)

[FUU,U]=O , (12)

hence (1 lb) entails (8a), and (8a) entails of course (8b).
Likewise, time-differentiation of (8a.) yields, via (6a),
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U=WUW
-1
+WUW

-1
-WUW

-1
WW (13a)

FJ=WJ&+F(D&-&FUU JW-1 ,
(13b)

which coincides with (9a), that is thereby proven. As for (9b), it follows from (9a) via

(2), (5) and (8).
Note moreover that (7) entails, via (5) and (8), that the initial data for the two

matrices E(t) and E(t) coincide:

an =  ao) I
U40) =?Z(O) -

(14)

It is now clear, from (8) and (9), that if E(t) satisfies (1), then CT(t),

related to E(t) by (5) with (6), satisfies the solvable and/or integrable

evolution equation (3),

U=G(U,o .
(15)

Hence the matrix evolution equation (1) is linearizable.

To substantiate this clain-4 let us indicate how to solve the initial-value prob-
lem for (1). Thefirst step is to obtain, via (14), the initial data for (15). The second

step is to obtain a(t) from these initial data, see (14), via the evolution equation (15),

which is by assumption solvable and/or integrable, see (3). The third step is to com-

pute E(t), by solving, with the initial condition (7), the first-order ODE (6b); note

that this is generally a nonautonomous matrix differential equation, since ff(t) is

generally time-dependent; it is, however, a linear evolution equation, and this fact

justifies the claim made above: since indeed, once !2(t) and E(t) are known,   (t) is

given by the explicit formula (5b), whose utilization constitutes the fourth, and last,

step to solve the initial-value problem for (1).
As we indicate below, in some cases in which (15), or equivalently (3), is

solvable, the linear matrix ODE (6b) can also be explicitly solved in terms of known

special functions. In those cases the matrix evolution equation (1) is, more appropri-

ately, called solvable.

To proceed with the illustration of our method we must now im-

plement its second step, namely introduce an appropriate parametrization
ofthe matrices in terms of three-vectors. But firstly we must make a more

specific choice for the matrix equation under consideration. So we make

the specific choice (4), namely we focus on the matrix evolution equation
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&=2a&+bU+c&U-'&+[a,FUU I , (16)

so that 0 satisfy the matrix evolution equation

;Z 14.1 - Al

U=2aU+bU+cU
-'-

(17)U U

whose solvable character has been demonstrated in the preceding Sect.

5. 1. We moreover assume, as we did in the second part of the preceding
Sect. 5. 1, that the matrix L(t) (as well as a(t)) have rank 2. And we also

use for U(t) the following parametrization in terms of (only!) a three-

vector:

Et) = i (18)

with & defined as in Sect. 5. 1, see (5.1-26). It is easily seen that this

parametrization (which is analogous to (5.1-25), but with p(t) = 0, entail-

ing that the matrix L(t) is traceless) is compatible with the matrix evolu-

tion (16), and that it transforms it into the 3 -vector evolution equation

r =2a r- +b F+c [2rjr- (r r
, ' ]Ir2+f )j;A4- (19a)

where f(r) is related to the ftmction F(u), see (16), by the formula

f(r)=[F(ir)-F(-ir)j1(ir) . (19b)

Hence f(r) is generally an (arbitrary) even function (but, as we will see

below, the restriction to even fanctions can be by-passed).

Exercise 5.2-1. Verify that (19) corresponds to (16) via (18). Hint: prove first

the identity

F(ii - Do = F,, (u) + F,, (u) (ii - _&) /u = F (u) +1f(U) (ii - -OD- I (20a)
2

where F, (u) respectively F, (u) are the even respectively odd parts of F(u),

F(u) = F,, (u) +F [F(u) + F(-u) ], F, (u) [F(u) -F(-u) (20b)(u), F,, (u)
2 2
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and of course f(u), is defined by (19b). Note that F,, (u), F, (u) and f(u), as defined

here, are all scalar (namely, neither matrix- nor vector-valued) functions of the scalar

U= I iil=(U2 +U2 +U2 ) Y2
-

X Y Z

Exercise 5.2-2. Prove that, if the parametrization (18) is replaced by the more

general parametrization (5.1.25), then in place of the 3 -vector equation (19) one gets

from (16) the (more general) scalarithree-vector equations ofmotion

, =2ap+bp+cf b[ bp+2(r-.F) ]-p(r'-r') 1 /(P2 +r2) (21a)

2+(F.-:- ]j/( 2

r =2aF+b F+cf2rDp+(r`.T)]-T r) P + r) + (9(r) 7A F
, (21b)

 o(r)=[F(p+ir)-F(p-ir)]1(ir) ,
(21c)

which are of course compatible with p (t) 0, whereby they reduce back to (19).

Hint: prove firstly the identity

D=-[F(p+ir)+F(p-ir)]+-[F(p+ir)-F(p-ir)](ir)-'F-d .F(p + ij; - _6
1

2 2

(22)

We have thus seen that the Newtonian equation of motion (19) (as

well, indeed, as (21)) is finearizable. Let us now pursue in more explicit

detail the technique of solution of this equation of motion, (19). But, in

the interest of maximal simplicity, let us restrict attention to the case with

a = b = c = 0
,
so that (16) take the simple form

&=[&5F(g)j 5
(23)

and correspondingly (19) take the simple (yet quite interesting, see be-

low) form

4

r =f(r) FAT
. (24)

with f(r) again related to F(u) by (19b). Then the evolution equation of

the matrix !2(t) takes the very simple form

ZL

U=O (25)

entailing
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U(t) =   (O) +  (O) t (26)

where we also used (14). Hence (6b) now reads

E(t) = F(A + B t) T(t) , (27)

with the two constant matrices A and B defined, via (18), in terms of the

initial data as follows:

(28a)

(28b)

Remark 5.2-3. Via (20) and (28) the evolution equation (23) can be

recast in the following form:

h (t) = f F, (i I F(O) + r(O) t I)

-nd-DInt)+ r r (29)2f(i I j;(O) + 40) t 1) (i [ F(O) +

of course with f(u) defined by (19b).

Remark 5.2-4. For our purposes (namely, to eventually insert E(t)

and Lw(t)]-' in (5)), the evolution equation (29) can be equivalently re-

placed by the equation

to =

1

f(lp(o)+r(O)tl)(i[F(O)+ (O)t].E)E(t) (30)
2

with f(r) defined by (1 9b), and with the same initial condition (7).

Proof. Set

!k(t)=exp[-fdt'F (ilF(O)+r:'(O)t'l)]E(t) (31)
0

Then, also using (19b) and (29),

T(t) = If(I F(O) +  (O) t iv)+ r4o) t I -D !k(t) (32a)
2
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while (7) and (3 1) entail

lt(o) = 1 - (32b)

On the other hand the insertion of E(t) ,
see (3 1), in place of E(t) in (5) entails no

difference. Nota bene: throughout this argument the fact that F. is a scalar, not a ma-

trix, plays an essential role, since it entails that it commutes with every matrix.

Exercise 5.2-5. Ifthe matdces A and B commute, the matrix evolution equation

(27) can be immediately solved by a quadrature; hence in this case the equation of

motion (24) is solvable. But this is a trivial finding. Why ? Hint: a necessary and suf-

ficient condition for the commutativity of A and B, see (28), is the following rela-

tion among the initial data for (24):

r (9) = q F(O) , (33)

with 77 an arbitrary (scalar !) constant (possibly vanishing); but then the right hand

side of (24) vanishes; initially, and not only initially.

Let us now focus on the 3 -vector equation of motion (24), with f(r)

an arb-Mrary fanction (not necessarily even, see below). It is easily seen

that this equation ofmotion entails

=V2r(t). T(t) (34a)

r2 (t) = S2 + 2,8 t+V2t2 (34b)

with the 3 constants s, 8, v defined as follows in terms ofthe initial data:

s2= r2 (0), fl =r(O) - F(O), v2= T(O) - F(O) . (34c)

Proof. The scalar product of (24) with T: (t) respectively F(t) yields

r(t) - F(t) = 0 (35a)

respectively

r(t).F(t)=O (35b)

The first of these equations, (35a), entails (34a), which is thereby proven. Then (35b)
with (34a) entails
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d2[r(t) ]I d t2 =2v2 (36)

hence

r2 (t) =s2+2fit +V2 t2 (37)

with S2 and fl appropriate constants. The identification (34c) is then confimed by

setting t = 0 in (37) and in its t -derivative.

Remark 5.2-6. The finding, (34), we just proved, not only opens the

possibility to treat the 3-vector evolution equation (24) even when the

fanction f(r) is not even (indeed, no such hypothesis was required to de-

rive (34) from (24)); it also entails that, from the point of view of the ini-

tial-value problem, solving (24) is equivalent to solving the (nonautono-
mous 3-vector) ODE

r(t) = h(t) F A F(t) (38)

or equivalently the (2x2)-matrix equation that corresponds to this 3-

vector ODE via (18),

C(t) = IhQ) [ a(t),   Q) (39)
2

with (in both cases; see (34b))

h(t) = f[ (S2 +2,8t + V2 t2) 1/2 ] . (40)

The rest of Sect. 5.2 is devoted to the study of the (2 x 2) -matrix evo-

lution equation (39) (or equivalently of the 3 -vector evolution equation

(3 8), which corresponds to it via (18)). The developments reported above

entail that the solution of this matrix evolution equation, (39), is given by
the prescription (5b), with !2(t) given by (26) and E(t) given by (30),

which now takes the form (via (40))

!t(t) =
1

h(t) (A+ B t)  (t) (41)
2

with (28) and (7). Hence the solvability of (39) (hence of (38), hence as

well of (24)) hinges on the solvability of this first-order linear (2 x 2) -

matrix evolution equation, (41).
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An additional simplification flows from an appropriate choice of the

reference frame (or equivalently by performing an appropriate, time-

independent, similarity transformation of the matrix U). Let us assume

that the z -axis of the 3 -dimensional reference frame for 3 -vectors is par-

allel to the initial velocity F(O), and that the y -axis is orthogonal to the

initial coordinate F(O):

F(O) = (x(O)'O' 40)), r '(O) = (0,0, V) (42)

entailing (via (28) and (5.1-9))

A=i
b

_c B=i
V -0 (43a)(c b)' (0 V)

with (see (34c))

b=z(O)=F(O)-r"(O)1v=,81v (43b)

C = X(O) = IF(O) A r(O)IIV=Sfl_[#I(SV)]2 11/2 (43c)

where of course (see (34c))

V=Ir1(0)1 = ITI(t)i (43d)

Note that the matrices A and B are traceless,

traceL,4] = traceLBI = 0
, (44)

as it is generally entailed by the representations (18) and (28). Hence the evolution

equation (41) with (7) entails

det[W(t)] = det[W(O)l = I
. (45)

Exercise 5.2-7. Prove this result. Hint: use the identity

(d/dt)logfdetLW(t)]I=tracelg (t)[W(t)]-'I , (46)

valid for any invertible matrix, and (41), (44), (7).
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Let us now discuss the matrix evolution equation (41). To this end we

introduce the following explicit parametrization of the (2 x 2) -matrix

E(t):

(WI (t) -  V_
(47)

W_ (t) iv-,W)
Thereby (41) with (43) become

k(t) h(t)[(b+vt)w(t)+cw,(t)] (48a)
2

(48b), y+(t)=--h(t)[(b+vt) v,(t)+c v,(t)]
2

while (7) yields

W+ (0) = ivk (0) = 1
, W_ (0) =  V'_ (0) = 0

. (49)

Exercise 5.2-8. Verify!

Exercise 5.2-9. Prove tile relation

W+ (t)  rv+ (t) + W_ (t) iv'- (t) (50)

Hint: see (47) and (45).

It is clear from (48) and (49) that if, as we hereafter assume, the func-

tion h(t), see (40), and the 3 constants b,c and v, see (43), are real, then

there holds the relations

 rvl (t) = WI* (t) I
 _V_ (t) = W_*_ (t) 1 (51)

which incidentally entail, via (50), the formula

lw+(t)12 +IW_(012 =1 . (52)

The relations (5 1) entail that, to obtain the matrix E(t) ,
see (47), it is

sufficient to determine the 2 fimctions w+(t) and w-(t). Moreover from.

(the first ofthe) (48a) we get
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W_(t)=-c-'I(b+vt)w+(t)+2i[*+(t)lh(t)] I , (53)

which provides an explicit expression of w_(t) in terms of w,(t) and its

time-derivative - ,+Q). We thus conclude that, to obtain an explicit expres-
sion of the matrix E(t), see (47), it is sufficient to know the fanction

w+ (t), which we hereafter denote, for notational simplicity, as w(t) :

W,W _= W(t) - (54)

On the other hand, by inserting (53) in (the second of the) (48a) we get
for w =- w(t) the following second-order linear nonautonomous ODE:

i -(41h)fv+[ -(s' +2,8t+ V2 t2) (h/2)2 +ivhl2 ]w , (55a.)

with s,,6 and v defined by (34c), and with the initial conditions (see (49)
and (48a))

w(O)=l, *(O)=ibh(0)12 (55b)

Exercise 5.2-10. Verify!

By setting

1/2

w(t) = [h(t)] I(t) (56)

the ODE (55) takes the "Schroedinger-like" form

V2 t2) 2+
3 2

 i(t) = Vf(t) f i v h(t) / 2 - (s
2
+ 2,8t + [h(t) /2] [4(t)lh(t)] -h(t)lh(t) I

4 2

(57a.)

with initial conditions

V(O) = [h(0)j 1/2

, 0,(0)=[h(0)]_312[ibh(0)-4(0)]12 (57b)

Exercise 5.2-11. Verify!
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Let us now survey some cases in which these second-order linear

nonautonomous ODEs, (55) or (57), are solvable in terms of well-known

special functions; the corresponding (2x2)-matrix evolution equation

(39) (or equivalently (23), via (19) and (40)), as well as the corresponding
3 -vector Newtonian evolution equation (38) (or equivalently (24), via

(40)), can then be considered solvable as wen.

The first case we consider corresponds to the (simplest!) choice

h(t) = f(r) = k , (58a)

namely to the (2 x 2) -matrix evolution equation

k
[au I (58b)

2

and to the 3 -vector Newtonian equation ofmotion

kFAFr r (58c)

Here of course k is an arbitrary constant. Then (55) reads

f = [ -(s2 +2,6 t+V2 t2) (k/2)2 +ivkl2 ] w (58d)

and can therefore be solved in terms of the parabolic cylinder function

DP (r) (see fi. eq. 9.255 of<GRJ94>):

w(t) = c,. DP (r) + c_ D-P (r) (58e)

p=-l-ikC2 /V (58f)

-r-=z-(t)=(ikv)"'(t-,81v') (58g)

Exercise 5.2-12. Verify, obtain the expressions of the 2. constants c,, see (58e),

in terms of the initial data, and discuss the behavior of the solution F(t) of the New-

tonian equation of motion (58c) which describes the motion in ordinary (three-
dimensional) space of a particle acted upon by a force proportional to its angular mo-
mentum. Hint: see (55b), (54), (53), (51), (47), (43c), (34c), and (26) with (18) (at
t = 0 ), and finally (5b) with (18) and (5.1-26).
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The next case we consider is characterized by the assignment

f(r) = k1r
2

(59a)

entailing (see (40))

h(t) = k1 (S2 + 2,8 t+V2t2) (59b)

Hence in this case the (2 x 2) -matrix evolution equation (23) reads

k
[U (59c)

2

and the 3 -vector Newtonian equation ofmotion (24) reads

r = kr'FAr'
. (59d)

Here k is again an arbitrary constant. The corresponding version of (55),
via the change of independent variable

WW = (0(1-) , (59e)

t=i(c1v)(1-2z-), z----j[ 1+i (V IC)(t+,gV2) (59f)
2

becomes then the h ergeometric differential equation (see item 9.151 of

<GRJ94>)

r(l-r) (off +(1-2r)  9'-Ap=O (59g)

where the primes indicate of course differentiations with respect to the

"dimensionless time" r and

A = k(k-2iv) /(2V)2 , (59h)

whose general solution is provided by eq. 9.153.2 of <GRJ94> (with

z=r, a=[ 1+ (1 _A)
1/2 ]/2, (1 _ /1)112 ]/ 2

Exercise 5.2-13. Verify!
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There is a third case in which the Newtonian equation of motion (24)
is solvable: if f(r) = k / r'. This is particular interesting because it turns

out to be solvable in terms of elementary functions, and moreover be-

cause it corresponds to a model having a direct physical interpretation
(motion of a magnetic monopole in the electric field of a point charge).
But for these reasons we prefer to devote to this case the entire Sect.

5.2.2.

We end Sect. 5.2 by pointing out one more case in which (55) is solv-

able, entailing the corresponding solvability of (38) and (39). It obtains

for the assigriment

h(t)=2k1(1+2cot) (60a)

where k and co are 2 arbitrary constants. Thereby the (2x2)-matrix

evolution equation (39) reads

C(t) = k (I + 2 co t)
-1 [ a(t), E(t) ] . (60b)

Note however that this assignment, (60a), does not have in any natural

sense the form (40). The motivation for treating this solvable case here

will become apparent in Sect. 5.2.3.

The solvability of (55) with this assignment, (60a), is manifested via

the change of dependent variable

W(t) = x(r) (60c)

t=icor1(vk)-11(2co), r=-_'(vk1co2)(1+2cot) (60d)
2

whereby (55) becomes the confluent hypergeometric equation (in its

Whittaker version, see eq. 9.220.1 of<GRJ94>),

x
ft

+ [(
1
-I"2),C-2 +,Z Z.-I _ 1],Z = 0 (60e)

4 4

Here of course the primes denote differentiations with respect to the di-

mensionless time r, see (60d), and the 2 dimensionless constants A and

y are defined as follows:

A ik(V2 -2,8co)1(4v C02) (60f)
2
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Ja2=k2

(4,g,,o _V2 -4S2 co') / (4co') (60g)

Exercise 5.2-14. Verify!

Exercise 5.2-15. Obtain the nonlinear (quadratic) relations entailed by (52) with

(53) and (54) for the special (parabofic cylinder, hypergeometric, respectively conflu-

ent hypergeometric) functions that solve (58d) (see (58e)), (59g) respectively (60e).

Remark 5.2-16. The Newtonian equation of motion (24) is clearly in-

variant under space rotations, but not under space inversions, namely it

describes aparity-non-invariant evolution.

5.2.1 Motion of a magnetic monopole in a central electric field

In Sect. 5.2.1 we investigate the (nonrelativistic) motion that a magnetic
monopole (if it existed as a separate pointlike particle with mass) would

perform in a central electric field, or equivalently the motion that a

charged massive point-like particle would perform in a central magnetic
field (if the latter could be realized). The corresponding Newtonian-

Lorentzian equation ofmotion reads of course

r=f(r)FAF

hence it coincides with (5.2-24). We will pay particular attention to the

case of a power law of force,

f(r) = k rP ; (2)

here and below k is a constant, having clearly (see (1) and (2)) the di-

mensions qength)-(P+) - (titney'. In particular we show that the problem (1)
with (2) is solvable if p = -2 or p = -3. The first of these two cases,

p = -2 (as well as the case p = 0) were already identified as solvable in

the preceding Sect. 5.2. The second case, p = -3, is the most interesting
one from the physical point of view, because it corresponds to the Cou-

lomb electric field produced by a charged particle fixed at the origin of

coordinates; remarkably, it is also the most interesting case mathemati-

cally, as it turns out to be solvable in terms of elementary functions. A

more detailed elaboration of this special case is provided in the following
Sect. 5.2.2.
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First of all, let us report some results that are directly implied by (1).
We have seen that (1) is equivalent to the 3 -vector equation

r(t) = h(t) F(t) Ar '(t) (3)

with

h(t) = f[ (S2 + 2,8 t +V2t2)1/2 (4)

since it entails

r2(t) = SIZ + 2,6 t +V2 t2 (5a)

with

2 2(0), '8 = i:(0). r(O), v = r r (5b)s =r 1'(0)1=1-:V)I -

Exercise 5.2.1-1. Prove these formulas. Hint: see (5.2-34) and their proof Be

aware of the difference among the modulus Jr:(t)J = v of the 3 -vector r '(t) Cveloc-

ity"), and the time-derivative,

(5c)

of the modulus of the 3 -vector F(t) Cposition7), r(t) =- IF(t)J.

Exercise 5.2.1-3. Calculate, in terms of the initial data F(O) and F(O),

the distance a of closest approach to the origin, of the trajectory associ-

ated to those data. Hint: use (5a). Solution: see below.

Exercise 5.2. 1-4. The distance of closest approach a is of course

(strictly) positive, except in the special case in which the vectors F(O) and

r(O) are parallel; then they remain parallel throughout the motion, the
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trajectory is a straight line going through the origin, and the moving par-
ticle travels on it freely

F(t) = F(O) + F(0) t
, (6)

because the parallelism of F(t) and r '(t) entails that the Lorentz-type force

appearing in the right hand side of (1) vanishes. Hereafter we exclude

from consideration this trivial situation (note that in this case the argu-
ment of the square root in the right hand side of (5a) becomes a perfect
square, consistently with (6)).

It is now easily seen that (each component of) the 3 -vector F(t) satis-

fies a third-order linear nonautonomous ODE. Indeed time-

differentiation of (3) yields

1*1

4(t) / h(t)] r`(t) + h2(t)r2(t)F+ [F(t)r(t) = [ (t) T(t) I F(t) (7a)

and this can be rewritten as the following third-order linear nonautono-

mous ODE:

2( 2
+ V2 t2) -:-+ +VF(t) + h + 2,6 t r (r (t) 4(t) / h(t) ] r t) (S t) V t) W (7b)

Exercise 5.2.1-5. Prove (7). Hint: to prove (7a), time-differentiate (3) and use

again (3), as well as the standard identity for a double vector product,

:'F 7
(8)j;l A (F2 A "3 _0 F j; F

1 2)3 +( 1
* 3) 2

to obtain (7b) from (7a) use (5a) and its time-derivative.

We therefore see that every component of the 3 -vector F(t) satisfies

the third-order linear nonautonomous ODE (now written for the depend-
ent variable p(t))

, (t) = [ 4(t) / h(t) ], (t) + h2(t)[ _(S2 +2,6t + V2 t2 )Aw + ('8 +V t) P(t) (9)

Let us identify 3 independent solutions, ps (t), of this ODE, via the fol-

lowing initial conditions

p,(O)=I, b,(O)=O,  ,(O)=O , (10a)
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PO)=O, AR=I, 'MO)=0 (10b)

P2 (0) = 0
3 Jb2 (0) =0 2(0) = 1 (10c)

namely

d"p., (t) / dt' ,O=-5s' s,i = 0,1,2 (10d)

It is then plain that the solution of the initial-value problem for the 3 -

o -ulavector evolution equation (7) is provided by the f rm

j;(t)=F(O)po(t)+r '(0),o,(t)+';(O)P2(t)

hence the solution of the initial-value problem for the original 3 -vector

evolution equations (3) or (1) reads

F(t) = F(O) po (t) + T '(O) p, (t) + h(O) F(O) Ar-(O) P2W * (12)

Exercise 5.2.1-6. Verify!

Let us now restrict attention to the case (2), namely to the Newtonian

3 -vector evolution equation (see (1))

r (t) = k [r(t)] P F(t) Ar-(t) (13)

It is then convenient to define dimensionless variables, by first introduc-

big 2 quantities, a and T, that set the space and time scales,

2
=

2 V)2 = [ (0)
2
_ [;(0) 4.2

2 2 2

a s r ]
-Z.r(O)] r(O)l = I F(O) Ar: (O)j /I r(O)l,(14a)

T=alv (14b)

and by then positing

t=t,+Tz- (15a)

to V2 r.(0) /1 r(O)l2 (1:5b)
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so that (see (5a))

1/2
r(t) =a(I+ r') (16)

Note that, as it is clear from these formulas, the quantities a and t,, have a

clear physical meaning (in fact, irrespective of the restriction to (2)): a is

the distance of closest approach to the origin (see (16): hence (14a) pro-

vides the solution to Exercise 5.2.1-Y), and t, is (see (15a) and (16)) the

time at which the moving particle is closest to the origin.
We now also set

p(t) =a p(t) , (17)

and, using (3), we rewrite (9) as follows:

Viff = P Z. (1 +.r2)
-1

VII + A2 0 + 1,2) p [_(I +,r2)gf+.rgj (18a)

or equivalently

(I +.r2)-p 9M = P Z. (I + 1.2)-p-I (18b)

where of course the primes denote differentiations with respect to the

"dimensionless time" r, and the dimensionless constant A is defined as

follows:

A = kap+2 1v (19)

It is now natural to introduce yet another change of variables, by set-

ting

W=1+r" (OW-g(w) (20)

whereby one gets, in place of (18),

8(w _ 1) W3 gft'(w)+4[(3-p)w+p] W2 g#(W)

+2(-pw+A W3+p) Wgi(w) _,e W3+p g(W) =0 (21)

Here of course the primes denote differentiations with respect to w.
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Exercise 5.2.1- 7. Verify!

It is now plain, from (2 1), that for p = -2 and for p = -3 this third-

order differential equation, (21), can be explicitly solved by representing

g(w) as a power series, say

g(W) = W, g. W, (22)
M=0

since the insertion of this ansatz in (21) yields for the coefficients g" the

3 -term recursion relation

2 (m -,a + 1) [4 (m_ 'a)2+ 2 (7 + p) (m -,u) + 3 (4 + p)]

- 4(m -,u) (m -,u + 1) [2 (m -,u) +4 + p] c,,, + 2 [2 (m -,a) + 7 + 2 p] c.,+P = 0,(23)

which reduces to a 2 -term (hence solvable!) recursion relation for p = -2

as well as for p = -3. Indeed for

p = -2 (24a)

(23) becomes

[2(m-,u)+3][ 4(m _,a + 1)2 C.,

=8(m _ 'a) (M_'U + 1)
2

CM ,M= 0, 1, 2,..., (24b)

with u taking one of the following 3 values (which correspond to the 3

independent solutions of (21) with (22) and (24a)):

,u=112, u=iA12; (24c)

while for

p =-3 (25a)

(23) becomes
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2(m -,u + 1) [2 (m -,u) + 3 ] c.+, 4(m -,u)(m -,u + 1) - 2 ] cm ,
in = 0, 1, 2,...,

(25b)

with u taking one of the following 3 values (which correspond to the 3

independent solutions of (2 1) with (22) and (25a):

,u=O, u=1/2
. (25c)

Exercise 5.2.1-8. Verify!

Exercise 5.2.1-9. Use these results (see in particular (24)) to solve (21) with

p = -2, and verify the consistency ofwhat you find with the corresponding results of

Sect. 5.2 (see in particular (5.2-59g)).

Exercise 5.2. 1-10. Use the results ofthe preceding Exercise 5.2. 1-9 to analyze (1)
with (2) and p = -2. Hint: see (11), (10), (17), (14a), (19), (20).

Exercise 5.2. 1-11. Use the above results (see in particular (25)) to solve (2 1) with

p = -3. Solution: see Sect. 5.2.2.

Before ending Sect. 5.2.1 let us return to the general case of a central,
but otherwise arbitrary, field of force, see (1), to associate a physical in-

terpretation to the two constants ofmotion

FI=V (26)

and

(F - F) (r
-

.r) - (i;.r-2 =V (27)

The time-independence of the first of these two constants of motion, v,

see (26) and (5.2-34a), corresponds simply to the transverse character of

the Lorentzian force, see (1), that changes the direction of the velocity but
not its modulus. The time-independence of the second one of these two

constants of motion, L2, see (27), corresponds to the conservation of the

modulus of angular momentum, since it is easily seen that (27) coincides

with the expression

L2 =17,rL-12 (28)
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The time-independence of this quantity (which is easily proven by time-

differentiating (27) and by using (5.2-35a,b)), can also be proven in the

following, less direct but no less interesting, fashion. Introduce the scalar

quantity

A(t)= [ F(t) AFF(t) r-.(t) (29)

which has a clear geometrical meaning: it is (up to a factor 1/6 and possi-

bly to a sign) the volume of the (3 -dimensional) tetrahedron defined by
the 3 three-vectors F(t), F(t) and  (t), all 3 of them drawn from the ori-

gin. qlearly this definition entails

 #) = [ F(t) Ar'(t)] - r :(t) (30)

hence, via (1)

A(t)IA(t)=I(dldt)f[r(t)]Ilf[r(t)] (31)

Proof. time-differentiation of (1) yields

r = [(d / d t) f(r)JFArF+f(r)FArF (32a)

hence, via (1) and (8),

ll:+[f( ]2[ 2 -

+
4-

r [(d / d t) f(r)]l f(r) r r) -r F F)F (32b)

Insertion ofthis expression of F in the right hand side of (30) yields

,&=f [(d1dt)f(r)]1f(r) JA , (33)

and this coincides with (3 1), which is thereby proven.

By integrating (3 1) one then gets

A(t) = Cf[r(t)] , (34)

with C constant. One the other hand the definition (28) of L, which can

be re-written as follows,

L 2= (i; A  ). (i: A  ) (35)
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clearly entails, via (1) and (29),

L = A(t) / f[r(t)] . (36)

It is now plain that (34) and (36) entail that L2is constant.

Exercise 5.2.1-12. Show that

L Z= a2V2 (37)

and - discuss the physical significance of this formula in terms of the

physical significance of L, v respectively a. Hint: see (28), (14a) and the

sentence after (16).

5.2.2 Motion of a magnetic monopole in a central Coulomb field

In Sect. 5.2.2 we investigate the (nonrelativistic) motion of a point-like
(massive) monopole in the Coulomb electric field produced by a fixed

electric charge (which we locate at the origin of the coordinate system);
or equivalently, the motion of a point-like (massive) electrically charged

particle moving in the magnetic field produced by a fixed magnetic

monopole. The Newtonian-Lorentz equation of motion for this problem
reads

r =k rFAr-

with k a constant (proportional to the electric and magnetic charges, and

inversely proportional to the mass of the moving particle), clearly having
the dimensions (length)' (tirne)`.

As we saw in the preceding Sect. 5.2. 1, the following two properties,

Ir(t)I=Ir(O)I=V (2)

r2 (t) =S2 +2,8 t+V2t2 (3)

are entailed by (5.2-1), hence afortiori by (1). Here the 3 constants v, s'

and 6 are defined by (2) and (5.2.1-5). But hereafter we assume (without

significant loss of generality, but with a significant notational improve-

ment) that the origin oftime (namely, the value t = 0) is set at the moment
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when the moving particle is closer to the center of force, which is also the

time when its velocity is orthogonal to its position (relative to the origin).
Hence in place of (3) we write (see (5.2.1-5,14a))

r2 (t) =a
2 +V2tZ

, (4)

with the advantage that both constants, a respectively v, entering this

formula have a clear physical meaning: v is the constant (modulus of the)
velocity with which the moving particle travels along its trajectory, a is

the distance of closest approach of that trajectory to the origin (as in the

case discussed in the preceding Sect. 5.2. 1, we exclude from considera-

tion the trivial, free motion that goes through the origin, namely we as-

sume a > 0; and we exclude as well the trivial case of a particle that does

not move at all, namely we assume v > 0).
Given these (essentially notational) assumptions it is convenient to

pursue the notational simplification, by choosing the distance a as the

scale for length, and the time (see (5.2.1.14b))

T=alv (5)

as the scale for time. Hence we set

t=TT, F(t)=a;r7(7), k=(a2ITJ=(av) (6)

1r(t) I = 1 (7)

respectively

72(t) =I+t2 (8)
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Note the analogy, as well as the (notational) differences, of this introduction of

dimensional quantities relative to that performed in the preceding Sect. 5.2. 1, see after

(5.2.1-13).

We saw in the preceding Sect. 5.2.1 that, as general consequence of

the central character of the electric field, the modulus of the angular mo-
mentum ofthe moving monopole,

4
L2 =L.j=(j;A )2 = (j;. F) (r r)

2

(9a)

is a constant of motion, a relation that in our dimensionless units now

reads

L' =1
. (9b)

Note that the angular momentum itself,

=rAr (10)

is not a constant of motion, contrary to what happens when a particle
moves under the influence of a central force (the Lorentz force in the

right hand side of (1), as well as (5.2.1-1), is not central!). However, in

the special (Coulomb) case of equation (1), there is a three-vector which

is conserved over time:

j=i+kP
, (1 1a)

4.

J=O (I lb)

Here and below

P=Flr (12)

is the unit-vector in the direction of F.

Proof

+k [ r' r-* -r-' (13)
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L=FAF (14a)

L = kr'FA(FAr-) (14b)

L = -krr+kr(F.r)F (14c)

= -k[ r-1 T '-r-2  F (14d)

(14a) follows by t -differentiation from (10), (14b) from (14a) via the equation of

motion (1); (14c) follows from (14b) via the three-vector identity (5.2.1-8); (14d)

follows from (14c) via the relation r  = 7 - F4' (which of course obtains by time-

differentiating r2 =F.F). Clearly (14d) and (13) entail (11b), which is thereby
proven.

The fact that the three-vector j, see (11), is a constant of motion for (1) was

pointed out by H. Poincar6 over a century ago <Pl896>; the vector j is therefore

generally called the Poincar6 vector.

Since L and P are orthogonal, see (10) and (12), the definition (Ila)
ofthe Poincar6 vector entails

j2 = L +k2 (15)

as well as

P.j=k
. (16)

This entails that the angle, call it 0, among the unit vector P =- P(t) (or,

equivalently, the three-vector 7 -= F(t) ) and the constant vector j is also

constant, and it takes the value

cosO = k1J. (17)

Hence the motion takes place on afixed circular ha6r-cone, whose vertex

is at the origin, whose axis coincides with the (constant) three-vector j,
and whose (constant) half-angle 0 is given by (17). If we denote as

r =- r(t), 0 and (9 =- p(t) the spherical coordinates of the moving particle in

a coordinate system whose origin coincides with the (fixed) electrical

charge and whose azimuthal axis coincides with the direction of .7, so

that

F(t) =- r(t) (sin 0 cos (p(t), sin 0 sin (o(t),cos 0) (18)
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then there remains to know only V(t) in order to acquire complete infor-

mation on the particle motion, namely on F(t), sj4ce r(t) is given by (8)
and 0 remains constant throughout the motion, see (17) with (15) and

(9b), which entail

cosO =k(1+k2)-1/2 (19a)

hence

Sino =(I+k,2)-1/2 (19b)

cotan 0 = k
. (190

The computation of p(t) is now easy. Indeed time-differentiation of (18)

yields, via (7) and (8),

0(t) = (1 + k2)1/2/(l+t2) (20)

Proof. From (18)

r (sin0 cos  o, sin 0 sin  p, cos 0)

+r(b (-sinO sinV,sinO cosV,O) . (21)

Hence

* - -

= ( 2 2 02) Sin2 0 +  2 COS2 0r-r + r (22)

hence, via (7),

l=P+r2O2sin2O (23)

From this formula one easily gets, via (8) and (19b),

1=t2/(1+t2)+02(1+t2)/(I+k2) , (24)

and this yields (20), which is thereby proven.

Integration of (20) yields

V(t) = (o, + (1 + k2 )1/2 arctan (t) (25)
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where p, is an (integration) constant.

The formulas (8), (19) and (25) provide, via (18), complete informa-

tion on the motion of the monopole, which turns out, remarkably, to be

given, by these formulas, quite explicitly and in terms of elementary
functions.

The same results can be obtained by noticing that (again quite re-

markably, although, now, not surprisingly), for p = -3 (which entails that

(5.2.1-1,2) or (5.2.1-13) coincides with (1)) the third-order linear ODE

(5.2.1-18) can be completely solved in terms of elementary functions.

Before proceeding, the diligent reader is advised to review the derivation of

(5.2.1-18) and to understand the (minor) differences among the notations used in

Sects. 5.2.1 and 5.2.2 (also beware of the very different meanings ofthe symbol p in

the two contexts).

For p = -3, the third-order ODE (5.2.1-18) reads

(1 + t2 )3   +R(l +t2)2  i + k2(1 + t2) ik - k2 tV/=0 . (26)

Here we employ a notation consistent with that used in (the latter part of)
Sect. 5.2.2, and we have also written V(t) in place of  9(t) (and k in place
of A; see (5.2.1-19) and recall that we have chosen units of space and

time such that a = v = 1) .

This tbird-order linear ODE has the remarkable property to possess
solutions all of which are expressed in terms of elementary functions. In-

deed it is easily seen that 3 independent solutions of (26) are provided by
the formula

I(I+sy) 10-7)
W = G + i t)2 it)2 (1 + t') exp[ is arctan(t) s = 0,I , (27)

where

r = (1+k2)1/2 (28)

Proof. From (27) one easily gets

(t) W = (i S 7 + t) (I + t2 )
-1

(29a)
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 ijt) I VIS(t) = (1 _S2 r2) (1 +t2)-2, (29b)

0 'W / Vf, (0=(1 _S2 v2)(isr-R) (1+t2)-' (29c)

and the insertion ofthese expressions in (26) yields

SrI S272
_(1 + k) ]=O (30a)

namely, via (28),

2

S(S _1)=o (30b)

Hence (27) satisfies (26) for s = 0, s = +1 and s = -1.

Exercise 5.2.2-1. Show the consistency of these findings with those

given above, in particular the consistency of (18) (with (8), (19) and (25))
with (5.2.1-12,17).

Let us conclude Sect. 5.2.2 by displaying the final results for the tra-

jectories, reinstating the original variables (but maintaining the simplifi-
cation to set the origin of time when the moving particle is closest to the

origin). The results are better presented in spherical coordinates, in the

reference system introduced above, whose origin coincides with the posi-
tion of the fixed electric charge, and whose azimuthal axis (z -axis) is

parallel to the Poincar6 vector -7, see (11a) with (10) and (12):

r(t)=a[l+(tlT)2 ]1/2 (31a)

0 = arccotan(tc), (3 lb)

(O(t) = 1 00 + (1 + X2 ) arctan(t / T) (3 lc)

where T is given by (5) and x is the T of (6),

T = alv, ic = kl(av) .
(3 ld)

Let us emphasize here the difference among the Greek ic and the Latin k,

the latter being of course the constant that appears in the right hand side

of (1), the former being the  in (6), K =  ; while a is again the distance

of closest approach of the trajectory, and v is the (constant) velocity with

which the moving particle travels.
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Exercise 5.2.2-2. Show that asymptotically (in the remote past and

fature) all trajectories become straight lines, namely as t --> -o

F(t) =   , t + F(') + O(C) , (32)

and obtain the following formulas that characterize their behavior,

b-, =a
, (33)

cosa = I - 2(l + IC2) sin2[G + K2)1/2 e2l (34)

Aq =- 9(co) - 9(--w) =,T(1+IC2)1/2 , (35)

where b+ are the impact parameters, b (namely the distance

from the origin of the asymptotic straight lines, see (32)), of course

v+ = [ + I = v, cosa = ( + -   - )/V2 is the "scattering angle" and A(o, see (35),

is the overall angular rotation ofthe trajectory.

Exercise 5.2.2-3. Using the results of the preceding Exercise 5.2.2-2

(see in particular (34)) verify that, if IC2 << 1, then a;-,T, as well as

A,p;:t: ir imod(IT), and discuss the paradoxical aspects of these findings

(which originate from the singular, 'and long-range, dependence of the

force on the distance r from the origin, see (1); the paradoxical aspect is

that of course ic = k = 0 entails no force at all, hence free motion, hence

a = A o = 0).

Exercise 5.2.2-4. Draw a picture of a typical trajectory. Hint: see

<S2000>.

5.2.3 Solvable cases of the (2 x 2)-matrix evolution equation

0=2a&+bU+c[ &,L ]

In this Sect 5.2.3 we discuss the linearizable matrix evolution equation
(see (5.2-16))

0=2a&+bU+c[ U  ,u

with a,b and c three arbitrary "coupling constants" (c could of course be

rescaled away), and we identify two cases in which, at least for (2 x 2)-
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matrices, this equation can be explicitly solved in terms ofknown special
functions. We set

  W = (O(t) E(r) ,
I. = r(t) ,

(2)

and thereby obtain

V" =Vf[2af -2i(01(o) _ fll f2 + V [b + 2 a (0 /,p) - (0 /  o)]lP

+C(,Pli-)[ V,'V I -
(3)

Here, and throughout Sect. 5.2.3, primes denote.derivatives with respect
to r

.

A choice naturally suggested by this equation is

40 = (O(t) ,
(4a)

which entails that E(r) satisfies the matrix ODE

0' [2a(p-30] V +V[2a0+bV-0] E+c[ L',L (4b)

which we report here for fature memory. However, we prefer now to fo-

cus on two special cases of (1), which allow a completely explicit solu-

tion (at least in the case of (2 x 2 )-matrices). Hence we set

9(t) = eNp(,4 t) (5a)

 (t) = exp(v 0 (5b)

so that (3) becomes

V"= p exp(-vt) + q exp(-2vt) + c exp[(,u - v)t][ (5c)

with

p = 2(a -,a) - v, (5d)

q=b+2a,4-A2 (5e)
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The first case we consider is characterized by the condition

b = -(8/9) a
2

, (6a)

to which we associate the choices v = 2a / 3, which entail, via (5d),

p = 0 and, via (5e) and (6a), q = 0 as well. Hence in this case the changes
of variables

  (t) == exp(2at/ 3) E(r), (6b)

r(t) = [exp(2at/3) -1]1(2al3) (6c)

yield

V" =c[ V"V (6d)

which, up to trivial notational changes, is just the (2 x 2 )-matrix evolution

equation shown to be solvable in Sect. 5.2 (see (5-28b)). Hence a con-

venient prescription to solve (1) with (6a.) is to solve instead (6d), and

then perform the change of dependent and independent variables (6b)
with (6c). Clearly, this implies that all solutions of (1) are completely pe-
riodic with period T = 21r / co if

a = (3 / 2)ico, b = 2co2, (6e)

with co an arbitrary (nonvanishing) real constant. Note however that in

this case the matrix evolution equation (1) is complex.
The second case we consider is characterized by the restriction

b=O
. (7a)

In this case we set y = 0, v = 2a, which again entails, via (5d), p = 0 and,
via (5e) and (6a), q = 0 as well. Hence in this case the change ofvariable

0) = E(r), (7b)

r(t) = [exp(2at) - 1]1(2a) (7c)

yields
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Vrr = c (1 + 2az-)-' [ Vr'V I I
(7d)

which, up to trivial notational changes, is the (2x2)-matrix evolution

equation shown to be solvable at the end of Sect. 5.2. (see (5.2-60b)).
Hence a convenient prescription to solve (1) with (7a) is (at least in the

case of (2 x 2 )-matrices), to solve instead (7d), and then perform the

change of dependent and independent variables (7b) with (7c). Clearly,
this again implies that all solutions of (1) are completely periodic with

period T = 21r / co if

a=io)12, b=O
.

(7e)

Of course in this case as well the matrix evolution equation (1) is com-

plex.

5.3 Association, complexification, multiplication:
solvable few and many-body problems
obtained from the previous ones

In Sect. 5.3 we indicate some rather elementary techniques whereby from

a matrix evolution equation for one matrix one can obtain evolution

equations for a few, or for many, matrices. These techniques are intro-

duced by showing how they work in simple specific cases; we use for this

purpose the solvable examples of the preceding two Sects. 5.1 and 5.2,

see below. We also exhibit some solvable few- and many-body problems
that correspond to these solvable matrix evolution equations via appropri-
ate parametrizations of matrices in terms of 3 -vectors (see for instance

(5.2-18); other parametrizations, in terms of S -vectors with S an arbi-

trary positive integer, are also introduced below, at the end of Sect. 5.3,

and more systematically in Sect. 5.5).
Let us emphasize that the techniques introduced herein can of course

be used in more general contexts than the simple example used here to

introduce them. Some other examples are exhibited below, mainly in

Sect. 5.4. and its subsections. But there remains an ample scope for addi-

tional applications of these techniques, which the interested reader is ad-

vised to explore.
We use below the following two matrix evolution equations as basic

examples:
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k=2ak+bM+ckM_'m

&=2a&+bU+[&,F(O (2)

Here M _=ffit) and U _=   (t) are square matrices of arbitrary rank, a, b, c ,

are 3 scalar constants and F(LI) is an (a priori arbitrary) fanction of the

matrix U and of no other matrix (so that (5.2-2b) and (5.2-12) hold). Let

us recall that the matrix evolution equation (1) is solvable (see Sect. 5.1),
while the matrix evolution equation (2) is generally linearizable, some-

times also solvable (see Sects. 5.2 and 5.2.3).

Association. We use the term "association7' to denote this technique,
because it involves the association, to the matrix evolution equation under

consideration, of another matrix evolution equation, see below. This sim-

ple technique is" interesting because it allows to transform9 as we now

show, a matrix evolution equation which is not translation-invariant, i.e.,
not invariant under addition of a constant (matrix) to the dependent (ma-
trix) variable, into a coupled set of 2 equations, featuring 2 (matrix) de-

pendent variables, which are invariant under a (common,, constant) trans-

lation ofthese (matrix) dependent variables.

To illustrate this technique let us focus, say, on (1), and associate to it

the matrix evolution equation

k(t) = at(t) . (3)

This matrix evolution equation is, of course, trivially solvable:

f(t) = E(O) +;t(o) [ exp(at) - 1 ] /a . (4)

We then introduce the two matrices M`(t) by setting

M(:i:) (t) f(t) M(t) (5a)

so the

E0 =

I
M

1+1
(t) + M (t) 1,  Kw AC) (t) - AL(-I (t) (5b)

2 2

and we thereby get for these two matrices M" (t) and (t) the fol-

lowing two matrix evolution equations:

554



k() =

1 - N 1 - H 1
MW -M(-)(7-aa)M +(7-aTa)M +-b[

2
-

2
-

2

+
1
C[k(+) -k(-) 11 M(+) - M(-) (6)

2

These equations of motion are obviously solvable (via (5)), and they are

clearly invariant under the translation M` (t) -> M
W

(t) = M() (t) +-C-'0

Exercise 5.3-1. Display the solution of the initial value problem for

(6). Hint: see (5), (4) and (5.1-2).

Exercise 5.3-2. Display the solution of the initial-value problem for

the (translation- and rotation-invariant) Newtonian equations ofmotion

r )=(--ia+a)r-(+)+(--ia-- a)r-(-)+-2bF c[r-( -F)- 2
F(F-r"Or' (7a)

where

F = j;(+) - j;(-)
.

(7b)

Hint: note that the two equations ofmotion (7) correspond to (6) via (5-2-

18), and use the solution of the preceding Exercise 5.3-1; or obtain these

equations of motion by applying directly the association trick (appropri-

ately modified) to (5.1-29).

Exercise 5.3-3. State conditions on the 4 parameters a,b,c,a in (7)

which are sufficient to guarantee that all solutions of these Newtonian

equations of motion, (7), are: (i) confined for all time (including the limits

t --> x), (ji) multiply periodic, (W) completely periodic. Hint: allow the

4 parameters a, b,c, a to be complex, and use the solution of the preced-

ing Exercise 5.3-2 (see also Propositions 5.1-7 and 5. 1-10, and Exercise

5.1-14).

Exercise 5.3-4. Display the equations of motion (more general than

(7)) that correspond to (6) via (5.1-25) (rather than (5.2-18)), and discuss

the behavior of their solutions.

Exercise 5.3-5. Apply the technique of association, as described

above, to obtain the pair of coupled, translation-invariant, Newtonian
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equations of motion (for two 3-vectors, Fl+)(t) and ;;H(t)) that corre-

spond to (5.2-19).

Complexification. The next technique we review in Sect. 5.3 consists

merely in the process of complexification of the matrices, or of the 3 -

vectors, under consideration. For instance consider the (linearizable; see

(5.2-19)) 3 -vector equation ofmotion

!;

=2 a
_ '

r r+bF+crAF (8)

and set

a=a+ia', b=,fl+i,8, c=y+iy' (9a)

as well as

jT) = j;
I W + '72W (9b)

with the understanding that the 6 constants a, a',,8,,fl, r, r, as well as the

2 three-vectors F,(t), i;,Q), are real. Then clearly (8) yields the following

system of 2 coupled 3 -vector Newtonian equations ofmotion:

r, 2a - 2 a' +,# 7, + 7 (F1 A F, -
-

A F2) - JV'( (10a)I r2 r2 r, A r2 + r2 A r,

=

- 4, -

F2) - (10b)r2 2a + 2 a'_ ' +,6 72 + r ( , A F2 + A F,) + r'(r2 ri r2 rl Arl _r2 A

Clearly this trick as well as that illustrated above (association), re-

sults in doubling the number of (real) quantities under consideration. But

such a duplication of the number of quantities evolving in time (be they
matrices or vectors) is generally not the main motivation for employing
these tricks. Indeed, as we emphasized above, the main motivation to in-

troduce the association trick described above is to obtain, from equations
of motion which are not invariant under translation, other equations of

motion which do possess this invariance property. Likewise, the com-

plexification trick we just illustrated, see (9), is generally introduced, not

just to artificially duplicate the number of (real) dependent variables, but

rather because more interesting models become available when the atten-

tion extends from real to complex variables; indeed we have already seen

several instances in which the introduction of complex (perhaps imagi-
nary) "coupling constants" is instrumental to generate models which fea-

ture remarkable behaviors, such as completelyperiodic motions.
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Here we illustrated the complexification trick by showing how it

works on a simple example, see (8) and (10). It is clear (in fact too obvi-

ous to warrant any additional elaboration) that it can be applied in much

more general contexts, and of course to matrices as well as to vectors.

Multiplication. By this term we refer to the possibility to go from

equations that involve only one, or a few, matrices, to equations that in-

volve several (indeed, arbitrarily many) matrices. We now illustrate two

techniques suitable to perform this trick.

The first technique is equally applicable to scalars, to vectors, to ma-

trices. Here we illustrate it in a matrix context, taking as starting point the

following linearizable matrix evolution equation,

0=2a&+W+c[a,  ] ,
(11)

which is clearly the special case of (2) with F(O c U. Let us recall that

of course a, b, c are 3 arbitrary scalar constants.

We now set

i

U(t) ?7j UjW (12a)

as well as

a i7j a, ,
b i7j bj, c qj Cj (12b)

j=1 j=1 j=1

where the J quantities qj are the elements of an Abelian algebra satisfy-

ing the multiplication law

'7j 77k =171c 77j = '7j+k; j, k = J, mod(J) (13)

Here and below J is an arbitrary positive integer. Note that via (12) one

has introduced J matrices U,(t) as well as 31 arbitrary constants

aj., b, , c, .
and that a standard representation of the Abelian algebra (13) is

provided by the formula

77j = exp (2)r i j / J) .
(14)

It is then clear that insertion of the ansaetze (12) into (11) yields the

following system of coupled equations for the J matrices U,.(t):

557



i i

Oj =E (2aj, CTk + bjm-k LL) + Y Cj-k-t I Ok  U (15)
k=1 k,M

of course with all indices defined mod(j).

Now assume that U[ a, b, c;   (O),&); t ] is the solution of (11), corre-

sponding to given constants a, b, c and initial data L (O), a(a); then the so-

lution of (the J coupled matrix evolution equations) (15) with initial

conditions L , (0), Oj (0), i J, is given by the (rather explicit !) for-

mula

j

Lj(t)=J-'j] exp(-21rqk1J)L[a(k),b(k),C(k)&k)(O)'&(k)(0);t (16a)
k=1

(k)
a a, exp(27rUk1J) (16-b)

j

(k)
=b -Y bexp(2;rUk1J) (16c)

j

(k)
=C c,exp(27rUk1J) (16d)

j

U(k) (0) =E   ,(O)exp(2)riik/J) , (16e)

-

(0) = E &, (0) exp(2 ir Mk / J) . (16f)
k=1

Hence the system of J coupled matrix evolution equations (15) is as well

linearizable as (11) (indeed solvable for (2 x 2) -matrices if all the con-

stants a., b, vanish, aj = bj = 0, see Sect 5.2.3).

Proof Let us start by proving a key formula. Assume f(z) to be an analytic
function of z, so that, at least for small enough I z

Az) =I f(') Z' /M! (17)
M--O

is well defined. Then clearly the formula
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Z (18)f(Y' 17k Zk 17j fjU

with the 77, being elements ofthe Abelian algebra (13), defines uniquely the J fanc-

tions fj Uz .
Here and below z =- (z, z2,..., zj), and all indices are defined mod(J).

The key formula we now prove reads

j

J-1 exp(-2/TijK/J) f (K)) (19a)fj UZ (Z
K=I

Z
(K) Zkexp[2,TikKIJ] (19b)

k=1

hence it provides an explicit expression ofthe quantities fj Uz defined by (18).

To prove (19) we note that the algebra (13) admits the following J realizations:

qj(K) =exp(2zijK1J) , (20)

with K J (which reduce to (14) for K = 1). Hence (18) entails

i i

(K) (K) fAj: 77i Zk qj j
UZ (2 1 a)

k=1 j=1

namely

j

zk exp(2;r i kK / J) fjUz exp(2;r ijK J) (21b)
k=1 j=1

Multiplication by exp(- 2 7c i jK / J) yields

i i

exp(-27rikKU) f(E z, exp(2zUKU) =I fjoz exp[ 2,T i(j -k)KIJ ] .

(22)

We now sum over K from 1 to J, and use the identity

i

exp(27rijK1J)=J5,,j, j=1,2,._ mod(J), (23)
K=1

getting thereby (up to some renaming of dummy summation indices) (19), which is

therefore proven.
The generalization of the formula (19) to the case of a matrix-valued fanction

f(z) is obvious, as well as the extension to the case when it depends on more than

one argument, say f =- f(x; y). Then by setting
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J J J

AE 17k Xk; 1: 77f M= Y, 77f ff (11A (24)
k=1  =I j=1

one defines the J functions ff(x;y), where of course x=_(x1,x,,,_,xj),

Y (Y1 11 Y2 YJ) .
and their explicit expressions are then given by the Mowing ob-

vious generalization of (19):

J

ff (? , y) = J-1 exp(-2 7c i jK / J) f(X(K);Y(K)) (25a)
k=1

J J

(K)
= Y

(K)
= 1:x x, exp(27cUKU), y, exp(27rUKU) (25b)

It is now plain that these formulas, and their obvious extensions to the case of a

function f that depends on several arguments rather than just on one or two, entail

the validity of (16), which can therefore be considered as proven.

We have thus seen how from a single evolution equation, say (11), for

a single matrix, say L(t), one can obtain a system of J coupled evolution

equations, (15), for the J matrices U,#), defined by (12a). Let us how-
;h_

ever emphasize that this trick, by its very nature, generally yields coupled

equations that can be decoupled by a linear transformation. For instance it

is easily seen that the coupled equations (15) get transformed into the

following decoupled equations,

+ i"-" [ _'. ,
-

2 2i,, L,, + b,, U,, U [T. (26)

via the following linear transformation (applicable equally to scalars, to

vectors and to matrices) among tilded and untilded variables:

f

J-' g, exp(2,T i n j / J) (27a)

J

J-1 Y -2)rinklJ)91,
'_.,

kkexp( (27b)
k=1

Proof Note first of alI the equivalence of (27a) with (27b): indeed by multiplying
(27a) by exp (-2 ir i nk / J), then by summing over n from I to J, one obtains, via

the identity (23), precisely (27b) (up to an exchange of the roles of the indices n and
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k); and likewise one can obtain (27a) from (27b). Next, we multiply (15) by
exp (2)T i n j / J) and sum over j from I to J. Thereby we get

U,, L exp(2,Tinj1J) (2aj, Ok +bj-k Uk)
j,k=l

+ exp(2)rinj1J)CjII[_&kILt I I (28a)

U,,=L exp[2,Tin( +k)1J)(2a,Ok+biUk)
k,t=1

i

+ exp[2;rin(m+k+t)1J ]Cm -&k,Uf 1 9 (28b)

U = 2 2i,, U,, + gn'gn +an I Un Cjn (28c)

To obtain (28a) we used, in the left hand side, (27a); to go from (28a) to (28b) we first

replaced, in the argument of the exponential in the first surn, j with (j - k) + k and

then we set j - k = i
,
likewise in the argument of the exponential in the second sum

we replaced j with (j - k -  ) + k +  and then we set j - k -  = m (this replace-

ments do not affect the limits of the sums, since all indices are defined mod(J));

finally, to go from (28b) to (28c) we used again (27a). And (28c) coincides with (26),
which is thereby proven.

Exercise 5.3-6. Discuss the solvability, and the behavior, of the N-

body system in 3 -dimensional space characterized by the Newtonian

equations ofmotion

N

+ b,,, 'm J + 2 c,, T. Ar, (29)r 2 a,,,
M=1 I'M=I

Hint: see (15) and (5.2-1,19), and Sect. 5.2.3.

Exercise 5.3-7. Write out, and discuss, the Newtonian equations of

motions that obtain from (5.2-19) by applying simultaneously (or rather,

sequentially) all three the tricks (association, complexification, multipli-
cation) discussed above (in Sect. 5.3)

Let us end Sect. 5.3 by introducing a second, perhaps more interesting
although also rather trivial, multiplication trick, whereby from an evolu-

tion equation for a single matrix (of higher rank) one can obtain several

evolution equations for several matrices (of lower rank). As already en-
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tailed by this description, and in contrast to the tricks described above,
this technique of multiplication is specifically appropriate for matrices (it
is not applicable to scalars).

'fhe idea is to consider block matrices, namely matrices whose ele-

ments are themselves matrices, say

U(11) U
(12)

...

U(IM)

U= (30)

U(MI) U(M2) ... U(MM)

Here we assume the block matrix U to be a square (MxM)-matrix,

whose overall. order depends of course on the order ofthe matrices U("'2)

(which themselves need not be square matrices, see below).
To illustrate this technique we now use the following two linearizable

matrix evolution equations,

0=2a&+W+c[U  'U] (31)

respectively

0=2a&+bU+c[ U  'U
2

(32)

which correspond of course to (2) with F(D=cu respectively

F(D=cU2.

It is clear that, via (30), these matrix evolution equations, (3 1) respec-

tively (32), read

&(.'n2)
= 2a&("-) +b U('nl"'2) + c

m

[ &(Ynl' ) UY'Mz) U(Mj' ) OUIM2) (33)

respectively

&(M' W2)
2a U(m + b U(MI M2)

M

+C
(Ml' ') UVI'2) UU2MZ) _U(ML, O UVLt2)&V2r42) (34)

with M,,M2 =11 ....
m. We have thereby obtained, from a single matrix

evolution equation, (31) respectively (32), for a single matrix
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U =- L(t), M' (coupled) matrix evolution equations for the M' matrices

U("'2) =_ U"Il)(t), namely (33) respectively (34).
We have illustrated this trick by displaying how it works in the case

of the two specific equations (3 1) and (32). It is quite obvious how it can

be applied more generally, as well as the hunch that it is likely to be par-

ticularly usefal for matrix evolution equations that feature polynomial
(indeed, low-degree-polynomial) nonlinearities.

Exercise 5.3-8. Show that the following system of N = M' scalar, and
N = M' three-vector (rotation-invariant) Newtonian equations of motion

is linearizable:

,6("2) =2a 'b('nl'n2)+bp(MIM2)

M

+ I [ ' (MIO P(RM2) -  VnO 0410
_

'OntO
. Fon.) + 'VM2)

. j;0'710C
.'

P r r (35a)
t=i

`('"2) 2 a T-("2) + b F(mM2)
r

M

' (MlOj;VMZ) _'bVM2) j;(MIO +'OVMZ) '(Mlf)
- p(MIO 'VM2)+ C r r

+ F(R-2) A (35b)+ A r r

Hint: assume that all the M2 matrices U(m1m2) in (33) are (2x2)-matrices,
and use for each ofthem a parametrization oftype (5.1-25).

that the fOUOVExercise 5.3-9. Show Ving System of N= M2 scalar, and
N = M' three-vector (rotation-invariant) Newtonian equations of motion

is linearizable:

,6(mlm-') . 2 ab(mm ') + b p(r4," -)

M

+C jb(r4A)jDY112)P(f2M2) _,bY21n2)PVIe2)p('nA)

,b(lnl l) (FYI'1) . j;U2M2_) ) + jbY2M2) (j;(412) . j;(MI11)

+ pV2MI) (j;Vl ') .(MA))_p(MI 1) (FV1 2) ' 'VZM2))r r

VI 2) [0.(WO j;V2M2))_(j;(W1)_P r r
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_ j;(MA) . (FVIt2) 'V2M2))A Ar (36a)+r

r 2 a r '('1'2) + b F

I
-

(MIt 1) (F
(t It 2) V21n2)

+
' VZM2) (j;VIt 2) (?nlt 1)

+ C r r

+ (j;(t112) VZInD V2M2) (mill)
r r r

+ FVI'2) [(r (MIt2)
. j;VZM2) (r(MA) . r

V2MZ) A

FVI ') A FV2n2) P(tZMZ)r Vlt2)
A F(Mlil)

(mltl)
A FVZM2) +'DV2M2) F(t1t2) A _ '(MA)

+'0' r r

Ul '_)  (MI 1) '(t2mz)_P F(t2m2) - F(m ') Air;I r Ar - I

+' (miti) Vit') U2MD _UI 2) ]_JbU2M2)JD(t1t2)F(MI 1)P +P r

(MIti) JD( 1 2)
'

V2MD
+ JD(t2M2)

'

(t1t2) IDVItZ) p(t2M2)
o

(MA)
_P r r r (36b)

Hint: as for the preceding Exercise 5.3-8, except for the replacement of

(33) with (34).

Let us end Sect. 5.3 by adding to the multiplication trick we just de-

scribed a flirther twist, whose relevance in yielding interesting many-

body problems in multidimensional space will become clear later (see, for

instance, Sect. 5.6.5), but is also illustrated here. To this end we focus

hereafter on the matrix evolution equation (32), featuring a cubic nonline-

arity.
We now set

M=2K
, (37a)

so that M is even, and we assume the (block) (m x m) -matrix u =- E(t) to

have the following (block) structure:
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0 W
(11)

0 W('11 ... 0
W

(IK)' 

V(11) 0 V(12) 0 ... V(IK) 0

0 W(21) 0 W(22) ... 0 W
(2K)

U= V(21) 0 V(22)0 ... V(2K) 0 (37b)

0 W(KI) 0 W(K2) ... 0 W(KK)

V(KI) 0 V(K2) 0 ... V(KK) 0

The motivation for using a different notation for the matrices appearing in

the even- and odd-numbered lines of this block-matrix U is because we

like to keep open the option that these be (different) rectangular matrices;

say, the matrices W(' " ) (LxS) -matrices, namely matrices with L lines

and S columns, and, correspondingly, the matrices V(""') be (SxL)-

matrices, namely matrices with S lines and L columns. Here L and S

are two arbitrary positive integers. It is clear that these assumptions are

compatible with the block structure (37b), provided we correspondingly
assume the identically vanishing matrices appearing in the right hand side

of (37b) to be square matrices, and more specifically, those appearing on

the odd-numbered lines of the block-matrix (37b) to be (L x L) -matrices,
and those appearing on the even-numbered lines to be (S x S) -matrices.

The consistency of this block structure of the (sparse) square matrix U

(which then features (L + S) - K lines and as many columns) is plain. Also

plain is the consistency of this block structure with the matrix evolution

k2) W('I "2)equation (32), whereby one gets for the 2K2 matrices W",

and V
(kl,k,)

-= V(I,k,) (t) the following (of course no less linearizable than

(32)!) coupled evolution equations

P (k'
k2)

= 2 a gr(kk)+b W(klkl)

K

W(k'k)W(klkl) V(klk2) W(kz'k2) Lk2
+C W(klkl') V(k, 2 2

(38a)

T (kjk,) 2 a [ '(k1k2) +b V(kIkI

K[ 1 (kj'kj') W(kl'k!2) V(kk2) W(k,k2' 1 (k22`k,)+ C Y, 2
_ V(klkl

-

2) (38b)
kl',k2'=l
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Here k,,k, =1,...,K, and all matrix products are performed according to

the standard "lines by columns" rule, namely (in self-evident notation: W

is a generic (L x S)-matrix, V a generic (S x L)-matrix)

S

E W,,, V,,, L (39a)
S=1

L

=1 S (39b)(LID, =I V W" , Si's,

Proof. The consistency of the block structure (37b) of the matrix U =- L(t) with

any evolution equation for L(t) whose nonlinear part only features products of an

odd number of matrices U and (hence in particular with (32)) is entailed by the

fact that the product of an odd number of matrices, all of them sharing the block

structure (37b) but being otherwise arbitrary, still has the same block structure. Indeed

let us define any element of a matrix as odd or even depending on the parity (odd or

even) of the sum of its two indices (those identifying the line and column it belongs
to). This definition is equally applicable to ordinary matrices (whose elements are

numbers), and to block matrices (whose elements are themselves matrices). The block

matrix (37b) is then characterized by the property that all its even elements vanish.

Now consider the product of an odd number of matrices. It is clear that every even

element of this product matrix is given by a sum ofproducts of elements ofthe factor

matrices (those entering as factors in the product), each ofwhich must contain an odd

number of(hence, at least one) even element. Hence, if all even elements ofthe factor

matrices vanish, all even elements of the product matrix also vanish.

The consistency of the block structure (37b) with the evolution equation (32) is

thereby proven. The derivation of (3 8) via (37) from (32) is then plain.

Because of its special structure, the matrix evolution equation (38)
can be easily transformed into a set of covariant (hence, rotation-

invariant) vector equations in S -dimensional space, for arbitrary S. In-

deed it is easily seen that the parametrizations

(kjk2)(1)
.W

(kik2)(1)
Wi ...

(k1k2)(1)
W

1 S

(klk2 )(2)
W

(kk,)(2)
...W

(k k2)(2)
W

W(k,k,) I 2 S

(40a)

(klk,)(L)
'Wi

(klk7.)(L)
...Wi WS(klk2)(L)
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V
(kjk2)(1) V(klk2)(2) ... V

(klk2)(L)
1 1 1

(klk,)(1) V(klk2)(2) ... V
(klk2)(L)

V2 2 2V (40b)

 V(kjkj)(I) (k k2)(2)
...

(kjk2)(L)
S VS V

S

whereby we introduce the 2LK
2
S -vectors

fV-(klk2)(R) (kjk2)(1) (k k2)(I)'...' (kjk2)(i)M IW2 Wi
, ),  = L (41a)

 (kjk2)( ) (k1k2M) V(kjkZ)(I),...'V(kjk2)( ))- (VI ) 2 S 2
1 _- 12 ....

L (41b)

-- parametrizations which are clearly consistent with the assumed rectan-

gular structures of the (L x S) -matrices W(kIk2) and of the (S x L) -matrices

V(klk2) -- entail that the matrix evolution equations (38) get re-written in

the following covariant S -vector form:

.:'(klk
'

(klk7
w

7)()
= 2a w- -)()

+ b iv-(kIkI)()

K L

1] 1] [ FV(k42)( ') (kki)(1) (kjk )( ') 4- (k2UDW) (.FV(kk,)( )   (kjk )( ')+ C W W (42a)
kl',k2'=1  '=I

V(kk, )(R) =2av(k k )()+b Pik7-)()

K L

i (kjkj)( ')  (kjk (kjkj')(i') (kjk2)(i)
-C

2W) iV-(kjk7.)(i')) V
-

iV-(k, (42b)
k,',k2'=1 R'=1

Here of course k,, k, K, and L; hence the total number of S -

vectors, and of equations, is 2LK
2

Let us reemphasize that here and below superimposed arrows denote

S -vectors (with S an arbitrary positive integer), and of course a dot

sandwiched between two S -vectors denotes the standard scalar product in

S -dimensional space.

There are two natural reductions of these Newtonian equations of

motion, each of which entails that the total number of S -vectors is re-

duced from 2LK
2
to 2LK. The first one obtains by setting

jV-(k,k')ffl jV-(k)(i)
, k,k'=I,...,K (43a)

i;(P,k)( )   (k)(I)
, k,k'=l,...,K (43b)
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it is easy to verify that this reduction is compatible with the equations of

motion (42), which then take the following form:

W
(k)( ) =2aw(k)( ) +b iV-(k)(9)

K L

+ C W _W (44a)
k'=I  '=I

:- (k)ffl
*

V =2aV +b

K L

FV(k')(t') V-(k)(V) (  (k)(t) iV-(k')(t') (44b)C 1]
--

with

C=cK (45)

The second reduction obtains by setting, instead of (43),

.FV(k',k)( ) FV(k)(f)
,
k,k'=I,...,K (46a)

; (k)(9)
,
k,k'=l,...,K (46b)

which is as well compatible with the equations of motion (42) and trans-

forms them into the following form (different from (44)!):

W
(k)(t) =2aw(k)(f) +b 'Fv(k)(i)

K L

+C FV(k)( ') (-: (k')(t)
4- (k)(V) (iV-(k')( ) (fl(V)

W _W (47a)

! (k)(t) 4-(k)(i) : (k)( )V =2av +b

K L

-C Y fV- V (47b)
k'=I t--I

again with (45).

568



Exercise 5.3-10. Verify!

Exercise 5.3-11. Verify that partial reductions, such as those entailed by (43a)
without (43b), or (43b) without (43a), or (46a) without (46b), or (46b) without (46a),
are also compatible with the equations ofmotion (42a); write down the corresponding
equations of motion; and show that their solution can always be reduced to solving
equations oftype (44) or (47), up to the additional solution of linear equations (which
therefore does not spoil the linearizable character of these equations of motion -- let

us emphasize that this finding is valid even if the initial data for (42) are only com-

patible with apartial reduction, as defined above).

Exercise 5.342. Redo (with appropriate modifications) the treatment given
above, under the assumption that M is odd, M = 2K + 1, rather than even, see (37).

5.4 A survey of matrix evolution equations amenable

to exact treatments

In Sect. 5.4, or rather in the 3 subsections in which it is conveniently or-

ganized, we survey matrix evolution equations amenable to exact treat-

ments. Specifically, in Sect. 5.4.1 we display a fairly large (perhaps ex-

cessively large!) class of linearizable matrix evolution equations, identi-

fied by a straightforward if notationally heavy generalization of the ap-

proach of Sect. 5.2; in Sect. 5.4.2, we introduce certain matrix evolution

equations which are related to the so-called non-Abehan Toda lattice (an

integrable, indeed solvable, system); and finally, in Sect. 5.4.3, we collect

some other matrix evolution equations amenable to exact treatments.

As the reader will see, we do not try to provide a systematic pres-

entation of all the treatable matrix ODEs that can be obtained by various

techniques; our main focus below is to present a number of different

techniques whereby such treatable equations can be uncovered (or,

equivalently, manufactured), and to illustrate them via representative ex-

amples -- which are subsequently (see Sect. 5.6 and its subsections) em-

ployed to uncover (or, equivalently, to manufacture) treatable many-body
problems in three-dimensional space. Hence the alert reader will find

much instructive scope for additional experimentation of his/her own,

with the possibility to obtain quite interesting new results, both in the

guise of treatable matrix ODEs, as well via the subsequent derivation

from these ofmany-body problems also amenable to exact treatments.

Throughout the following subsections matrices are denoted by un-

derlined (upper or lower case) letters.
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5.4.1 A class of linearizable matrix evolution equations

In Sect. 5.4.1 we present a methodology to manufacture new (generally
nontrivial) Unearizable matrix evolution equations from known (possibly

trivially solvable) linearizable matrix evolution equations; this technique

generalizes the approach already discussed in Sect. 5.2 (which the dili-

gent reader is advised to review).
Assume that the N + 5 square matrices Y, f, g, h v y satisfy the fol-

lowing N + 5 matrix ODEs:

Cj"CU(O) 31
U a),..., m N;f(0), f(1)

....
;g(O),g(I)

....
;A(O)Yh(1),...;t)=O, (la)

- -M -M

RA(0), u( ),., m = N;f(0), f()
....

;g('),g('),...;A(O),h(1) ....;t)=O , (lb)
. m

- - - -

-

! Cu_(0), u('),..., rn = N;f(0), f(1)....
M M

GO

(0) 0)
cu- g(')

.... ; A()), h t) = 0 (ld)A

(U
(0) (1)

-

U =0, (le)
-M I-M

j=0

J2
U) f (U(O) (1)'...'MI Y -j M 3EM = 13..., N;f

(0)
3 f

(1)
....

;g(O),g(1)
....

;A(O),h(1),...;t)=O. (1 
j--O

Here u(j) -= diun / dt, j = 0,1,2,..., with analogous formulas for
n

f(j), g(j), h(j) (j) (j) and the functions are 66sca-Y Y ,   ,,,F G HLj,yj,

lar/matrix functions of matrices," namely matrices built only out of their

matrix arguments (whose ordering is of course important) and of scalars

(including, possibly, the independent variable t). Hence these square

matrices satisfy the identity

-1 Z(-U(0) (1)'...'M =
M 1H.

ZCW--IU(()) W (1) -ff;W-,f(,)-W ,W-1f(1)W
M

-:.,W-IU-M

k  -1g(OW,E-1g(l)ff - -lh(O)W,W-lh(')WE
- -- -

t) (2)

where 2 denotes any one ofthese matrix functions.
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The notation employed to write these equations is meant to suggest (in a sense

which will become clear below) that the matrix equation 2 = 0 plays the primary

role in determining the matrix z
,
with the obvious correspondence (if 2 = CT, then

if Z = F
,
then z = f ; and so on). Note moreover the qualitative difference

among the equations satisfied by the N + 3 matrices u,, , f , g, A, (lab,c,d), and

those satisfied by y andy , (le,f) (in these latter equations the parameters J, and J,

are of course two nonnegative integers). The different role ofthe N matrices u,, ,
and

ofthe 3 matrices f , g, h, will become clear below.

Note that here (contrary to what we wrote elsewhere) we indicate a matrix/scalar

function ofmatrices by an underlined character, to emphasize its matrix character.

Y, related to theConsider now N + 5 square matrices U,F,G,H V

N + 5 square matrices Un I f I g, h, v, y as follows:

f=WEE-', g=WGW-', h=WHW-' (3a)

U,,=W-lunW, F=W-'fW, G=W-lgff, ff=jK-'hff, (3b)

V=WV, Y=YW-1 (4a)

V=W-lv, -Y,=Yw (4b)

with

0'=gv+fW+WyhW, (5a)

0'=WK
, (5b)

where

K=F+GV+YH
. (6)

Note that (5b) with (6) follows from (5a) via (3a.) and (4a).
To complete the definition of the (invertible!) matrix W fft) one

must supplement the matrix ODE (5) with an "initial conditioif', say

ILI(O) = Wo. It will remain our privilege to make an appropriate choice for
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the (invertible!) matrix wO; general1y it will be convenient to set simply

WO = i -

Lemma 5.4. 1-1. The N + 5 square matrices U
 , , F, G, H, V, Y Can

be obtained from the N + 5 square matrices E, f , g, A, L, y by algebraic

operations (inversion and multiplication of matrices) and by solving a lin-

ear second-order matrix ODE (which in some cases reduces to a first-
order matrix ODE, see below). If the matrices f , g, A, E, y are time-

dependent, this linear ODE is generally nonautonoMoUS.

Proof. It follows easily from the relations (3) and (4), taking into account (5) and

(6). Indeed the matrix Riccati equation (5a) is linearizable via the position

W = kM-1 (7)

which yields for M the linear ODE

+ Y + Y kf CY#' yAg2 m . (8)

Hence, if the 5 matrices f , g, A, L, y are known, the matrix W can be evaluated,

via (7), by solving the linear (generally nonautonomous) matrix ODE (8). Then the

N + 5 matrices Un , F, G, H, V, Y can be obtained from the, assumedly known,

N + 5 matrices En , f , g, A, L, y via (3b) and (4b).

n
01. fflil and Vtjl, IjI

Y ,
via theNext, let us define matrices 01, F jl

following recursive formulas:

z
101
= 'Z Z +'] Z ',K (9a)

z
fol
=z

,

Zlj+" = _; ("+K Z1j) (9b)

f01Z = Z 
(j+'I

Z-_
fil

21- fil
Z K (90

so that

Z[11=_ ' Z,Lfl, Z[2]=2-2[Z Cj-[K Z,.LC],K (10a)
- -

 .L :k]+[ L

ZO=Z '+KZ, Zf21=2+2K2+KZ+K2Z (10b)
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2f'1Z=Z; +Z,K, f21Z=Z' -2Z- K-ZK+ZK (10c)

Here and throughout [A,:4] denotes the commutator of the two matrices

A and B, [A,B] =- AB -B A

Lemma 5.4.1-2. If the N + 5 square matrices M,, , f , g, A, Z, y satisfy

the N + 5 matrix ODEs (1), then the N + 5 square matrices

L, F, G, H, V, Y satisfy the N + 5 matrix ODEs

[1] 11 [1] rTIO] 111'...;t)=O, (1 1a)CT,(U['],U '...'m=l,...,N;f1O1,F ],...;Glo],G H
M -M

f(U101, 101, 101, 111'.. 101,G ;L[ H[1],...;t)=O' (1 1b)

(1 1c)

101 [01 101
, G[l],...;H H[1],...;t)=O' (1 1d)F(U-M

M

Fol =0
-j

j--O

(11e)

2

fj)
Y Fj LU[O], U[ ],..., m = N; E[01, F[],...;!2[O], &]

.... ; ff[01,H t) = 0.(11f)Y,
j=0

These formulas are obtained from (1) by replacing, wherever they appear, the

matrices U(j), f (j), g(j), A(i), E(j), Y (j)
respectively with the matrices

F[j], GIjI, HIjI, V IjI, Ij) Y). Their validity is implied by the formulas

z
U)

= Wz[j] W-1

(12a)

where z stands for u. f  g or h
,
and correspondingly Z stands for Ln, F, G or

H, and

V
(j)

= W VU1 (12b)

Y
(j)
=

(j) Y W-1 (12c)

which, via (3) and (4), clearly entail the equivalence of (1) and (11). As for the valid-

ity of these formulas, (12), they are an immediate consequence of the definitions (9)
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and of the formulas (3) and (4), as can be easily verified by time-differentiating them

and using (5) and (6).

Note that we are implicitly assuming that the 2 matrices W and y

are invertible, see (3), (4) and (7). A breakdown of one of these two con-

ditions at some time t. will generally show up as a singularity of the cor-

responding solutions of (11). But note that the second condition (inverti-
bility of yh) is invalid but irrelevant in the special case in which y 

vanishes identically, see the Remark 5.4.1-7 below. Indeed, in this special
case the (first-order) matrix evolution equation (5a) is already linear,
hence there is no need to introduce via (7) the matrix M.

We are now ready to formulate and prove the main result of Sect.

5.4.1.

Proposition 5.4.1-3. If the matrix ODEs (1) are linearizable, the ma-

ffix ODEs (11) are also linearizable.

Proof. Lemma 5.4.1-2 entails that the solutions of (11) can be obtained by first

solving the ODEs (1) to determine the N + 5 matrices u,,,f, g, A, y, y and by then

obtaining from these, according to Lemma 5.4.1-1, the N+5 matrices

U,,,.E, G, L[, V, Y.

Remark 5.4.1-4. In the context ofthe initial-value problem, the convenient choice

= 1, see above (paragraph after (6)), entails that the initial conditions for the

N + 5 matrices u,,, f, g, A, y, y can be explicitly obtained from the initial conditions

for the N + 5 matrices U,,, F2 G, H, V, Y via (12) with (9, 10).

Remark 5.4.1-5. Even if the equations (1) satisfied by the N + 5 matrices

1 ,,, f, g, h, y, y are linear (and possibly quite trivial, see examples below), the equa-

tions (11) satisfied by the N + 5 matrices U,,, F, G) b[, V, Y are generally nonlinear.

Remark 5.4.1-6. Not all the equations (la,b,c,de,f) need be differential, for in-

stance (lb) might read

f =7(y'j),m N; g'j); A(j); j = 0,1,2.... (13)
- -

M

with 7 a given "scalar/matrix fanctioif' of its matrix arguments, yielding thereby an

explicit definition of the matrix f in terms of the matrices u., g, h and their time-

derivatives, and likewise an explicit definition ofthe matrix F in tenn ofthe matrices
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U, G,H and their time-derivatives, see (1 lb) and (12a); and so on (see examples

below). But this applies only to the equations (la,b,c,d), and likewise to their counter-

parts (1 lab,c,d), not to (lej) and (1 le,f) (except in the trivial cases discussed in the

following Remark 5.4.1-7).

Remark 5.4.1-7. The linear homogeneous equations satisfied by y and y, see

(lej), and likewise the (generally nonlinear) equations satisfied by L and Y ,
see

(11 e,f), clearly admit the trivial solutions v = V = 0 or y = Y = 0 (the vanishing of v

entails the vanishing of V
,
and viceversa, and likewise for y and Y

,
see (4)). This

corresponds to reduced versions ofProposition 5.4.1-3, which are obtained by setting
to zero one ofthe pairs of functions v, V and y,j (or possibly both pairs), as indeed

entailed by the special cases of (1e) and correspondingly of (1 le), respectively of (If)

and correspondingly of (11f), with JVO = 1, JVj = 0 for j > 0
, respectively

F,, =1, Fj =0 for j>O. Inthefirst case, v = V = 0, the matrices g and G can also

be ignored, see (6), and one can then ignore the equations (le) and (Ile) as well as

(1c) and (1 1c). In the second case, y = 2: = 0, h and H can likewise be ignored, see

(6), as well as the equations (10, (110 and (ld), (11d). ff both conditions hold,
v = V = 0 and y = Y = 0, then the only matrices that play a significant role are &

and f ,
and correspondingly L,, and F, and the only relevant equations are (lab)

and (11ab); in this special case K = F, see (6).

We now exhibit two classes of linearizable second-order matrix

ODEs satisfied by the N + 5 matrices U, f, G H, V Y, obtained from

Proposition 5.4.1-3 by making specific choices for the functions

0
n,

FF G; F1 V
j 3
F see (1) and (11). 0nce and for al1, let us emphasize that

,H, _j)

these are representative examples, selected to display the type of lineari-

zable matrix ODEs encompassed by our approach, and chosen with an

eye to the manufacture of linearizable many-bodyproblems, see Sect. 5.6

and its subsections; it will of course be easy (and instructive!) for the

diligent reader to manufacture additional examples.
The first class of examples we consider is characterized by lineari-

zable (in fact, linear) matrix ODEs oftype (1) which read as follows:

IV

,(u)n [a,(,.) + bn(.) u. ]+ an(uf) + b,(,f) f + a,(ug) + b(ug) g + a,(,"')'Un n
h+bn

M=1

(14a)

N

u)zim +b(f)um]+a(ff) +b(ff)f +a(f9)k+b(f9)g+a(-*)4+b(ft)h[a(f
M M

(14b)
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'ff

P
W a(I,)it,,, +b(g)uj+a(e)j+b(e)f +a(99)k+b(99)g+a(94)k+b(9h)h

M=1

(14c)

U U (hha(h)t . +b(')uj+a(hf) +b("f)f +a(hg)g+b(h9)g+a("h)k+b )hP [M
M=1

(14d)

Ar

12 + .(vu)U2
_MJU 111

M=1

+
2

+  ff) f2 + 2i(vg) k2 +g2 + a(vh) k2 + Ph) h2

+
2 2a(vu) U1 + b(')
M M

-.1
M=1

+a
(Vf) 2+ b(f) f2 + a(vg) k2 + b (vg)

g2+ a(v) 42 +b(h)h2 (14e)

(y)
IV

[2im(yu) i 2
+I _(yu)U2Y E . _M

M=I

 auf)
2

+ E(yf) f2 + Zi(yg) k2 + g(yg)92 +a(y)j)42 +Pyh)h2

N

 Y [a(yu) Ii2+ b (Yu) U2E m _- m
-.1

M=1

 a
(Yf) 2+ b(Yf) f2 + a(Y9) k2+b(yg)g2+ a(Yh) k2 + b (Y") h2 (14f)

These equations contain N + 5 quantities of type 'U, and 2N2 +20N+ 42

quantities of type a, b (variously decorated with lower indices and upper

symbols of identification); our treatment would apply even if all these

quantities were (arbitrarily!) given functions of time, but for simplicity
we assume hereafter that they are (arbitrarily!) given constants. Then the

N + 3 matrices Y, f, g, A can be obtained from (14a,b,c,d) via purely al-

gebraic operations, and the 2 matrices E and y can subsequently be ob-

tained by solving the linear nonautonomous matrix ODEs (14e,f).
The corresponding (generally nonlinear!) linearizable matrix ODEs

satisfied by the N + 5 matrices U,,, F G H, V Y read as follows:
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[a(' Lu. -LU.,K]j+b(")U.]
nm nm

M=l

P-LF,:Kl I+b(f)F+a('9)1 d-LG,:K] I+b(ug)G+ an
- n n

+ a(uh)I J+b(uh)H,
n n -

(15a)

[a(fu)tULm-LUm,;K]j+b(f')Um],U(f)i =2[P,L]+[E,:&]-[LF_KI;K]+N
In

M=l

+a(ff)f -P-LF,:K] I+b(ff)F+a(fg)l d-LG,K] I+b(fg)G

+ a
("h) t A- LHK] I + b('fl') H

,
(15b)

,U(') d = 2[G
N

Y, [a(g") tQn U.,:K]I+ b(')Um
M=l

+a(gf)f -P-[,FK] 1+0 f)F+a(99)f d-LGK] I+b(gg)G

+a
(gh) f k-LHK] I+b(g)H ,

(15c)

(h)

N

H [a('y 1 = 2 H (hu)Um]H I MU LUML4
M=l

(hh) Hh

(15d)

,v

p(')V=-2K -kV-K2V+f I [2im(-)LUM-Lu-,:Kly+gm(vu)U2
-

M=l

+ a('f') f + Pf)F
2
+ 2i (vg) LG,K] Y + P'g) G2

2i(vh) H
2

+ t_,Kl 12 + Ph)H I LV+KVI_L

IV

+1 [a(u)LUm -LU.,K]f +b(') U2I m In
-ml

M=l

+a
-

- LF + Of) F2 + a('g) 16 - [GK] Y + b(vg) G(vf) 1 fi7 F, :K] 12
2
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+a
(vh) f -A-LHA Y +b(h)H2

1 (15e)

+ k_ 2
+

(yu) LU. (yu)U2IU
(Y) f = 2.fK Y YK b: -LKKI f

'v

[a [U.,K]y + b.
-M

+2i(Yf)j P-[FKI Y +PYf)F2
+ 2i(yg) f d _ LG;K] Y +PY9)G2

+ 2i(yh) H KI 2 + (yh)H2 I

N

+YJ [a( ) tULm LU,K]y + b(Y')U
2

1 M
-MI

M=1

+a(-If)f P-[FK] Y+b(yf)F2+ a() [GK] Y + b(yg) G
2

+ a(yh) f k -[H,:K] Y + b(Y") 'ff
2

1. (15f)

In these formulas K is ofcourse defined by (6).

The second class ofexamples we consider is characterized by (much
simpler!) linearizable (or linear, see below) matrix ODEs of type (1)
which read as follows:

u., zi., m I,-, N; t) , (16a)

f  Cu.'  .' m N; t) . (16b)

Here W is a given scalar/matrix function, such that (16a) is a solvable or

linearizable system of ODEs (see for instance the preceding Sect. 5.3, or

below), and is an (arbitrarily) given scalar/matrix function. The corre-

sponding ODEs oft3Te (3.17) then read

=2[an,E U U 2N;t)_,n
1+1   VE ]-I I   n%E 11 E I+0-mSm-LWEII M=':"**

(17a)

(17b)

Note that we are here in the special case mentioned in the Remark 5.4.1-7, see

above, corresponding to the choice v = V = 0 and y Y= 0. Also note that if f

depends on the matrices (besides the matrices see (16b), hence F depends
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on the matrices CT__ (besides the matrices U ; see (17b)), then the ODE (17a) con-
_M

tains the second time-derivative of the matrices Um in the right hand side as weU

(from the second term).

For the special choice

N

Wn [2 a,,m (t) zi
.
+ bn. (t) u

.

which entails of course that the 0DEs (16a) are linear, the ODEs (17a)
read

N

Um_LEI+ 1 2 an. (t) _][ Un'E]j+bn.(t) g.]On = 2 L,E1+ Lunt]- 11g, F1,
M=1

(19)

The factor 2 in the right hand sides ofthe last two equations is introduced

for notational convenience, see below. In the last equation, (19), the ma-

trix F is of course always given by (17b), with an arbitrarily chosen 7.

For instance, ifwe make for this function the simple choice

N

7CU,n4. IM = 11 .... Nt)=l (20a)
,
[C.wii.]

M=1

which entails

N

F =Z [c. (t)  . (20b)
M=1

then the linearizable matrix ODEs satisfied by the N matrices Un read as

follows:

N

,,(t)&m +bn.(t)Um&n 2a,,,

+2c.(t)[ &n,Um ]+Cm(t)[ Un&m 1+6m(t)[ gn9gm I I

N

- 2 anm, W Cm2 W I 9m, 2 9% 1+ Cm, W Cm2 W -Un  -Uml gm, (21)
Mimi=1
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These equations deserve finther elaboration, which for simplicity is here-

after restricted to the case with time-independent constants an., b,, and

c.. Then the above ODEs becomes

N

(7, = Y, UEj+c.LU,,,&jj
.,
j2a,,&M+b,,U,+2c,L

M=1

N

I I 2anm, cm, LUm, 9Em2 ]+ Cm, Cm. [ Ln Em, I  Em, I J (22)
MIIM2=1

and the corresponding ODEs satisfied by the matrices un read

N

ii
n
= Y_ [2 anm fi. + bnm Um (23)

M=1

and can therefore be solved by purely algebraic operations. Particularly
simple is the "diagonal case" characterized by the restrictions

anm =5nman,bnn =15n,bn, which entail that the ODEs (23) decouple and

their solution reads

jinW = exp(an t) [ Hn (0) COSh(An0 +_"
n
(0) Y,1 siinh(An t) ] , (24a)

An =(an2+ bn )1/2. (24b)

Even simpler is the case with an = a, bn = b
,
hence An =A= (a

2
+ b)

1/2

Then the evolution of the matrix E(t), see (5a), (16b) and (20a), (24),
reads simply

# Q) = exp(at) [ A cosh(At) + B A-I sinh(At) ] E(t) (25)

N N

with A c, it[
n, H. (0)], [C.

.
(0)] two constant matrices. But let us

M=, M=1

emphasize that the simplicity of this case, see (25), has a rather trivial

origin: indeed the nonlinearity of the matrix ODEs (22) in this special
case anm =Jnm a, bnm = J,, b is in a way marginal, since in this case the

ODEs (22), which can of course be rewritten as follows

Un = 2aUn + b Un + 2LU,Ej+ [  , Ij- 2a[U,,,El- kUn,E1, El  (26a)

N

E=Z (26b)
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are easily seen (by multiplying (26a) by c, summing over n and using

(26b)) to imply a single (decoupled) ODE for the quantity E,

J =2aP+bF+[t, f]. (26c)

And after this equation has been solved for F, the ODEs (26a) for the

matrices U,, become linear (albeit nonautonomous). But the matrix ODE

(26c) coincides (up to a trivial rescaling) with the special case of the sys-

tem (22) corresponding to N = 1. There is then a single matrix U1 = U(t)

which satisfies the matrix evolution equation

0=2a&+bU+j6,Uj, (27)

or, more generally,

0=2a&+bU+[&,7UU (28)

if we retain the freedom to make an arbitrary choice (rather than the spe-

cial choice (20)) for the scalar/matrix function 7
,
see (16b) and (17b).

We have thereby returned to the cases discussed in Sect. 5.2 (for (28))
and in Sect. 5.2.3 (for (27)).

Finally, let us point out that the examples given so far in Sect. 5.4.1

focussed on second-order ODEs for the N+5 matrices

U or a subset of them), obtained starting from sec-.,,,F,G H,VY (orf
ond-order ODEs for the N + 5 matrices y,,, f, g, h Z, y (or for a subset

of them). The motivation for doing so is because second-order matrix

ODEs are a convenient starting point to obtain the Newtonian equations
of motion which characterize many-body problems in three-dimensional

space (our main interest in Chap. 5) -- as we saw in Sects. 5.1 and 5.2 and

we shall see in Sect. 5.6 and its subsections. But it is also of interest to,

considerfirst-order matrix ODEs, both because of their possible applica-
tive relevance, and because such equations may also be connected to our

main goal in Chap. 5, namely to construct models of many-body prob-
lems in ordinary (three-dimensional) space. Indeed there are two ways in

which such a goal may be realized also by starting fromfirst-order matrix

ODEs of the kind yielded by the technique introduced in Sect. 5.4. 1: such

equations may be eventually interpreted as Hamiltonian (rather than

Newtonian) equations of motion for a manys-body problem (see Sect.

5.6.4); or they may be used to obtain (by time-differentiation and appro-

priate substitutions) new second-order matrix ODEs, which can then be

appropriately interpreted as Newtonian equations of motion for a many-
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body problem. We end Sect. 5.4.1 by providing two examples of matrix

evolution equations which correspond -- as we shall show in Sects. 5.6.4

and 5.6.3 -- to these two possibilities.

Firstly let us show -- starting, as it were, again from first principle --

that the system ofmatrix evolution equations

N

E (a,,. U. +b. V.) +[L,,,7(Uj, Ej; t)] (29a)
M=1

IV

V = C + d,,. E.) +[E,7(L ., Ej; t)] , (29b)-
E( nm-Um
M=1

is linearizable. Here the 4 N
2

quantifies a.,b.,c,,, dn. are arbitrary (they
could also be time-dependent fanctions), and T is an arbitrary function of

the 2 N matrices Em,E. and ofthe time t; note however that the same 7
enters in (29a) and (29b), that this quantity is independent of the index n,

and that it is a scalar/matrix function of its arguments, namely it satisfies

the property jK7(u V t) W-1 = 7(wu. w-' wv. w-1; t).

To prove that (29) is linearizable we proceed again as above, namely
we set (see (3) and (5); beware ofthe notational changes!)

MnW =1(t) EnW [EWI-I UnW = [TW]_I -UnW ff(t) (30a)

EnW =RX0 EnW [R:(t)]
-1

EnW = [E(Or -VnWrt) ) (30b)

AV) = RX0zKj (t), Ej (t); 4 I(t) =&(t), Ej (t); t]Ew - (31)

Time-differentiation ofthe first of the (30a,b) yields (using the first ofthe

(31))

Ii" = W (32a):tCU_j 7 Lj; 0 E

 n = -W 1 n P, .17(U-j Zj;0 11 W-1 (32b)

and from these equations and (29) , (30) we see that the matrices

Yn W EnW satisfy the linear evolution equations

Ar IV

(a- u. + b,,. v.) (c_ u. + (33)
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The linearizability of (29) is thereby proven, since its solution can be

achieved by solving firstly (33), then the second of the (31) (a linear

equation for the matrix ff(t) ), and then recovering (t), E" (t) from the

second ofthe (30a,b).
It is moreover easily seen that in some cases, see below, the system

(29) is not only finearizable, it is in fact solvable. An obvious (and rather

trivial) case is if the quantities a,,r,,, b. 11 Cnm 2 d,,,,, all vanish,

a. = b. = c. = dnm = 0, and 7 does not depend explicitly on the time t,

7LUj,E,;t)_=7(Lj,V,)..1n such a case (33) entails that the matrices

EJO,&(O are in fact time-indePendent Hnw=& (0), EnW = En (0) ,
and the

second of the (3 1) becomes explicitly solvable. Hence one concludes that

the equations

&n +n17(Lj5Ef)]  tn =[EnJ(Lj Lj)] 2 (34a)

are explicitly solvable:

Ljt) = exp[ _t7LU,(O)1E,(O)) I UO) eXP [ 0  j(O)-'Ef(0)) (34b)

U (34c)En(t) = eXPI _tzLj(O))Lj(O)) I -Vn(o) eXP I t7k(O),Ej(O)) I -

Another, perhaps less trivial, case in which the equations (29) are in

fact also solvable obtains if

'V

7 AjLUf'Lj1 5
(35a)

and the quantities anm5bnm9Cnm)dnm3An are all time-independent and satisfy

the constraints

A,, a. + Am dn = 0, An c_ -Am c. = 0, An b,m -A bmn = 0
' (35b)

Indeed it is easily seen that these conditions are sufficient to guarantee,

via (29), that 7 is time-independent, f = o, so that there holds again the

explicit solution (34b,c), of course with 7 given by (35a) (at t = 0). An

interesting case (see below) is that with An A so that d,,,,, = -amn and

(29) read

IV

On I ( a. Um + bnm Vm + A [ En Em (36a)
M=1

583



N

+C". U. _M (36b)

with

b. = b. Cnm = Cmn (36c)

We shall show in Sect. 5.6.4 how these solvable matrix evolution

equations can be recast in the form of the Hamiltonian equations of mo-

tion of a many-body problem in three-dimensional (or indeed, in S -

dimensional) space.

Secondly, and lastly, we illustrate, via a simple example, the possibil-
ity, in the context of the technique illustrated above, to restrict firstly at-

tention tofirst-order matrix ODEs and to obtain subsequently second-
order ODEs by appropriate additional steps. We only consider an illus-

trative, very simple, example; this allows, at very little cost in terms of

repetitiveness, a completely self-contained presentation; but for the dili-

gent reader interested in the connection with the treatment given above
we note that the case considered below corresponds, up to a trivial

notational change (y  
--> u, u, --> v ), to the treatment given above with

N=2, U, =zij I A2)1 CT + 9U
-2 ="2(au + - (MI 2)9

.P=f -(aul+bU2 +CLUDL2]) and g=h=v=y=O.

Let us set

U=Wuw-,, U=W-IUW (37a)

V=Wvw-,, V=W-IVW (37b)

6I=WjaL+bV+cLU Vjj, W=fajj+bv+cLuy]jj  (38)

z =au+,6Z,  =,Yu+5v . (39)

with ab,c,a,,6,r,i5 arbitrary constants.

This entails for the matrices U and V the first-order nonlinear ODEs

aU +,8L+b [U,L]+c[LjL,E]] . (40a)

 =rL+5V+a[L,L1+c[V V (40b)
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These nonlinear matrix ODEs are of course linearizable, since their

solution can be achieved via the following steps: (i) set (for simplicity)

ff(o) 1 as initial condition to complement (38); (H) note that this entails

u(0) L(0), y(o) = K(0) (see (37ab)); (iii) evaluate u t) and E(t) from thea(

(explicitly solvable) linear evolution equation (39), taldng into account

the appropriate initial conditions, see (H); (N) evaluate T(t) by solving

the second ofthe (38), with initial condition LV(0) = 1, see (i) (note that this

is a linear nonautonomous matrix ODE, entailing the solutions of M

analogous systems of M linear first-order coupled nonautonomous ODEs

-- assuming we are dealing with (Mx m)-matrices); (y) finally evaluate

L(t) and K(t) from the second ofthe (37a,b).
Let us now derive, from the 2first-order ODEs (40) satisfied by the 2

matrices U(t) and E(t), a single second-order ODE for one of these two

matrices, say for L(t). This is easily obtained by time-differentiating

(40a), thereby obtaining (using (40b)) the second-order linearizable ODE

a& +,BrL+,88V + (bS - a,8)LUL]+ b[ Z'Ej+ (C'5 - a,6) LU, LUEl I

_C2 [( 'Lu ILU LIE]]] (41a)

where the matrix V should be expressed in terms of U and & by solving

for V the (non differential) linear matrix equation (40a), namely

,6V-bk,d+c1k,U], j=&-aU . (41b)

At the end of Sect. 5.6.1 we shall display a (highly nonlinear) lineari-

zable one-body problem in three-dimensional space which corresponds to

this second-order linearizable matrix ODE, (41).

5.4.2 Some integrable matrix evolution equations
related to the non Abe)[ian Toda lattice

In Sect. 5.4.2 we consider various (systems of) matrix evolution ODEs

which coincide, or are closely related, with the integrable evolution

equations of the so-called non Abelian Toda lattice. A version of the

(matrix) ODES ofthis model reads as follows:
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dn = djgj_'d,, +,v Gn 1. (1)

Here G,, =_ Gn (t) is a time-dependent square matrix, labeled by the index

n, and r is a ("coupling") constant (possibly complex, see below), which

could be eliminated via the scale transformation G', _). rnG," or, if it is

positive, via the time rescaling t --> r` t.

In this book we do not discuss the actual solution of this matrix evo-

lution equation: it suffices for us to know that this is an integrable (in
fact, solvable) equation (see Sect. 5.N). But let us emphasize that this

matrix evolution ODE, (1), to the extent it is meant to hold for n = L...,N

(as we generally assume hereafter), should be completed by prescriptions
"at the n-boundaries," such as, say, ffree ends") or

9j(t)=!2,,,(t) Cperiodic"); these prescriptions are of

course relevant to determine the solution, but we generally ignore them

hereafter (except in some cases in which we assume periodic boundary
conditions, see below).

Another, perhaps more interesting, version of this integrable matrix

model reads

On = On I Qn+1 -Qn 1- I Qn - Qn-1 ] On (2a)

Here of course Q
n
=Qn(t) is again a square matrix.

The integrability ofthis matrix evolution equation is entailed by its relation to the

integrable equation (1). Indeed it is clear that, by setting

An(t)=[gn(t)]_'Gn+1(t) (3a)

KJt)=[gn(tT1 dn(t) I (3b)

(1) can be rewritten as

-'4n = AnBn+l _AnAn 5 (4a)

- n =rkn _An-d * (4b)

Exercise 5.4.2-1. Verify!
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We now set

n

Qn = I A., (5a)
M=M0

entailing

All = Qn -(?,-I (5b)

hence, via (4b),

,'.An =  n '
(5c)

Insertion of (5cb) in (4a) yields precisely (2a).

Exercise 5.4.2-2. Verify!

Ofcourse also this matrix evolution ODE, (2), must eventually be completed with

"end-point" prescriptions, namely with appropriate definitions for Q0(t) and

!2,,,, (t) (remember: the index n in (2a) runs from 1 to N ); consistently with this

ambiguity we left undefined the lower limit in, of the sum in the right-hand-side of

(5a).

Remark 5.4.2-3. An arbitrary C'coupling") constant c can be reintro-

duced in (2a) via the rescaling Q ->cQ so that it read

On =Cf On  Qn+1 _Qn ]_ 12n_12n-1 ]on (2b)

Remark 5.4.2-4. The version (2) of the non Abelian Toda lattice sys-

tem of ODEs is translation-invariant, namely it is invariant under the

translation 0
,

0. Of course this invariance-on (t) _ A = -onW +
-0

property could be destroyed by the "end-point" conditions; it is, however,

compatible with periodic boundary conditions, Q
0
W = Q

Ar
W

!21 (t) = 0
,,

(t) -

Remark 5.4.2-5. The ansatz _Qn (t) = n LL(t) is compatible with this

evolution equation, (2), and it yields for   (t) the simplest one of the

evolution equations discussed in the preceding Sect. 5.4.1, see (5.4.1-27)
and see as well Sect. 5.2.3 (in both cases with a = b = 0).
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Proposition 5.4.2-6. The following simple matrix evolution ODE is

integrable:

O=c'(2U3+CU+Uf) (6)

where c is an arbitrary scalar constant (which could of course be rescaled

away, as well as the factor 2), and the arbitrary matrix C is also constant

= 0; one could of course set C = 0, or C= C 1).

This important finding can indeed be considered a special case of the integrable
equation (2b). Consider indeed the following special C'periodic") solution of (2b):

Q
2n

(t) A(t)' Q
2n+l

(t) =:A(t) ' (7)

so that the 2 matrices A(t), A(t) satisfy the equations

 =cf  B+B2-2A-A2 1, i =cf AA+AA-A:U-AA (8)

Now set

S=A+B,D=A-B, (9a)

A=(S+:2)12, B=(S-:a)12 , (9b)

so that

j=cf 4B+A- +hA+B2-2A-A2-hB-Bh (10a)

b=cf 2B-A- -hA+B2-2A-A2+hB+Bh (10b)

It is now clear that (10a) can be integrated once to yield

 =_CfD2 +CI, (I la)

while (10b) can be rewritten as follows:

b=-cl  D+D I. (I lb)

But, via (I I a) and the identification

PW = UW I (11c)

this last equation yields precisely (6).
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Note that the initial data for (6), L (O) and a(O), determine, via (I Ic), 2(0) and

15(0); moreover (11a), with C assigned (arbitrarily!) and UP (hence D(O), see

(1 1c)) given, determines  (O), while ! (O) can be assigned arbitrarily, consistently

with the translation-invariance of (11a). From the initial data for 12(t) and 1 (t) one

obtains, via (11b), the initial data for A(t) and A(t), namely A(O), Ap, A(O),

A(O); one then solves (8) (or equivalently, via (7), one solves (2b)), and in this man-

ner one finally gets A(t) , A(t) ,
hence, via (the second of the) (9a) and (11c), the so-

lution   (t) of (6) (with c an arbitrarily assigned scalar constant and C an arbitrarily

assigned constant matrix).

This finding, Proposition 5.4.2-6, is important: it is one of the very

few nontrivial examples (see Sect. 5.4.4) of second-order matrix ODEs

that does not contain the first derivative of the dependent variable and

which is amenable to exact treatment for arbitrary initial data; hence it

shall yield many-body problems of the more standard type, with velocity-

independent forces (see Sect. 5.6.5). Let us re-emphasize that its inte-

grability -- indeed, its solvability -- is predicated upon the possibility to

deal with the periodic non Abelian Toda lattice, a result which we take

for granted (see Sect. 5.N). There is however a subclass of initial data for

which (6) is more directly solvable, as entailed by the following two ex-

ercises.

Exercise 5.4.2-7. Show that the following first-order matrix ODE is

solvable:

=CC+ CU2, (12)

with c respectively C arbitrary scalar respectively matrix constants. Hint:

set

U = -C-1 J V-1. (13)

Exercise 5.4.2-8. Show that, if the matrix U =_ L (t) satisfies (12), it

also satisfies (6). Hint: time-differentiate (12), and use it again to elimi-

nate & and thereby obtain (6).
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5.4.3 Some other matrix evolution equations amenable
to exact treatments

In Sect. 5.4.3 we present some other solvable and/or integrable and/or

finearizable nonlinear matrix evolution equations.

A solvable second-order matrix ODE reads as follows:

O=al+
.

cU)-cLU  +2U& +C 3

,8L+rLu+ _U)'

with a,fi, y, c arbitrary constants (c # 0).

Exercise 5.4.3-1. Show that (1) is explicitly solvable. Hint: set

CU=V-1V (2)

and obtain thereby the following third-order, linear, constant-coefficient
(hence solvable) ODE for the matrix V . L(t):

V=caV+,81 +rl . (3)

Exercise 5.4.3-2. Show that, if the 4 constants a,,8,,v, c are real, a ne-

cessary and sufficient condition to guarantee that all solutions of (1) be

completely periodic, is validity of the equalities a 0, together with

the inequality 8 < 0. Hint: see (3).

A linearizable system ofmatrix ODEs reads

N

On =-kn LUn I-' &n+Un a. 0. (4)

where the time-dependent square matrices U
-

n

:_ -Un (t) are labeled by the

index n and the (scalar) quantities an. are arbitrary constants (there are

IV2ofthem).

Indeed by setting

-1

En = -&,, Lu.I, (5a)

L. =Ln Un (5b)
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one, gets from (4) for V,, (t) the linear, explicitly solvable, matrix ODE

N

a. V. (6)
M=1

Exercise 5.4.3-3. Verify!

Hence to solve (4) one first solves, explicitly, this linear equation with constant

coefficients, and then the linear nonautonomous ODE (5b).

A solvable matrix evolution ODE reads as follows:

0=2a(U&+UU )-2a2 U3 -4b U2 +3b&-2b2
U

-2a( a U2 +bU-& )1/2 U(a U2 +bU-& )1/2 (7)

where a, b are 2 arbitrary scalar constants.

To demonstrate the solvability of this matrix ODE, we start from the matrix evo-

lution equation

k=a M2 +bM
,

(8)

whose solution reads (as the diligent reader will verify)

ffit) = I LM(O)] -1

exp(-b t) + (b / a) [exp(-bt) - 1] (9)

Now set

-W AW)M(t) = (11 (10)
1!(t) A(t))

a position which is clearly compatible with (8) and (9), and which yields for the 2

matrices A(t) and A(t) the equations

a (A2 +B2) +bA,  =a(AB+Bj)+bB
- - - - - - -

(l 1)

the first ofwhich can be solved for B
, yielding

1/2

B a - A2 - b A / a) (12)
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The matrix ODE (7) is then easily obtained, via the identification U(t) = A(t), by

time-differentiating the first and using the second, ofthe (11), as well as (12).

Exercise 5.4.3-4. Verify, and discuss the solution of the initial-value problem for

the matrix ODE (7).

Exercise 5.4.3-5. Ponder on the relation of the technique used above, see (10), to

the second multiplication technique discussed in Sect. 5.3.

Next, we report another integrable first-order matrix evolution equa-

tion of Toda ("nearest neighbor") type, which is the simplest instance of a

class of integrable nonlinear matrix evolution equations <BRL81>. It

reads (see eq. (5. 1) of<BRL81>)

 n = C I-An-I An -An An+I (13a)

and it yields, by positing

An = -67n LnYI' 6r, = An Un (13b)

the second-order linearizable matrix evolution equation

-1 -1 UnY-&n,,LU,,J1_Un I. (13c)'n=_6nLUn1 -"n+CI6n-ILUn-11 _6rn__&nL

Exercise 5.4.3-6. Verify!

This second-order matrix ODE, (13c), is linearizable because, to sol-

ve it, one must solve firstly the integrable ODE (13a) and then a linear

nonautonomous matrix ODE (see the second ofthe (13b)).
The structure of this evolution equation, (13c), entails that, if Un(t)

satisfies it, then U
n
(t) = ELn (r ) with r [exp(a t) - 11 / a satisfies the mo-

re general evolution equation

-t, r- i, L ': 

r (13d)a U,, + U,, [L,, j L" + C I Un-I Ui Un[En] Un+l[?Zn+ll

Exercise 5.4.3-7. Verify!

This suggests that, if a =iw, co > 0
,

the generic solution of this

(complex) second order ODE, (13d), will feature some properties ofpe-

riodicity.
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Exercise 5.4.3-8. Show that the following second-order matrix ODE

(somewhat analogous to (7)) is integrable:

0=2c cU'+[C  +qI/2 U[CU +qI/2) (14)

Hint: start from the integrable equation (13a), in the special Cperiodic")
case with A

n3
= A

n ,
and perform the following steps: (i) consider the

special case of this integrable equation characterized by the additional

restriction A
0
+ A

1
+ A

2
= o

,
whose compatibility with (13a) is easily

verified; (H) use this restriction to eliminate, say, A,; (iii) set A,, + A, =   ,

A0 -A, =P; (iv) express S via D and b, thereby obtaining a second-

order ODE for D that does not contain S; (y) finally make the identifica-

tion D = -2U.

Next, we report the solvable system ofmatrix evolution ODEs

a.a. + b,.) 6. + W,,. cm c.a. [ L.,?2m (15a)-n [OWEj+
nm

M=1

where the matrices En are obtained, in terms of the matrices Um and their

titne-derivatives 0., by solving the (linear, non differential) matrix

equations

N 'V

anLn+Cn19n'Ln1=Z dnm[ Zm-E bmjU,]j (15b)
M=1

 
1=1

Here the N(3+2N) constants a,7an Cn,j,,.,bnm are essentially arbitrary,
while the N2

constants d. are the matrix elements of the matrix D

which is the inverse of the matrix B having matrix elements j,,. (we are

of course assuming this matrix to be invertible).

To demonstrate the solvability ofthis system ofmatrix ODEs, (15), we start from

the system ofmatrix ODEs

N

U" = I fa- Vm +b_ Um + Cn. [L. IK I (16a)
M=1

T n = an -0 (16b)

593



For our purposes it is sufficient to assume the N(3N + 1) quantities a., b,,., c., a,,

to be time-independent "coupling constants," although the more general case in which

they are given fimctions ofthe time t could be easily treated as well.

Exercise 5.4-3-9. Treat this more general case!

We now obtain from these ODEs, (16), the second-order evolution equations
satisfied by the N matrices Un =_ Un (t), and show that they coincide (indeed, in a

special case) with (15); and then we show that the ODEs (16) are solvable.

Time-differentiation of (16a) yields, using (16b),

Urn = j f2nm L m +C= [?ZmIVm]+Cnm a. [L.1-Um]l I
(17a)

M=1

where we have introduced the convenient notation

A.= anm a. +bnm '
(17b)

In (17a), the matrices rn are supposed to be expressed in terms of U. and Om by

solving the (non differential) equations (16a), not the (differential) equations (16b).
This can always be done algebraically (up to obvious restrictions, see below), but he-

reafter we restrict attention to the simpler case characterized by the restriction

a_ = W,,, (18a),,a., cn. cm

which expresses the 2 N
2

constants a., Cnm in terms of the N(N+2) (arbitrary)

constants an., an, Cn *
We moreover assume that the (N x N)-matrix B, with matrix

elements Wn., is invertible, and we term dn. the matrix elements ofthe inverse matrix

-1
=_D:B

 n?n = O)nm 9 dnm = (B-1 )nm = (P)nm (18b)

Then clearly from (16a) we get (15b). The solution of this linear algebraic equation,

(15b), is of course, in principle, a trivial task; for a discussion of a methodology to

obtain it explicitly in matrix form the interested reader is referred to <BR83>.

Let us now show how to solve (17), or rather, equivalently, (16). From (i6b) we

get

Kn(t)=an-Un(t)+-Cn I
(19a)

with the constant matrices Cn given in terms ofthe initial data as follows:

fn = L,, (0) - a,, Un (0) . (19b)
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Insertion of (19a) in (16a) yields the following set of linear ODEs with constant

coefficients for the matrices UnW I
which can of course be explicitly solved by pu-

rely algebraic operations:

,V

On = I I a. [a. E. + C. ]+ bnm um +cnm Lu.,C.] I - (20)
M=1

Next, we report the first-order integrable "Nahm equations":

Rn =C [Mn+l 31 En+2 I, n = 1,2,3 mod(3) ,
, (21)

where the constant c could of course be rescaled away (see below). A

simple way to obtain from these equations a set of 3 coupled linearizable

second-order matrix ODEs is by setting

3

C Rn = Pn &n + I an, U., n = 1 2,3 mod( 3) (22)
M=1

which transform (2 1) into

3 3 3

Yn -on= -1 a ,m 6Tm + [,Un+l -&n+l +I an+l,m   m Y JUn+2 -&n+Z +Z an4-2,m Em
M=1 M=1 M=1

n = 1,2,3 mod(3). (23)

Clearly we are assuming here, for simplicity, that the 3 quantities P., as

well as the 9 quantities an,m, are (arbitrary) constants. These equations,

(25), are categorized as finearizable, since to solve them one must first

solve the integrable ODEs (2 1) for Mn (t) and then the linear (generally

nonautononious) ODEs (22) for U,, (t).

Finally. let us outline some other (well known) techniques to manu-

facture solvable and linearizable matrix ODEs. Most Of these are systems
of matrix ODEs of "nearest-neighbor" type; as we generally do in this

book, we ignore in these contexts the question of the boundary conditions

to be assigned at the extremal values of n (say, for n = 0 and n = N+1).
But before delving in the derivation let us display two solvable and one

linearizable matrix evolution ODEs which are yielded by these develop-
ments (see the fine print treatment below).
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Solvable matrix ODEs:

Cr=c+aaU+(a-a)U+baU2 -2bUU (24)

(a,, - a,,,) F,, + (a,,, - aj (a,, - 2ij  L + a, (b,, U,, - b,,, U,,+,

 (a,, - 2ij b,,+, L,, L,, - 2 b,, U,, U,,

 (2i,, + a,,,, - 2 a,, + b,,+, b,, Uj (U,, + b,, U" (25)
n

Linearizable matrix ODE:

M=(a -a,,)k,,+f (1-b +b  n+l Ln+I I_'Rn n+I JAnkn] n+I
A

n
kn L -'Mn-I [Rn-11 -1

Mn (26)+ Cn+I:Mn - C Mn I
- -

Let us take as starting point the following solvable linear matrix evolution equa-

tion with constant (time-independent, matrix) coefficients:

7 (27)ffn (t) =:& E,, (t) +& Wn+IW+-Cn Ff
n-1W I

and let us set

-1

(28)L :-` Wn+I W.

(here and below we often omit, for notational simplicity, the explicit indication of the

time dependence -- as we generally did above). Then the matrix V,, (t) evolves accor-

ding to the nonlinear equation

-1

L =-An+l Vn _Vn An +Bn+I Ln+1 Ln _Ln Bn Ln +Cn+l _LnCn kn-11 . (29)

The special case of this equation with A,, = A, An = B and Cn = 0 is the first nontri-

vial evolution equation ofthe so-called discrete Burger's hierarchy <LRB83>.
There are now various ways to derive, from this first-order solvable matrix evo-

lution equation, solvable or linearizable second-order matrix evolution equations. We
describe two ofthem.

A first trick is to separate the odd/even labeled matrices, by setting, say,

L2m = L m 9 L2m+l = U., A2m _= I.IAI,,+1 = 2m, and so on. This yields

&n '=_-I_Un _-UnIn +AinUnUn _-UnAn-Un +_ ' n __Un_( n[En-11_12 (30a)

596



A - - -

-1
A,,,,Qn -QnAn + B,, 'Jun +Cn+1

- -

-

+IQn -Q, _CT" "Lunj (30b)

We then time-differentiate the first ofthese two equations, use the second to eliminate

Un, and use the first (undifferentiated) to eliminate after having set, for simpli-

city's sake,  n = 0'

Exercise 5.4.3-10. Treat the more general case!

We thus get:

-n
Qn _LnAn - UnBn Ln -Qn An Un

[L n _1 -Un + -Un An + UnB+-n [1+1 +Ll -Un+J [An] ^n Un

4an -In -Un +-Un In + -Un An -Un - -1 n I Un +hn -Un I ' (31)

We now restrict attention to the simpler case in which the constant matrices are

replaced by scalars, namely we set An= an 1,2n= 2in I, and so on. This yields (25). A

special case of this solvable system of matrix evolution ODEs, (25), corresponds to

the assignment (which is easily seen to be consistent with this system of evolution

matrix ODEs, (25)) En = -U- Fn = -c / a, b,, = b, an=2i+an, 2in=2i-a+an.
This yields (24).

Exercise 5.4.3-11. Provide a more straightforward derivation of (24)

A second method to obtain a second-order equation from the solvablefirst-order
equation (29) is by setting

T'rn (t) = -An (tiffn (01 -1

 
R

n
(t) = En (t):Mn (t) (32)

One obtains thereby the following evolution equation for the matrixM,(t):

-1kn + A
' Mn1_1A

-

-Rn=_knLMn1
_

_n+IIfn_-'j1nL nMn

+Bn+l_ -kn - RnIMn B kkn+ILMn+ll
-n-

nMn-l[ -11-IMn,+ _Cn+I _Mn - RnLMn 1 -1 -C kn (33)

This should be categorized as a linearizable system of matrix evolution equations,
since to solve it one must firstly solve the system of linear constant-coefficient (hence
solvable) matrix ODEs (27) (to get _Wn (t) and then, via (28), Ut)), and then a

linear nonautonomous matrix evolution equation (to get Mn(t); see the second ofthe

(32)).
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Remark 5.4.3-12. Note the presence, in this equation (33), ofa time-differentiated

matrix in the denominator (see the last term in the right-hand-side).

Remark 5.4.3-13. As an obvious consequence of the way this equation, (33), has

been derived, see (32), it is invariant under the transformation Mn -> -MnD"
with

Dn arbitrary constant matrices, '6
n

:-- 0
'

When all the constant matrices are replaced by scalars, namely if we set in (33)

An --=an1  An = bn 1, fn -z Cn 1 .
we obtain (26).

Remark 5.4.3-14. The special case of (26) which obtains by setting

_Mn (t) = za(t), an = 2 a n
, bn = (c - 1) n, cn = n b (an assignment which is easily

seen to be compatible with this evolution equation, (26)) yields for the matrix X(t)

the solvable evolution equation (5. 1-1).

Exercise 5.4.3-15. Do an analogous treatment to that given above., based on (27)
with (28), but replacing (27) with the following solvable system of ODEs:

*nW = An En (t) + Bn Wn+I (t) + Cn Wn+2 Q) (34)

Hint: show that (34) with (28) yield

Ut) =An+1 Ut)-Ut)An +Bn+l Ln+I(t) Vn(t)-Ut) An EX)

+ Cn+I Ln+2WLn+IWEnW -EnW Cn En+IWEnW ' (35)

5.4.4 On the integrability of the matrix evolution equation U = f(LT)

In Sect. 5.4.4 we discuss some properties ofthe matrix evolution equation

&=fUU, (1)

in particular we show that the following two matrix evolution ODEs are

integrable indeed solvable:

& =U2 +Cl' (2)

0=2U'+CU+UC. (3)

Here and below c is an arbitrary scalar constant, C an arbitrary scalar

matrix, and of course underlined letters denote matrices (generally
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(NxN)-maffices; but sometimes also larger matrices, as it will be clear

from the context).

Remark 5.4.4-1. Thefirst-order matrix evolution equation

6T=U2 +C (4)

is integrable indeed solvable (see Exercise 5.4.2-7). Time-differentiation of (4) yields
(3) (see Exercise 5.4.2-8).

Remark 5.4.4-2. This argument (see the preceding Remark 5.4.4-1) demonstrates

that the second-order matrix evolution ODE (3) is partially solvable: indeed, any so-

lution of (4) yields a solution of (3); but these solutions are only a subclass of the so-

lutions of (3) (in terms of the initial-value problem, for these solutions one can assign

arbitrarily the initial value of L(t) , say L(O), but not the initial value of a(t), say

C(O) ,
which is fixed by (4), namely ?Z(o)=LU(0)] 2

+ C).

The fact that (3) is partially solvable (see Remark 5.4.4-2) does not

entail that it is integrable. But integrable (indeed solvable) it is. We de-

monstrated this in Sect. 5.4.2, by showing that this matrix evolution ODE,

(3), is related to a special (periodic) case of the so-called non-Abelian

Toda lattice, a matrix evolution system which was solved two decades

ago (see Sect. 5.N). Below we also provide Lax pairs which correspond
to (3). This integrable matrix evolution ODE, (3), plays a key role in

identifying integrable systems of quartic oscillators (see Sect. 5.6.5).

Before reporting some Lax pairs for (3), let us inte ect some other remarks.

Remark 5.4.4-3. For N = 1, namely in the scalar case, the solution of (4) reads

U(t)=CI12 tan(C1/2 t) . (5a)

This solution is tile "separatrix7 among the solutions of (3), whose general solution

reads

U(t) = A sn(At + a, k), A2_(A2 +2C), k2= _ (1+2CIA ), (5b)

where A and a are two arbitrary constants (to be determined by the initial conditions)
and the function sn(u, k) is the Jacobian elliptic function (see Appendix A).

Remark 5.4.4-4. The factor 2 in the right hand side of (3) could of course be eli-

minated by rescaling the dependent variable, but we shall not do so, as the "canoni-
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car' form (3) (see also (5.4.2-6)) seems the most convenient one to work with. Of

course a generalized version of (3), and of (2) as well, can be obtained by setting, say

L(t)=Kj ! (t) K2
+ K

, (6)

with K,K2,K 3 constant matrices (a priori arbitrary, and which can be chosen at

one!s convenience), and by then looldng at the evolution of U(t) rather than U(t).

Remark 5.4.4-5. The matrix evolution ODEs discussed in this paper are generally
Hamiltonian. In particular it is easily seen that (3) obtains in the standard manner

from the Hamiltonian fimction

h LUf)=trace 1P2
_UCU- 1U4

(7a)1 2-

where the N
2
canonical variables Ujk are the matrix elements of the matrix U, and

the corresponding N' canonical momenta pjk are the matrix elements of the matrix

P, so that the Hamiltonian equations entailed by (7a) read

"jk = ah / apjk = pv, (7b)

P =-ahlau +u c )+2 U U,U (7c)
IV V ==I:(CjsUsk js sk I jr sk

S=1 r,s=l

Here of course c
jk

are the N' elements of the IVx N matrix C. The fact that t -

differentiation of (7b) yields (3) (via (7c)) is plain.

Exercise 5.4.4-6. Verify!

Let us reemphasize that the integrability indeed solvability of (3) has

already been established via its connection with the periodic non Abelian

Toda lattice, see Sects. 3.4.2 and 5.N. But we now back this result by ex-

hibiting various Lax pairs, indeed various hierarchies of Lax pairs, such

that the standard Lax equation (see Sect. 2. 1),

i=[-L,M] (8)

correspond to (3).
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The first reads

: = & U'- -+cc) ,
M (9a)

+'+C) U

as well as

/1

0 0 0 U2 + C" "
0 0 0 U"

L
0

2

+ C) 0
IVI -

0 0 U 0
(9b)

0 U +C U 0 0 U 0 0

_G2 + 0 0 U 0 0 0)U

and so on. Here we are displaying block-matrices, namely matrices of

matrices; hence'the square matrices L and m in (9a) are of order 2N,

those in (9b) of order 22N-41V. These matrices are the first two speci-

mens of a sequence of square matrices of order 21 N, p = 1,2,3......
whose

structure is, we trust, self-evident from (9a,b). And it is as wen plain that

the insertion of (9) into (8) yields (3).

Exercise 5.4.4-7. Verify!

Another sequence ofLax pairs that also yield (3) reads as follows:

1+2U
-

U +C+a)/2k=( U +C-jj/2 -Uj_C2

2

0 -LU2+C+02
(10a)

U +C+a)12 0L

_C2
_C2

L
U U +C-a)12

_L2
0

0 1 U U +C+a)12
-LU'+C-a)12 0 1

0 - GU2+C+a)12
_ LU2

0 0

M=
0 0 +C+a)12

+2
0

CU2 +C+TZ)/2 0 0

(10b)
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and so on.

Exercise 5.4.4-8. Verify!

Let us now discuss tersely the second-order matrix evolution ODE

(1), assuming fLU) to be an arbitrary function of the matrix U and of no

other matrix (fLU) can of course depend on an arbitrary number ofscalar

coefficients), so that

[ _U'fUU 1=0 -
(11)

Then (1) entails that the commutator

C 4 L(t),aw 1 (12)

is constant:

C=O (13)

Exercise 5.4.4-9. Verify!

Remark 5.4.4-10. This property, (13), is independent ofthe functional

form of fLU) (as long as (11) holds), and for its validity it is not requi-

red that (1) be autonomous, namely that fLU) not depend explicitly on

the time t.

Remark 5.4.4-11. This property, (13), generally yields N' -N (scalar)
constants of motion; but of course N' are needed for the complete inte-

grability of the (N x N)-matrix evolution equation (1).

Indeed the definition (12) ofthe (NxN )-matrix C clearly entails that

trace[   P -C ] = 0, p = 0,1,2,.... (14)

And these conditions, ofwhich of course only N are independent, reduce the number

of (scalar) conserved quantities entailed by the time-independence of the (Nx N)-

matrix C, see (13), from N
2

(the number of matrix elements of C, see (12)) to

N2 _N.
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Let us end our discussion of the matrix evolution equation (1) (with
(11)) by exhibiting a Lax pair associated with it, which however does not

yield additional constants ofmotion. It reads:

CrU 02
M=

0 U1fLU
(15)

_&2 _U) 1 0

Note that this matrix L is independent of the function fLU). Consistently

with this fact, this Lax pair does not yield any additional constant ofmo-

tion besides those entailed by the time independence of the (NxN)-
matrix C, see (12): indeed, the traces of the powers of this matrix L,

which are the (scalar) constants of motion implied by the Lax equation
(8), reproduce the series of constants of motion entailed by the time-

independence of the traces of the powers of the (time-independent!) ma-

trix C, see (12) and (13).

Exercise 5.4.4-12. Verify!

Finally let us focus on the simplest nontrivial instance of (1), namely
on (2). In this case we provide another Lax pair (additional to those exhi-

bited above), which yields the AT additional (scalar) constants of motion

required to reach the total number of constants needed for complete inte-

grability. Hence we conclude that (2), as well as (3), is completely inte-

grable.
The additional Lax pair reads as follows:

6F A U2+3cD), 0 A

-2U/(3A) -0
(16)

Exercise 5.4.4-13. Verify that the Lax equation (8) with this Lax pair,
(16) (which features the arbitrary constant parameter A), corresponds to

(2), that the constants of motion given by the traces of the powers of this

Lax matrix L, see (16), are different from those yielded by the constancy

ofthe matrix C, see (12) and (13),and that one can thereby get all the N2

scalar constants required for the complete integrability of the matrix

evolution ODE (2).

We complete Sect. 5.4.4 with some simple but interesting results and

conjectures.
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Exercise 5.4.4-14. Show that the following 2 systems of 2 coupled
matrix ODEs,

6(,e _C02)U -12Ac9V+5A&-5coJ +U2 _ V2, (17a)

T 6(,e _C02) V + 12AwU + 5A T + 5co& +UV+VU, (17b)

respectively

& = 2(A _C02)U -4Aco V + 3A& -3co T + 2(U' _UV2 _ VUV _ V2 U), (18a)

V=2(, ?_CO2)V +4AcoU+3AT +3co&+2(_K3 +VU2 +UVU+U2E), (18b)

are as integrable as (2) (with c = 0 ) respectively as (3) (with C Hint:

firstly set, in (2) (with c = 0 ) respectively in (3) (with

E(t) = exp(p 77 t) r = [exp(77 t) - 1]/ 77, (19)

with p = 2 respectively p = 1, then complexify:

Et) =   (O + i K(t), 77 = A + i cO
- (20)

Conjecture 5.4.4-15. If A = 0, co:;,- 0 all nonsingular solutions of the

system of matrix ODEs (17) are completelyperiodic.
Conjecture 5.4.4-16. If A = 0, co # 0 all nonsingular solutions of the

system ofmatrix ODEs (18) are completelyperiodic.
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5.5 Parametrization of matrices via three-vectors

Consistently with the strategy to identify treatable many-body problems
in three-dimensional space outlined at the beginning of Chap. 5 and illus-

trated by the examples treated in Sects. 5.1 and 5.2, in Sect. 5.5 we re-

view various convenient parametrizations of matrices in terms of 3-

vectors (and, if need be, scalars). Obviously some of these results could

be trivially extended to vectors of higher, or lower, dimensionality than 3;
but here we prefer to focus (ahnost) exclusively on 3-dimensional (ordi-
nary!) space. However, at the end of Sect. 5.5 we also outline a conven-

ient parametrization in terms of vectors of arbitrary dimension S, which

is particularly convenient to treat cases involving only certain "alternat-

ing" products of a (finite) odd number of matrices (we already introduced

this technique in the latter part of Sect. 5.3, and we shall utilize it again in

Sect. 5.6.5; in both these cases, the odd number of matrices in question is

just 3).
We always denote matrices (whose rank will be specified on a case-

by-case basis) by underlining their symbols, and 3-vectors by superim-
posed arrows.

Because of the structure of the matrix evolution equations of Sect.

5.4, we are particularly interested in parametrizations (of matrices in

terms of one or more 3-vectors, and possibly of some scalars as well)
which belong to one (or more) ofthe following three categories.

Definition 5.5-1. We term parametrizations of type (i), for invertible

matrices, those which are preserved under the operation M_ M-'M-
,

namely are such that, if both M and k are so parametrized in terms of

one or more 3-vectors, the combination km-lk admits the same

parametrization in terms of (appropriately defined) 3-vectors.

Definition 5.5-2. We term parametrizations of type (ii) those which

are preserved for commutators, namely are such that, if both M and k

are so parametrized in terms of one or more 3-vectors, the commutator

[m, A] =_ m R - R m admits the same parametrization in terms of (ap-

propriately defined) 3-vectors.

Definition 5.5-3. We term parametrizations of type (iff) those which

are preserved under the product operation, namely are such that, if both

M and k are so parametrized in terms of one or more 3-vectors, the

product M k admits the same parametrization in terms of (appropriately

defined) 3-vectors.
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Remark 5.5-4. Obviously parametrizations of type (iii) are also of type

(U), and, for invertible matrices (the inverses of which preserve the same

parametrization), of type (i) as well.

We indicate with the symbol - the one-to-one correspondence that

the parametrization under consideration institutes among matrices and 3-

vectors. For instance the most common parametrization we use, for

(2 x 2)-matrices, reads

M=pl+iF-&, (1a)

where p is a scalar and the 3 matrices q, cy, a-

are the standard Pauli

matrices,

2  ' =
1 1

0 - (2)r  _i i) g - = o1 0 0 -1

(Note that in the following the unit matrix I =
1 0

is often omitted). So(0 1

in this case, in correspondence to (1 a), we write

M
* (PA, (lb)

and, via standard calculations (see Appendix H, where we report for con-

venience a number of standard formulas involving q -matrices), we also

have

-1

P, ('0
2 2) GOM + r

;7_'Mk=(p  -F-Jr,p;r+ p-F-FAr) , (ld)

kM-1
  

('02M_ +r2)' ( & 3 -

TAT

Z
Z - Z

_Z

r p + (7 -'r:) rP +, FAF-PFAF+, rAF p + Cr

(le)

The formula (1d) shows that this parametrization (which was already in-

troduced in Sect. 5. 1) belongs to type (iii).
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Exercise 5.5-5. Verify these formulas, (1c,d,e). Hint: see Exercise

5.1-13.

Next, let us restrict consideration to the class of traceless (2x2)-
matrices, that admit the parametrization

M=iF.& (3a)

(namely to the special case of (1) with p = 0). The formulas written above

entail that this parametrization belongs both to type (i) and to type (H), but

not to type (Iii). The relevant formulas read:

M-'F
I

(3b)

M-1 -*_Flr2, (3c)

Z 2 (3d)

--27A;r (3e)

Exercise 5.5-6. Verify these formulas, (3c,d,e).

The next parametrization we consider is, in terms of 2 three-vectors,

for (invertible) antisymmetrical (4 x 4)-matrices. It reads

0 XM Y(1) Z(I)
' 

M=
-X 0 Z -Y

(4a)
-Y

(1)
-Z

(2) 0 X(2)
1

41) Y
(2)

-X
(2) 0 )

which entails (in self-evident notation)

M
- (F(I), 7(2)) .

(4b)

It is then easy to verify that

M-1 ;;(1) (;;(1) ;;(2)) (4c)

IF1 M-I Fj
-- -

r P r

Z(2
r (4d)
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The last formula shows that this is a parametrization of type (i) (iff t1le 2

three-vectors F(", F(2) are not orthogonal).

Exercise 5.5-7. Verify these formulas, (4c,d,e).

The special case ofthis parametrization with F(1)
= F, F(2) =A F

1,
0 X Y Z

M=
- X 0 AZ - AY

(5a)
-Y - AZ 0 AX

 -Z AY -AX 0

with A an arbitrary (nonvanishing) constant, is also of type (i), yielding

M, F (5b)

,TJ M-1 k --* [2Jr-(Jr:" - F) -F/r
2

; (5c)

but these two formulas merely reproduce (3b) and (3d).

Exercise 5.5-8. Verify!

A parametrization of (3 x 3)-matrices in terms of 3-vectors takes the

natural form

X(1)Y(1) Z(1)"

(2) (2) (2)M= X Y Z (6a)

'X(3)Y(3) Z(3)
1/

which we write as

'IFG),

M = F(2) (6b)
F(3)

Then clearly

(1) (2) (3)
U , U X U X

M-1 U(1)YU(2)Y U(3)Y (6c)
(1) (2) (3)

U U U
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which we can also write

M-1 =(ii(I)'g(2)'g(3) ) I
(6d)

where the 3 three-vectors ii(j) are defined, in terms of the 3 three-vectors

j;(k) So that

ii (j) j; (k) = 8jk; j, k = 1,2,3 (6e)

which also entail

U(j) U)
= 1

"
X (6f)

j--I

U(j) X(j) =i U u) X(j) = 0 (6g)
j=1 j--I

as well as the analogous 6 equalities obtained by cyclic permutations of

the x, y, z components of the 3-vectors ii(j) =- (u,(,j), uy(j), u,-(j)) and

FW = (P), Y(j), Z(A) .

An explicit definition of the 3-vectors ii(j) reads therefore

iiU) = j;(i+') A F(j+2) A; j = 1, 2,3, mod(3) (6h)

A = j;(I) . ;;(2) A j;(3) (6i)

Note that A coincides (up to a factor 1/ 6
,
and possibly a sign) with the

volume ofthe tetrahedron of vertices 6, ;;(1), p(2), j;(3).

Hence for this parametrization we can write

M --* (F(j), j = 1, 2,3) (61)

and

M-1 M j 1, 2,3) (6m)

with

 U) = I [ (j) F(k+l) A (k+2) Z(k)

k=1,2,3,mod(3)

T /A (6n)
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with,& defined by (4.6i).

The formula (4.6m) with (4.6n) holds afortiori if M'  = k, hence it is

clear that this parametrization is of type (I).

Exercise 5.5-9. Verify these formulas, (6c,d,e,fghj,mn).

A special case of this parametrization is obtained by replacing the 3

three-vectors Pli) as follows:

3

;;(j) (j)= i;(j) i;(k)r - (7a.)
3k=l

Then the treatment given above remains applicable, with the constraint on

the (new) input vectors r=(j) to have zero sum,

3

Y =(j)
= 0r (7b)

It is then clear that the (new) vectors v=(j), see (6m,n),

-(j)
r

(k+l)
A 7(k+2) r

(k) /,& (7c)V k--1,2,3,mod(3)1;F(j)
also satisfy the condition to have zero sum,

3

Y =(j)
= 0

,

V (7d)
j=1

-

Hence this parametrization is also of type (i). It has the advantage to

yield, in terms of the original 3-vectors F(j), translation-invariant equa-
tions.

Exercise 5.5-10. Verify!

The next parametrization We consider is, for (4 x 4 )-matrices, in terms

of 4 three-vectors and one scalar. It reads

(P XG) Y(I) Z(I)

M =

'0 X
(2)

Y
(2)

Z
(2)

P
(3) (3) (3) (8a)

 P X
(4)

Y
(4)

Z
(4)
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which we denote as follows:

M - (jo, F(j), j = 1,...,4) . (8b)

It is a matter of standard vector and matrix algebra to obtain the corre-

sponding formula for the (4 x 4)-matrix m-1 k:

kM_1k
- 2,o -1

,
  (j), j (8c)

Hkr(k)I O-I F(k+1) (i;(k+2) A 7(k+3)

+ r(j) (k+1) (k+2) ) A (;;(k+2) - F (k+3) I/A, (8d)

A= . (8e)

Note that the quantity A defined by this formula, (8e), is translation-

invariant and coincides, up to a factor 1/ 6 and possibly a sign, with the

volume ofthe tetrahedron of vertices 7(j), j = 1,2,3,4.

These formulas entail that this parametrization is of type

Exercise 5.5-11. Verify these formulas, (8c,d,e).

The next parametrization we consider is applicable to antisymmetric

(3 x 3)-matrices. It reads

0 X Y)I
M= X 0 Z (9a)

r-Y _Z
Oj

and we denote it as follows:

M --* F
.

(9b)

The following formulas are then easy to verify:

 '-Xy-yj -Y F XF

Mk= -ZY -XY-ZF -Xjy (9c)

ZY -Y Y -Y5 -ZZ'
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. - Z[M --rAr,zk] (9d)

2.+1 2m

M. = r m (9e)

These formulas entail that this parametrization is of type (H) (note,
however, that (9e) entails that this parametrization is also preserved for

any oddpower of the matrix M).

Exercise 5.5-12. Verify these formulas, (9c,d,e).

The last parametrization was already introduced at the end of Sect.

5.3. We report it here for completeness.
Let V respectively # be a (S x L)-matrix, namely a matrix with S

rows and L columns, respectively a (L x S)-matrix, namely a matrix with

L rows and S columns (hereafter L and S denote two, apriori arbitrary,
positive integers); and let us parametrize them in terms of the 2L S-

vectors  P) respectively -Fv('),

V) = (1), (1) 'FV(1) = 1),(VI V'(I)'...' V2 S k( (10a)

in the following manner:

(1)
VI

(2)
VI

(L)' 
VI W(I) wi) Wi

(1)
V2

(2)
V2

(L)
V2

2)WI( (2)
...Wi W(2)

SV
...

W (10b)

'VS
1(2)
1,

(L)
V

(L)
"Wi

(L)
Wi ... WS(L) j

These formulas can be denoted via the notation

L
-

W (10c)

Then (and this is the interesting point, as we shall see in particular in

Sect. 5.6.5, but we already saw at the end of Sect. 5.3) the (S x L)-matrix
Z -

V respectively the (L x S)-matrix. & , defined by the "alternating" triple
products

Z - Z -

V=VWV, W=WVW, (10d)

admit an analogous representation in terms of the 2L S -vectors ;7 ' '(') re-

ZM
spectively iv-
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V V W iv  v  v (10e)

with these 2L S -vectors expressed in terms of the S -vectors associated

with the matrices that enter in the triple products by the following covari-

ant formulas:

L ;z L

(A).V(I)  Vl) W(A) (,I)..Fv(,) (10f)

Exercise 5.5-13. Verify!

Exercise 5.5-14. Formulate and prove analogous results for multiple

alternating products. Hint: if

P = V(I) W(I) V(2) W(2) ... V(P) W(P+I) V(P+I) (1 1a)

then

z(1)   (Aj) (A,) (A2)
V = L (-FV ... (iV-(A,) (1 1b)

Aj,Az IAP=1

if

j7V = W(I) V(I) W(2) V(2) ... W(P-1) V(P-1) W(P) (12a)
- - - - - - - -

5

then

L

;:-(1)
= _FW Y, V(Aj) ( (A,) .. -V(A,.) ( (Ap) . fV(1) (12b)

Aj,A-_Ap=I

5.6 A survey Of N-body systems in three-dimensional

space amenable to exact treatments

In Sect. 5.6, or rather in its subsections, we display a number of few- and

many-body problems amenable to exact treatments (solvable and/or inte-

grable and/or linearizable) -- including some already discussed in pre-

ceding sections. The environment for ahnost all these models (the excep-

tions being mainly in Sect. 5.6.5) is ordinary (three-dimensional) space:
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accordingly, unless otherwise specified, hereafter vectors, denoted by su-

perimposed arrows, say F, indicate 3-vectors,

j; =- (X, Y, Z) ,

and of course the standard formulas hold for the scalar and vector prod-
ucts,

':1 'F2 = XIX2 + YIY2 + ZIZ2 (2)

F1 A ';2 = (YIZ2 - ZIY21 ZIX2 XIZ2 9 XIY2 - Y1X2) (3)

Let us also report, for convenience, the corresponding formulas for

spherical (rather than Cartesian) co-ordinates:

F = r (COS 0 COS V, COS 0 sin  o, sin 0) , (4)

':I * ';2 -0 0 0 C= rl r2 [COSQ9, 2)+COS I
COS

2 [ OS((01 -902)-111= r, r2 COS012 (5)

IF, A j;2 = rl r2 COS 012 1' (6)

In the last two formulas, (5) and (6), 012 denotes of course the angle

among the vectors F, and F2.

Remark 5.6-1. Essentially all formulas are written below in covariant

form, in terms of 3-vectors and occasionally of scalars. This guarantees
their rotation-invariance (except when they feature constant vectors --

unless these are also assumed to transform themselves as 3-vectors under

rotations).

The presentation below is conveniently split in several parts, the con-

tents of which are clearly indicated by the titles of the following subsec-

tions. The clarity thereby gained overcompensates for the minor repeti-
tions entailed by this compartmentalization.

5.6.1 Few-body problems ofNewtonian type

In Sect. 5.6.1 we display a representative set of few-body problems in 3-

dimensional space, and we indicate how to treat them. As it will be i-in-

mediately clear to the alert reader, many more examples could be manu-

factured by analogous techniques -- the interested readers will profitably

614



try their brains at this game (in addition to solving all the exercises pro-

posed below).

A simple solvable one-body problem is obtained by applying the

parametrization (5.5-3) to the solvable matrix evolution equation (5.1-1).
Its equation ofmotion reads (see (5.1-29))

2
2 a r* j1r (la)r +bF+c[ 2r(r r r

Its general solution reads (see (5.1-2))

(lb)

(0() (t) = exp(av t)j [cosh(At) + (AA + i C)A sinh(At)]r

+ [cosh(At) + (AA - iC)Y'sinh(At)] *Y 1/ 2, GO

7_=141-0 ,
(ld)

A = [a2 + b (1 - c)]112 (1e)

A=j -a+(l-c)V(0).F(0)j/[r(0)]2 j/'&

B=[r:'(0)-F(0)]1jr(0)AF(0)j (19)

C=jrF*(0)AF(0)j1[r(0)2] (1h)

Here the symbol ji;j indicates the modulus of the 3-vector : , so that

V 2 +V.Y2 +V 2 -vector   is real or com-(irrespective of whether the 3

plex).

Exercise 5.6.1-1. Verify! Hint: see (5.1-2) and (5.5-3).

The behavior of this system can be read from this explicit formula;

see also the detailed analysis in Sect. 5. 1. Of course for this model, (1), to

admit of a "physical" interpretation the constants a,b,c must be real, as

well as the initial conditions TO), 7(0); then  o
(+) (t) is real, (p

" (t) is

imaginary (see (1c)), and of course j;(t) is real. Note that all nonsingular
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solutions of this problem are periodic, if a = 0 and b, c are given by (5. 1 -

24b,c).

A solvable 2-bodyproblem obtains from (1) by complexification:

i;(t) = j; (1) (t) + i 7(2) (t), a=a+iii, b=,8+i , c=r+iY (2a)

Its equations of motion read as follows:

_ y fi(2)
(2)
+ fi i; (1) (2)

+
r=2ar-(') -2arr

(j; (1) i; (1) j; (2) j; (2) )
2
+ 4 (F(1) i;(Z))2

(2b)

(2)
= 2a -*(-)

+ 2ff + 0 F(2)
+ ffF(,) +r r r

(;;(I) i;(I) ;:(2) F(2) )2 +4(i;(') i;(2) )z

(2c)

where

(1)
=

(1) (1)
_ j; (2) . i; (2) ) (') +2(j;(') .;;(2)) (2) (2d)

(2)
=

(1) (1)
_ j; (2)

. i; (2) ) D(2) -2(7(') i;(2)) (1) (2e)

2 (r (1) j;(I) (2) ;;(2) (r (1) F(2) - -: (2) F(I) (2)
r r r r

'

(1)
r+(1) (1) - (2) (2) (1) (2) (2)

r r -r r +2(r (20

A(2) ;;(1) -:-(2) i;(2) -(2) -:-(1) i;(2) _ - -(2)
. i;(I) -(I)=2 r r )r +2 (r r )r

(1)
.

-(1) (2) (2) (2) 4-- (2)* (')
.rr r -r r -2(r (2g)

An "unphysical" aspect of these equations of motion is the appear-
ance of certain components of the force which are independent of the co-

ordinate and velocity of the particle on which the force acts (we refer for
'

(2) d_ff j;(2)instance to the terms -2 ff r an in the right hand side of (2b)).
Thisphenomenon is characteristic ofseveral equations considered below,
and will not be highlighted again in thefollowing.

Exercise 5.6.1-2. (1) Discuss the explicit solution of the initial-value

problem for (2); (d) give conditions which guarantee that all solutions of

(2) are periodic. Hint: see Sect. 5.1 (in particular, Propositions 5.1-7 and

5.1-10).
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A solvable translation-invariant 2-body problem is obtained by ap-

plying the reduction (5.5-3) to the coupled matrix evolution equations

(5.3-6) (instead of (5. 1 - 1)). It reads

r=() = [(a / 2) a] `(+)
+ [(a / 2) T

2
r a] F" IbF+c12r(r -F) I r 1/2

(3a)

where

F(t) = FM (t) - FH (t) (3b)

These equations of motion are translation-invariant. Their solution is

given, via (3b) and

Y(t) = j;M (t) + FH (t) ,
(3c)

by (1) and (see (5.3-4))

W(t) = W(O) + s -(O) [exp(a t) - 11 / a (3d)

which correspond to the trivially solvable equation of motion satisfied by

YW

s=as (3e)

see (5.3-3).

Exercise 5.61-3. Display the equations of motion of the solvable

translation-invariant 4-body problem that obtains from the previous one

by complexification. (see (2a), and add, say, a= q + i  ), and analyze the

behavior of their solutions (in particular identify restrictions on the "cou-

pling constants" which guarantee that all solutions remain confined or are

completely periodic). Hint: as for Exercise 5.6.1-2.

Exercise 5.6.1-4. Generalize all the models presented above by using
the parametrization (5.5-1) rather than (5.5-3). Hint: every 3-vector F(t)

gets then associated with a scalar p(t).

Another solvable 2-body problem is obtained by applying the

parametrization (5.5-4) (rather than (5.5-1) or (5.5-3)) to the (same) ma-

trix evolution equation (5. t - 1). Its equations ofmotion read
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r 2ar `(') + bF(')

4-(1)
.

(1)
. ;;(2) ) + (2) ;:(1) i;(I) (-* (1)

.

-(2) (j;(I) . F(2)+c r r r r r (4a)

r
(2) 2ar '(2) +F(2)

-:-(2) [ (-(Z) . j;(I) ) + (4-(1) ;;(Z) i;(2)  (2) .

-(1) j;(2) . i;(I)+c r r r r (4b)

Exercise 5.6.1-5. Obtain and discuss the solution (of the initial value

problem) for these Newtonian equations of motion. Hint: see (5.1-2) and

(5.5-4), and the discussion in Sect. 5. 1.

Remark 5.6.1-6. The reduction i; (1)
= F, 7(2)

= AF is clearly compatible
with these equations ofmotion, and it yields back (1).

Exercise 5.6.1-7. Display the equations of motion of the solvable 4-

body problem that obtains from (4) via the complexification (2b), and

identify the cases in which all solutions are confined, multiply periodic or

completely periodic. Hint: again, as for Exercise 5.6.1-2.

Exercise 5.6.1-8. Display the equations of motion of the solvable

translation-invariant 4-body problem that obtains by applying the

parametrization (5.5-4) to the coupled matrix evolution equations (5.3-6),
as well as the equations ofmotion ofthe solvable translation-invariant 8-

bodyproblem that can be subsequently obtained by complexification; and

analyze the corresponding motions, at least to the extent of identif  g
restrictions on the "coupling constants" sufficient to guarantee that all

solutions are (i) confined, (h) multiply periodic or (iii) completely peri-
odic, Hint: see Sect. 5. 1.

Next, let us consider the solvable 3-body problem that is obtained by
applying the parametrization (5.5-6) to the matrix evolution equation
(5. 1 - 1). The corresponding equations ofmotion read

r`(j) = 2 a F(j) + b F(j) + c r
(k)

r
(j)

. i;(k+l)A j;(k+2) ]I/ A, j = 1,2,3, (5a)I f I  .

k=1,2,3,mod(3)

with

A =- F ') . i; (2) A 7 (3)
. (5b)
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Via the simple transformation

F(j) (t) -> exp(A t) F(f) (t) (6a)

this model takes the more general form

r
(j) 2 a +A (c - 2) ] r '(j) + [ b + 2 A a + A (c - 1) ] F(j)

+ C r r /A
, j = 1,2,3, (6b)

k=1,2,3,mod(3)

with A always defined by (5b).

Exercise 5.6.1-9. Obtain the solution of this 3-body problem, and

compare it with that given (for a marginally less general model) in the

literature <CJX94>. Hint: use (5.1-2) and (5.5-6), and the discussion of

Sect. 5.1.

Exercise 5.6 1-10. Display the Newtonian equations of motion of the

solvable 6-body problem that obtains from (6b) by complexification, and

find conditions on the "coupling constants" a, b,c, A which guarantee that

all its nonsingular solutions are periodic (and find the periods). Hint: see

the preceding Exercise 5.6 1-9.

Exercise 5.6.1-11. Display the Newtonian equation's of motion of the

solvable translation-invariant 12-body problem that obtains from that of

the preceding Exercise 5.6.1-9 by applying to it appropriately the tech-

nique of association, and determine conditions on the (10, real) coupling
constants of this model sufficient to guarantee that all its solutions are

completelyperiodic. Hint: ponder on the relation among (3) and (1).

Remark 5.6.1-12. The equations of motion (6b) (as well as, afortiori,

(5)) are clearly consistent with the restriction that the "center of mass"

3

(1 / 3) F (j) stay put at the origin, A = 0 The special solutions of (6b),
j=1

or (5), that fdfill this constraint, correspond to the solutions of the solv-

able translation-invariant 3-body problem that is obtained by formally

replacing in (6b) or (5) every 3-vector 7 U) with r=(j) =_ T (j)
- T?

.

Next we consider the solvable translation-invariant 4-body problem
that is obtained by applying the parametrization (5.5-8) with p = 1 to the
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matrix evolution equation (5. 1 - 1) with b =0 Its Newtonian equations of

motion read

.-(j)
= 2 a F(j) + c

k (k) (j) (k+l) F(k+2) (k+2) (k+3)
r r r A

k=1,2,3,4,mod(4)

(7a)

A _= (i; (2)
_ i; (1) (3)

_ j; (1) ) A (F (4) (7b)

Exercise 5.61-13. Obtain the solution of this 4-body problem, and

compare it with that given (for a marginally less general model) in the

literature <CJX94>. Hint: use (5.1-2) and (5.5-8), and the discussion of

Sect. 5.1.

Exercise 5.6.1-14. Display and discuss (with particular attention to

periodic motions) the Newtonian equations of motion of the solvable

translation-invariant 8-bodyproblem that obtains from (7) by complexifl-
cation. Hint: see Exercise 5.6.1-9.

Exercise 5.6.1-15. Display the Newtonian equations of motion that

obtain by applying the parametrization (5.5-8) to the matrix evolution

equation (5. 1 -1) (without assuming p = 1 nor b =0 ; hence these equations
ofmotion generalize (7)).

Next, let us exhibit the solvable 2-body problem that is obtained by
applying the simple parametrization (5.5-3) to the solvable system of 2

coupled matrix evolution equations that itself obtains by applying the

multiplication trick (5.3-30) (with M = 2 and U(II) = U(22), U(12) = U(21) ) to

the solvable matrix evolution ODE (5.1-1):

F j) =2ar:'(j) +bF(j) +cf r':-(j) [q4-4pP]+2r '(j+1) [qb-p4]

+F'j) [2 p j5 - q  12] + F(j+') [p  -q / d, j = 1,2, mod(2) (8a)

=(;;(l))2 +(j;(2))2'P=j;(1) F(2)' (1)
.

4-(1) 4-(2)
.

-(2) -(2)
rq - 2[ r + r r ], =_2r 8b)

2 =(i;(I) +i;(2))2 (j;(I) _j;(Z))Zd=q -4p2 (8c)

Exercise 5.61-16. Derive these equations of motion and find their

solution. Hint: follow the instructions given above, then use (5.1-2) and

(5.5-3), and see Sect. 5.1.
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This model, (8), is presented as another simple example (besides
those already reported in Sect. 5.3) of the Idnd of results that can be ob-

tained by using the multiplication (in fact, in this case, only duplication)

technique described in that Sect. 5.3; clearly many more models (which,

however, become more and more complicated) can be obtained by iter-

ated uses of these techniques, which can be moreover combined with

those used above (complexification, and association with other solvable

models, in particular the latter to manufacture translation-invariant mod-

els).

Next we consider the scalar/vector solvable one-body problem which

is obtained by applying the parametrization (5.5-1) to the solvable matrix

evolution equation (5.4.3-1). It is characterized by the following equa-

tions ofmotion:

; =a+,6p+r [ + C ('02 -r')]-c[3p -3(F,r) +CP CP2-3r2)] (9a)

r 2)] (9b),flF+++2cpFj-c[3 F+3jpr -rAr +cF(3p2 -r

Note that in this case the 3-vector equation of motion (9b) is coupled to

the scalar equation (9a).

Exercise 5.6.1-17. Assuming the 4 constants a,,6,r,c to be real, find

restrictions on their values which guarantee that all solutions of (9) are

completelyperiodic. Hint: see Exercise 5.4.3-2.

Exercise 5.61-18. Obtain from (9), by complexification, the Newto-

nian equations of motion of a scalar/vector solvable 2-body problem.
Hint: set, say,

i; = i7(1) + i j;(2), P=P(I)+iP(?), a=a+iii, fi=b+i , v=c+ia, c=C+ii .

(10)

Exercise 5.6.1-19. Obtain from (9), by appropriate association, the

Newtonian equations of motion of a scalar/vector translationfinvariant

solvable 2-bodyproblem. Hint: see (3b,c,d,e).

Exercise 5.61-20. Apply the parametrization (5.5-1) to the matrix

evolution equation (5.4.3-7), and discuss the (solvable!) scalar/vector

Newtonian equations of motion obtained in this manner; in particular,
determine conditions on the, assumedly real, "coupling constants" suffi-
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cient to guarantee that all solutions of this Newtonian equations of mo-

tion are completelyperiodic.

Next, we report the equations of motion of the scalar/vector solvable

one-bodyproblem that is obtained by applying the parametrization (5.5- 1)
to the solvable matrix evolution equation (5.4.3-24):

(P2
_:W

 =c+(a-a),b+aap+ba -r2)-2b(,bp-r-F) (11a)

r =(a-a)r+aaF+2bapF-2b( F+pr)-2bi:Ar (I lb)

Note the similarity ofthese equations ofmotion to (9).

Exercise 5.61-21. Assuming the 4 constants a,,8,y,c to be real, find

restrictions on their values which guarantee that all solutions of (11) are

completelyperiodic. Hint: see Exercise 5.6.1-17.

Application of the parametrization (5.5-1) to the integrable matrix

evolution equation (5.4.2-6) (with the position C =,v I+ i e yields the

following scalar/vector integrable one-bodyproblem

,b=2c' [P(P2 -3r2) +'V P (12a)

i:
= C2 2

r 2 [-F(r -3p2)+rF+p (12b)

Ofcourse only in the case with 0 0 is rotation-invariance preserved.

Exercise 5.6 1-22. Apply to these equations ofmotion, (12), the tech-

niques of complexification and/or association, and display the sca-

lar/vector Newtonian equations of motion of the integrable 2- and 4-body
problems obtained in this manner.

Exercise 5.6.1-23. Display the scalar/vector Newtonian equations of

motion entailed by application of the parametrization (5.5-1) to the inte-

grable matrix evolution equation (5.4.3-14).

Next let us recall that the linearizable one-body problem character-

ized by the Newtonian equation of motion (5.2-19) has been treated in

Sect. 5.2.

Exercise 5.6 1-24. Display the Newtonian equations of motion of the

solvable 2-body translation-invariant problems which obtain via the as-
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sociation trick from (5.2-58c), (5.2-59d) and (5.2.2-1). Hint: see

(3b,c,d,e).

Exercise 5.61-25. Show that the following Newtonian equation of

motion is linearizable:

r 2ar+bi;+Cj;Ar (13)

Hint: apply (5.5-3) to (5.2.3-1) (with C = 2c).

Complexification. of equation (13) via the positions

j;=i;(I) +jj;(2) a=a+iE,, b=fi+i , C=c+iF, (14a)

yields the integrable 2-body problem characterized by the equations of

motion

"

(1) '(1) - -(2)) + j;(1) ;;(2)r =2(ar- r

+ C (j;(I) -(I)
_ F(2) A -(2) 25 (F(I) -:.(2) (2) -(1)

A r r Ar +F Ar (14b)

r
(2) =2(ar (2) +a r (1)) +'8 F(2) +  i:(1)

+ C (j; (1) 4-(2) - (1) (2)
A

- (2)
A r + F() A r: (')) + F(F(1) Ar r (14c)

Exercise 5.6.1-26. Show that, at least in the 2 cases characterized by
the restrictions a =  = 0, a = 3co / 2,,8 = 2CO

2
or a=,6= =O, a=col2, with

co an arbitrary (real, nonvanishing) constant, this model, (14), is solvable

and all its solutions are completely periodic with period T= 2'T/ CO
.
Hint:

see Sect. 5.2.3.

Association of (14) with an appropriate, trivially solvable, model (see

(3b,c,d,e), with a replaced by r) yields the linearizable translation-

invariant 4-body problem characterized by the Newtonian equations of

motion

rl: (1,) = I Y S' '(') - Y S':"(2) [ 2 (a r '(') - ii F(2)) + fl F(I) i;(2)

+ C (j;(1) -*(I)
_ F(2) A -(2)) (i;(I) A 4-(2)

+ F(2)A r r r 1/2 (15a)

r
(2,) S(2) +y s

(1) [ 2(ar (2) +a r (1)) +,g F(2) + j;(I)
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F(2)
+ F(2) A r _ i; (2) A-(2)+C(F(I) A r '!(1)) + A r r ) ] 1/2 (15b)

;;(1) = F(I,+) ir(2) ;;(2,+) _i;(2,-), 3 (1) j;(I,+) +i;(I,-), W(2) i7(2,+) +i;(2,-)

(15c)

Exercise 5.6.1-27. Show that this model is solvable and that all its

solutions are completely periodic with period T=2;r/co if there holds

either one of the 2 sets of restrictions on the 4 coupling constants

a, a,fi, detailed in the preceding Exercise 5.6.1-26, and in addition there

hold the 2 constraints v = 0, Y = m co, with m an arbitrary integer (m:# 0;

for m = 0, namely Y = 0, (15) reduces to (14)). Hint: use (3b,c,de)

(with a replaced by r), and see Sect. 5.2.3.

Remark 5.6.1-28. Recall that the one-body problem characterized by
the Newtonian equation ofmotion

r= f(r) ;;Ar (16)

is Unearizable (for arbitrary f(r), see (5.2.1-1); this equation of motion,

(16), is actually solvable iff(r)=krP with p=O,p=-2 or p=-3, see

Sects. 5.2.1 and 5.2.2).

Next, let us report two linearizable three-body problems that are ob-

tained from the "Nahm equations" (5.4.3-2 1). The first one is obtained by

applying the parametrization (5.5-3) to the linearizable matrix equation

(5.4.3-23) and it reads:

4. -:.

rn42/,a,,) fJUn+I jUn+2 rn+2 A rn+l

3

[ 1 3

+J: --anm + -a 7 +L a,,+,,. AF

M__I
2

T. an+I,m JUn+2 rn+2 n+2,m JUn+I n+1

k=1
a.+2,k7k)

In these equations, (17), as well as in the following ones, (18) and (19),
all indices are defined mod(3).

Exercise 5.6.1-29. Display the Newtonian equations of motion of

the translation-invariant linearizable 6-body problem that obtains from

(17) by applying the association trick (see (3b,c,d,e)).
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The second linearizable three-body problem related to the Nahm

equations (5.4.3-2 1) is characterized by the Newtonian equations of mo-

tions

2 2 2 (F b +C2 (18a)rn + C
2 (rn+l + rn+2 )]Fn (j;n n+2 )lj;n[bn,n+l + C

n

- F.11 )]j;,,+l n,n4-2

where:

U
2 2

V - Yn+l,n+l - /vn+2,n+2 rrn+l * "n+1 + (j;n+Z * "n+2 Aa
n n+I

+ Un+2 + (i
n,n

7n,n+l Pn * k+1 ) + (Fn+l * iin A - Yn,n+2 IR * gn+2 ) + (Fn+Z "n A I/ (18b)

b j;
n..

"n - "m + (rm,m - rm+l,m+l ym+2,m+2 IR * iim ) + (
m

* "n N
2

Y (18c)YV.,n Kr +I "n+l +  rn+2 * "n+2 + Ym,2-m Prn 2n-m
+  2- ' "n A

=r r (18d)
n,m n

*

m7

iin - n, + rn+l,n ':n+l + Vn+2,n Fn+2 9

1
(JVn,n - rn+l,n+l - 7n+2,n+2 (18e)

3

FI 'F2 A 73 (180

These equations of motion, (18), are obtained from (5.4.3-21) via matrix du-

plication and by again applying the parametrization (5.5-3). The relevant formulas

read:

Mn=
An Bn) (19a)(An An

A
n
=01c) iin * 6n ,

B
n
=i Fn ' an (19b)

Note that an apparent paradox arises, namely, setting c=0 in the equations of motion

(18), the "free motioif'

equation r=0 is not recovered (in contrast to what seems sug-

gested by (5.4.3-2 1)): this is due to the definition of An  
see (1 9b), which features the

coupling constant c in the denominator.
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We end Sect. 5.6.1 by displaying the linearizable one-body problem
that corresponds, via the parametrization (5.5-3), to the linearizable ma-

trix ODE (5.4.1-41):

r =a r+firj;+fli5r +2(,8 a -b,5)FA;r:"+2b;r A r

Z+4(ci5-a,6)FA(FAr)+4ctFA( A;:r: )+-r 'A(j;Arz)1+4cf fl(-rAj;)AF

+2ac[F A (j; A::'')]A F +2b 7 A [ A (F A;r)r

'

J+16cFA[FA( ACr AF))] 1, (20a)

)2 2 2r=[(8-4cr' +4b r tIf2bFAr+(,8-4cr2)r

+ [4b2(p -4cr2)-'(F-r '+(4cX-a)r2)+(,8 -4cr2)(4cX-a)jj;j, (20b)

X = [(fi-4cr2)3 +8bcr2

(fl -4cr2)2 +4b2fir2 1

2)2 2 2 2 4.).-[(fl-4cr +4b r I(ar -F.r (20c)

Exercise 5.6.1-30. Verify! Hint: use (H. 11).

Exercise 5.6.1-31. Clearly (20) can be rewritten in the form

4-

+ f(2) j; + f(3) j; A
---

r =f(')r r
,

(20d)

With f(l),f(2),f(3) scalar functions of the 3 scalars r2, IF12, F- 7, and as well

of course ofthe 7 "coupling constants" a, fl,y, 5, a, b, c. Find f(1), f(2), f(3).

5.6.2 Few-body problems of Hamiltonian type

In this short Sect. 5.6.2 we report two simple cases of few-body systems,
whose Newtonian equations ofmotion are Hamiltonian.

The first case is characterized by the scalar/vector integrable equa-

tions of motion (5.6.1-12), which we rewrite here to please the lazy
reader:

, =2c2 [p(p2 -3r2) + 2,,o _ (0. j;)] ,

r =2C2 [-F (r2-3P2)+rF+pq - (1b)
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It is easily seen that they are yielded by the following Hamiltonian, of

normal type (but note the negative sign in front of the second "kinetic en-

ergy term" in the right hand side):

H( , 7r; F, p) = (p2 _)r2) /2+c2[ 2r(P2 -r2) -4p( -F+r' +P4 -6r2P2 ]/2.
(10

Exercise 5.62-1. Verify!

These Newtonian equations ofmotion, (1), are rotation-invariant only
if ( = 0. If this condition holds, one can moreover set p == 0 (consistently
with (la), which is then trivially satisfied). Then (1b) becomes the stan-

dard Newtonian equation of motion of a single unharmonic (quartic) os-

cillator,

i:

r= aj;-br2j;, (2a)

where we set, for notational simplicity, C2 =b12,2c'r=a. This is of

course the one-body Newtonian equation of motion yielded by the stan-

dard Hamiltonian

H(fi ;;) =P212+V(r), (2b)

with

V(r) = -a r212+br4 /4 (2c)

whose integrability is well-known (the standard one-body Hamiltonian

(2b) is of course integrable for any spherically symmetrical potential en-

ergy V(r)). Clearly all (real) solutions of this model are confined if the

coupling constant b is positive,b>O.
A more complete analysis of integrable unharmonic oscillators (in-

cluding also severalfew-body cases) is given in Sect. 5.6.5.

A solvable (but rather trivially so) Hamiltonian one-body problem is

characterized by the Hamiltonian

H( ,q) =aq-fi+bp212-cq2/2+(A/2) ( Afi)2, (3a)

entailing the (Hamiltonian) equations.ofmotion

q- =a4+bfi+A[4A[4Ap]], `=c4-afi+A[ A[ APII. (3b)P
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The solvability of these equations of motion, (3b), is entailed by their correspon-

dence, via the parametrization (5.5-3), with the N = I case of the solvable matrix

evolution equations (5.4.1-36), with a, = a, b, I
= b, c, = c and A replaced by A/4;

the trivial character of this property of solvability is entailed by the fact that the "an-

gular momentum" 4 A P is a constant of the motion, so that the equations of motion

(3b) are effectively linear.

Exercise 5.6.2-2. Verify the correspondence of (3a) with (3b), as well as the va-

lidity ofthe two assertions stated immediately above.

Exercise 5.6.2-3. Investigate the behavior ofthe Hamiltonian system (3).

5.6.3 Many-body problems of Newtonian type

In Sect. 5.6.3 we report a representative list of many-body problems fea-

turing Newtonian equations of motion amenable to exact treatments, Let

us reemphasize that our main purpose here is to illustrate the Idnd of sys-

tems that can be obtained and the techniques to get them. Of course many

more such models can be manufactured: all readers are welcome to try

their brains at this instructive and interesting sport.

A linearizable N-body problem (featuring 3N arbitrary coupling con-

stants):

N V

r. (2an-nj 'n, + b,, Y
- " ) *(C

-.2 r., A rn2r
-nj Fnj )+ n-nj

nl,n2=1

Here, and in analogous equations below, all indices are defined mod(N).

If a,, =bn =0 the model is not only linearizable: it is solvable.

These equations ofmotion may be obtained from (5.6.1-13) via the first multipli-
cation technique of Sect. 5.3, or equivalently by applying the parametrization (5.5-3)
to (5.3-15).

Exercise 5.6.3-1. Verify! (But beware of the need, in the second case, to rescale

the coefficients Cn by a factor 2
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For instance for N = 3 these equations of motion, when displayed in longhand,
read

+b371 +2
4.

ri 2(al 3+a2r2+a3i,)+b,F3+b,F C1 0:3 Ar3)+C2(71 AF,) + C3 (F2 A r.

+ C, (F A  r, + F, F A r (2a)Aj;l)+C2(';2 AF3 + 2
A 3)+C3(jl A 3

+
3 1) 1

r 2 (a, T, + a T3 + a3 F2) + b, 7'
3 j;2 CI (F2 A2 2 1+b2j;3 +b +2 r2)+C2(F3 AF3)+C3(F, Ar,

+ 73 A j;
- -

+ C, (j;j A r3 r, r2 ) + C3 (j;2 A
_ '

+ F3 A-)+C2( 1
A + F, A r3 r. (2b)

2 (a, +a +b3F3 +2[ CI(j;j A' 'r3 2 +a3F3)+bIF2+b2FI r, ) + C2 (;2 A 2)+c3(F3 Ar3

j; j;+ C, (F2 A j;3 + F*2 A j;3 A j;3 + F3
4. 4.

A+ C2 0; A r2 +r2 A r,) (2c)1)+C3( I

Let us however recall that the equations obtained via this technique can generally be

decoupled via a linear transformation (see (5.3-27)).

A translation-invariant linearizable (2N)-bodyproblem (featuring 4N

arbitrary coupling constants):

r ()n =I a (2 a r +b
n Sn 1:

n-nj nj n-ni F,, )+ (Cn-nj-n 
nj
A r, ) 1/2 (3a)

n1=1 n,,n2 1

  n = Fn(+) + Fn(-) 7 Fn = Fn(+) - Fn(-) , Fn() = (9 n Fn ) / 2
. (3b)

Again, if an =hn= 0, the model is actually solvable.

Here the 2N "particle coordinates" are of course the 3-vectors Fn(
n

n = 1,...N.

Exercise 5.6.3-2. Show that these equations of motion, (3), are indeed fineari-

zahle (and solvahle if an = h
n

= 0). Hint: apply the association technique to (1), or

equivalently, and more directly, note that (3a) entail that the 3-vectors 3 n =-   n (t) ,
see

(3b), satisfy the trivially solvable equations of motion sn = an Sn  
and the 3-vectors

F =- F
n n

(t) ,
see (3b), satisfy (1).
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A scalar/vector solvable N-body problem (featuring 4N arbitrary

coupling constants):

N IV

p. =a. +j]  n-nj
-7,

[Pnj J n2 (;nl rn,
,

ffin-ni Pn, + iyn-nl J nj 1- 3 ,

n, nl,nz=l

IV

+ i j;n3 TfCn-,,,
-n -n_, rn, [JO., '0n3 nZ

nj,n2,n3 1

fCn-nj-n.-n3-n4 Cn, Pn7, [Pn3 JOn4- 3(F,,, ' j;n4 T (4a)

'V

 n-nj Fn + -Yn-nj 3 j; +3&1' ' -(Fnl A*I
Y

 n-nj-n7 [ ;n,r,, r., I
.

Jbnj n2 rn7
n1=1 nl,n2=1

'V V

+2 1 fCn-nl-n,-n3,ynl)on2,j;n3l- ICn-nl-n2-n3-n4 C [3pn3 pn4 - (;n3 n4)]j.(4b)
nj n2

nl,nz,n3=1 nj,n2,n3,n4=1

These equations of motion, (4), are obtained by applying to (5.6.1-9) the (first)

multiplication technique described in Sect. 5.3. Hence these equations of motion can

be decoupled by using a linear transformation oftype (5.3-27).

Exercise 5.63-3. Verify!

A solvable N-body problem (featuring N
2
+3N arbitrary coupling

constants):

rn = anrn -anrnrn A rn

2 2 2(
n

+[a j;,, + an rn j;n A
n
(an + rn r2 rn r. A [7n rn r.

IV

nm

j; +a inAj;. (5)b
in +rnr. A[ yn

2

(Fn - Fn)j;,, +anM nrn
M=1

These equations of motion, (5), are obtained by applying the parametrization
(5.5-3) to the special case of the solvable matrix evolution equation (5.4.3-15) with

D=B=l.
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Exercise 5.6.3-4. Verify, and analyze the motions entailed by (5). Hint: do first

the one-body case, N = 1.

A scalar/vector solvable N-bodyproblem (featuring 4N arbitrary cou-

pling constants, and "nearest-neighbor" interactions):

 n = (an - an,,)   n + (an - an+,) (iin - an) Pn + a
n
(bn pn - bn+I J0n+I)

- (2in - an ) bn+l (Pn Pn+I - Fn - Fn+l 3 bn (j n Pn - rn * Fn

(PnZ _r 2) -F (Zin - 2an + an+I) pn + bn
n

]+bnl(,bnpn+l rn n+I)

 bn bn+l [ Pn+I (Pn2rn2) -2pnFn -F ]_b
2 2

-3rn2),,, n
Pn(Pn (6a)

Fn = (an - an+,) (2in - an) Fn + Fn (bn Fn - b,,+, Fn+,)

Pn rn - rn- (Zin - an ) bn+l (Pn Tn+I + Pn+I Fn + Fn A Fn+l bn (3  n j;n +3AF)

+(2in - 2 an + an,) (' ' + 2 bn Pn Fn) + bn+l (pn,
4.

"I rn +Jon rn + ';n A Fr n+I)

+ (Pn2 _ rn2) j; 2(3 '0n2 _ r, 2)+bn bn+l [ 2 Pn+1 Pn Fn n+1+2pnF,,AFn, ]-b
, n

- (6b)
n

These equations of motion, (6), are obtained by applying the parametrization
(5.5-1) to the matrix evolution ODE (5.4.3-25).

Exercise 5.6.3-5. Verify, and analyze the motions entailed by (6). Hint: do first

the one-body case, N = 1.

A linearizable N-body problem (featuring 2N2 + N arbitrarily as-

signed fanctions of time):

!:

=

Y

f2a
*

+b.(t)Fm +C (t) [2 (F. A (Fn A (F A j;,,rn Z nm
(t) r-M rn r. n n

M=1

IV

+ 1] f 2 a. C, (t) (F A FI) - C. (t) C, (t) [(Fn A F ) A 71 ] I . (7)
M

I,M=1
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These equations of motion, (7), are obtained by applying the parametrization

(5.5-3) to the linearizable system of matrix ODEs (5.4.1-2 1) (with C, = 2 c ). er-
"

(V

ify!). Note that, as in (5.4.1-2 1), we are allowing in this case all the N(2N+ 1) quan-

tities a,,. (t), b,,,,, (t), C,, (t) to be time-dependent, since this does not negate the prop-

erty of these equations of motion, (7), to be linearizable. Of course one may limit

consideration to the case in which all the coefficients a,,b., C. are time-

independent.

Exercise 5.6.3-6. Obtain the (of course more general, and as well linearizable)

equations ofmotion that obtain from (5.4.1-21) via the parametrization (5.5-1).

An integrable N-bodyproblem (with "nearest-neighboe, interactions):

.4-)]/r2 2

JF -j; /r (8)r[2F
n
+

, IF, - [2F Frn r (r,, r,, n-11-

These equations of motion, (8), are obtained by applying the parametrization

(5.5-3) to (5.4.2-1). (Verify!). Note their "nearest-neighboi" character. We do not

repeat here, nor below in analogous cases, the comments on the need that these equa-

tions of motion be supplemented by "boundary conditions at the n -ends" (see Sect.

5.4.2).

Exercise 5.6.3-7. Obtain the (more general) equations of motion that obtain from

(5.4.2-1) via the parametrization (5.5-1).

A scalar/vector translation-invariant integrable N-body problem

(with "nearest-neighbor" interactions):

,,
+Fn (9a) n = c [,b n (p,,,, - 2 p,, + p,,-,) -(F -2 7rn ,.1 -1)] 1

= c [
 '

(p,,,, -2 Pn + Pn-1) +  n (Fn+l 2 Fn + Fn-,) + A (Fn+l n-I (9b)r. rn r,.1

These Newtonian equations of motion, (9), are obtained by applying the parame-

trization (5.5-1) to (5.4.2-2b) (in this case theparametrization (5.5-3) is not applica-

ble!).

Exercise 5.6.3-8. Verify!
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Note the translation-invariant character of these equations of motion, (9): they

are indeed invariant under Pn _4, n ::- Pn +A 11 n rn = rn + F1 with p, , F0 time-

independent but otherwise arbitrary.

Exercise 5.6.3-9. Obtain from (9) more general equations of motion by applying
the (first) multiplication technique of Sect. 5.3.

Exercise 5.6.3-10. Show that the following Newtonian equations of motion

(which feature the 4 arbitrary real coupling constants A, co,y, Y ) are just as integrable
(2)
= 0, p(2) = 0as (9) (to which they reduce back for A = o) 0, r = c and pn

,b(') = 2 (co2 - A ) p(') + 4A Co P
(2)
+ 3 Ab,,() - 3 cobn(2)

n n n

+ rA. - YA - (A r - co Y) Bn + (A 7 + cov) Bn (10a)

(2)
(Cf)

2
_ A2 )'0 (2) 1 2 1

)6 = 2 -4A o),o() + 3 A b( )
+ 3 co, ()

n n n n

+ YA,, +;vA,, - (A 7 + cov) Bn - (A v - co Y) Bn 31 (10b)

't
(2)  (2)0 ;;(Co

2
C2 +4A

n
+3A n(')Aco

nn

- Z
- z

-7 n-(A;v-co7)Dn+(A7+coY)D, (10c)+7 Cn C

(2) _A2);;(2)  (2)
n

=2(co2
n

-4AcoFn()+3A
n

+3co n(') 

+ Y Cn +,v Cn - (A Y + co r) Dn - (Av - o) Y) Dn 9 (10d)

n
A (1)

-

- A(Z) (1) (2); Bn B B (2), 3 =ff(l) +ff(2)9 (10C)A
n n

2n 2n + 2n
n n n n n

AW b(j) (p(j) - 2p(j) + p(j) ) -  (j) - (F,,(+j,) - Vn(j) + j = 1,2 9 (10f)
n n n+I n n-I n

(j) (j+') (,on(',), - 2pG) (j)) -  u+l) D
+'0 (T(j)

- 2Fn( + j;n  n
n n-I n n+I i))J = 1,2,mod(2), (log)

B(j) = p(A (p(j) - 2p(j) + p(i)) - F(i) - (; n(+11) - 2Fn(i) + T,, Ij)), j 1,2 9 (10h)
n n n+I n n-I n

(j)
=

U+I) (j) (j)
+ p

(j) Fn(j+') - (Fn(+',) Vn(j) + j 1,2,mod(2), (10i)ffn( - Pn (P 2JPn n-I

1) (2)  n(l) +  n(2); I j)(2), )(2)1 n  n(
n

Cn
n n

F)n
n I (10i)

(AF(i) -2F(j) - J.U) (i))+
n

+ "n  n(j  n(j) p(j) 2 p + P J?n+I n n-I n n+I

+ (i) A (F(j) - Fn ',))q j = 1,2 (10k)
n n+I
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U) Ji(-)-2p +p(i))+P(j+1)(F,(J)-2F(j)+FJ))
n n-1 n n+1

+ n j+1)
A (F (+jl) - in jl)), j = 1,2,mod(2) , (101)

(i) (T(J) - 2 F
J n

n(j) +T J*)fp) FW (PW -2 p
W W)+P n+1

J.
n n+1 n

+ Pn-1 n i

+i;n(j) A (Fn(+j,) - F,, j,) ), j = 1,2 (10M)

F0+1) (PW U) W)+ p
(j+1) (i n(+',) - 2 F(j)

+ F 'j)F5.U n+1
- 2 pn + Pn-1 n n

+F U+1) A (Fn(+jl) j = 1,2,mod(2) (10n)

rHint* replace formally in (9) -on (0.1 FnW With., Say.,  n
(1

n
(1 (also replacing, of

course, derivatives with respect to t with derivatives with respect to r), then set

-) = exp(-a t) pn (t),
;7"

(r) = exp(-a t) F,, (t), z- = [exp(a t) - 1] / a, and finally n (.r r"

(1) - (2) -

=COMPlexify (Jon = Pn + i pn 3 rn F,(1) +iFn(2), c =y+iy a= A+ ico).

Conjecture 5.6.3. 11. The model (10) features many completelyperiodic solutions,
with period T = 2)r / co (or a multiple of it), if A = 0, CO > 0.

A scalar-vector linearizable N-body problem (with 2 arbitrary cou-

pling constants, and "nearest-neighboi" interactions):

=abn
- . Z - - '

; '

(Ila))6n +PnJOn -rn 'rn +C fPn-1Pn rn-1 * rn PnPn+1 + n

*

n+1 1 9

rn =a in + p,,rn + Pnrn - r. A rn

+cf- -.
.

'z z -
z -   '1'r - Pn -, n+l Fn - F  Pn-1 n

+ Pnrn-1 - r.-1 A F F
n
Ain+ (I lb)

n n+1

 n (P. 2
+r 2) (1 ic)Pn + rn ' rn Pn n

2
+r 2) (1 ld)F A

-

)'(Pn
nrn (Pn rn Pnrn rn

Pn Pn+1 - r (1 le)Pn+1
 

n

* r.44

z -

- z z z

K+1  ;Vn+l + Pn+lrn - r,, A r,,+, (I if)
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These Newtonian equations of motion, (11), are obtained by applying the

parametrization (5.5-1) to the linearizable matrix ODE (5.4.3-13d).

Exercise 5.6.3-12. Verify!

Exercise 5.6.3-13. Complexify!

Conjecture 5.6.3-14. If in (the complexified version of) these equations of mo-

tion, (11), a = i co, co > 0, the model features a lot of completely periodic solutions,

with period T= 21r / co (or a multiple of it).

Exercise 5.6.3-15. Obtain the Newtonian equations of motion (involving only 3-

vectors, no scalars) yielded by (5.4.3-13d) via the parametrization (5.5-6).

A linearizable N-bodyproblem (with 3N arbitrary coupling constants,
and "nearest-neighbor" interactions):

- * IZ
.

- - .
;__ _Z. ), n "::-- (an+1 -an - bn )I n + PnJ0 + bn+l  

n n+I Jon
- rn+l * ?nn

(12a)+Cn+lP.--Cn(PnPn-I _Fn ':n-l) 

r. = (an+1 -an - b,, r rrn + Jonrn + Pn rn - rn A rn + bn+l  n+l
n
+ Jon n+1 -;rn+l A rn

,7Z; -
-

+ Cn+1 rn - Cn (,P.j n-l +, n-lTn + Fn A rn-1 (12b)

with  n, rn given again by (11c), (11d) and

2+- .4.), n (PnPn + r. * rn) 1 ( n rn rn (12c)

2+_ 4-)rn - (b Inrn - Pn ';n A rnrn + ( n rn .rn (12d)

Z
__

- Z ;Z

(12e)Pn-I = Pn Pn-I - r. * rn-I I

Z -

- Z Z ;Z

Fn-1  , nFn-l + Pn-I n
r r (12Dr
n
A

n-I

635



These Newtonian equations of motion, (12), are obtained by applying the

parametrization (5.5-1) to the system of evolution matrix ODEs (5.4.3-26).

Exercise 5.6.3-16. Verify!

Remark 5.6.3-17. These equations of motion are highly nonlinear: they feature a

"velocity-dependence" in the denominator, see (12c,d,e,o.

Exercise 5.6.3-18. Obtain the Newtonian equations of motion (which only in-

volve 3-vectors, no scalars) yielded by the application to the (same) system of evolu-

tion matrix ODEs, (5.4.3-26), ofthe parametrization (5.5-6) (rather than (5.5-1)).

Next, we display the scalar/vector linearizable many-body problem
that is obtained by applying the parametrizations (5.5-3) and (5.5-1) to

the linearLable matrix ODEs (5.4.1-15), via the positions Un = iF

V=q+i ;-& , Y=0+i -&

IV

"

r [a(") 2k A 7,a()- =4kAr,,+2k-AF-4kA(kAj;n)+j]
n n nm n

b,(,m)F.]

"h
+a('fl 1*-2kAfl+b(uf)f+a(")t- '-2kAkl+b,(,")k+a(h) h2kA +b(

n
f

n n
9 n n

(13a)

fu)p(f)j=4kAf+2kAf-4kA(kAf)+j a(f' I-' -2kAFml+b(., I Mr. M M

M=1

+a(ff)lf-2kAfl+b(ff)7+a(fg)t'g"'-2kAkl+b(fg)k+a(-"")Ih --2kA l+b(J") 
(13b)

iv

(gu)tp(g) -=4kAg:-+2k-Ak-4kA(kAk)+ a -2kATmj+b(I).]9

(gh)+a(Il')If-2kAfl+b(If)f+a(')Ig-2kAkl+b(I)k+a(g") h 2kA+b
(13c)

p
(h) h=4kAh+2kAh-4kA(kA )+ a(h )f- -2kAFj+b(hu)Fm]mu r. m
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f) If- -2 k AYj + b(hf) 1 + a(hg) f9 (hh) (hh)+a(h --2kAkl+b(hg) &+a lh -2kA I +b
(13d)

:;'=2kAi '+
,

A  +V [Zim() f- -2 .12 +g(v,,) r 2],u(') v v k v r. kAj;
m

M=l

+a(vf) if -2k A f12 +  (vfl f2 + 2i(vg) 19 -2kA kJ2 +  (vg) g2

ii
2

2 ) r.2]+  (v") h
m

I -   j j[a,(') fr. -+ h 2kA 2k A FmJ2 +b,(,,
71

(Vf) I
-:. -

_12 f2 (vg) :.
- k12 g2+a f-2kAf +b(f) +a Ig 2kA + b(vg)

2

+a
(vh) Ih-2kA  j + b(vh) h2 (13e)

2 4.
-

2

+ (yu) 2](v) -=-2 A
*

-kA 2kAF+k - [a.,/I y y fy (VY) fl;,,
M=l

+a(yf) ff -2k A f12.

+  (yfl f2 + a(yg) ig-2kA kj
2

+  (yg) g2

ji ` - 2 k A q2 m

2

m 2]+a(yh) h + Pyh) h
2 1- j J[a(y')f* ' -2kAj;

m rm + b(yu)
rm

 a(yf) 2k A j + b(yf) f2 + a(yg) fj 2k A ky + b(yg) g2

 a(yh) 2k A   + b(yh) h 2

(13f)

,a(") -2[r - (k - v)]- (k + (k2 _,VZ)77

+ 2i (Vf)t m - 2k A Fm  + 9. (vu)
rm +  (vfl f22] 2kAj

+ 2i(vg) 2k A ky + (Vg)g2 + (vh) 22k A + Ph) h

2 ) f2,
m

+ a(vmy +b(')r. -2kAj +b(v771 E[a(') f , - 2k A F f) f
M m
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+ a(vg) 2k A ky + Pg) g2 + a(h) 2k A   + Ph) h2 1 1 (13g)

('Y) fF -2 .12 +py.) 2]k _Y2)0_ f  AF-)1+0-( - )]+(V E r _

r

f2 + a(yg) 2+p ) 212 +  (Y 19- A kI Yg
g+a(If) If - 2 k A 2 k

2 (YU)
r

2j[a(Y' ji ' -2kAF+2i(Y")jh-2kA j2+PY")h M rM M12 + b.
M

+a(yf) if -2 k A 2+ b(yf) f2 + a(Yg) 19 - 2 k A.kI2 + b(Y9) 9
2

+ a(yh) jh - 2 k A  12 + b(yh) h2 (13h)

where

k=-7+779-+O -kA7+ A , (13i)

Exercise 5.6.3-19. Verify!

These equations of motion determine the evolution of the N + 5 three-vectors

F (t), j(t), k(t),  (t),   (t),  (t) and of the 2 scalars 77 (t), 0 (t). They feature

2N2+ 20N + 42 arbitrary "coupling constants", hence they include many special

cases, corresponding to appropriate choices of these coupling constants, many of

which could be set to zero to obtain simpler systems: the exploration of these special
cases provides ample ground to hunt for new interesting Newtonian many-body
problems amenable to exact treatment (linearizable).

The diligent reader may write the more general equations of motion involving
N + 5 scalar quantities, as well as N + 5 three-vectors, which obtain by using the

parametrization (5.5-1) for all the N + 5 matrices that evolve according to (5.4.1-15),
rather than for only those two, V and Y

,
for which this parametrization, (5.5-1)

rather than (5.5-3), is mandated by the very structure of(5.4.1-15).

Next, we report the scalar/vector linearizable many-body problem
characterized by the equations ofmotion

= [,b"2 '0"
-

.

- )] / (,0"2 + r 2)J  
n

+2, ,,(- ":n)-Pn(rn rnrn
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+ a. p. p,, +  . (F,,, - F ] P.2 + 2),j - p. + p,, (14a)
M

)bn
2
+

2
+ r= f [ Jbn Pn + ( ,, - '; - j; ) I+

- -

[  n Pn + ( ,i ' F 2)r" rn rI rn n) Con
n

a. [p. p,, + (Fm Fn)] - F. b. p,, + F,) + F,, jb. pm + ( m m)+ 1]

' M
4-

)/(pm2 + 2)+ A Fn
M-P.r. A r. +P,,r. Arm r (14b)

Exercise 5.6.3-20. Obtain these equations of motion, (14), by applying the

parametrization (5.5-1) to the matrix ODEs (5.4.3-4).

Exercise 5.6.3-21. Obtain the Newtonian equations of motion (which only in-

volve 3-vectors, no scalars) yielded by the application to the (same) system of evolu-

tion matrix ODEs, (5.4.3-4), ofthe parametrization (5.5-6) (rather than (5.5-1)).

A scalar/vector solvable N-body problem (featuring 4Narbitrary
coupling constants):

N

P. a. + E [bmIm Pnml + CmIm J nmj
Mj=j

- dm .z p F -2(7,m -' ' n)
m2n

- (r., '

M2n
) + 2Pnml  %n rM,

MIIMZ I

N N

+ dm, c F - I dMlM2dM3M4  PnMI PMZM3 PM4MI: M2 m3m
[PnmPM2M3

nmj MZM3
)]

MI IM2 IM3 =1 MIIr42,M3IM4='

i:- F F ir F F F A F" 7 (15a)
M

-

PM4M (
"MI

'

MZM3
) + (

nM1 M2.M3
)'

M4M
*

M

- P"'23 (
nM1 M4M)-PnMI (

M2'n3 M4M

N

[bmIm dmIm, P, FM + 2 Fnml Arnm = 2: Fnmj + CmIm rnm, I+ rnm, A r
2n rm2n

M1=1 MlIM2=1

Ar IV

A F dm m dm m, Fn., pm,
3 4

'OM4M (j;MIM3 MIMdMI'n1- CM3M FnM1 M2M3

M,IMZ,'n3=1 MIIM2IM3IM4=1

m,

* F (Fnm m2m3
(15b)PnMj F+ FM2M3 f PnMI JOM4M - (Fn

M4M
+ j;M4M PM2M3
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These Newtonian equations of motion, (15), describe the evolution of the N
2

scalars p. (t) and of the N
2
three-vectors 7

,,,,
(t) ;they feature 4 N' arbitrary "cou-

pling constants". Their solvable character is demonstrated by noting that they are ob-

tained by applying the parametrization (5.5-1) to the following solvable matrix ODEs:

N IV

nm

= a.1 + E bmlm Enm, + CmIm&.1
+ YA-.d dinjm2 Cm3m Lnm, Um2m3

M1=1 MDMZIM3 1

N

+2 dn dm,m, U,,ml   m2m3 LM4M
(16)dm,, LU"M1 E-2- _Unm 6M2M I+ .d M2

M11M2=1 MDM2,M3,M4 1

Exercise 5.6.3-22. Verify!

There remains to show that (16) is solvable. Indeed it corresponds to the block-

matrix evolution ODE

R = A+ MB+ kC+MD MC-kD M-2MD k- MD MD M, (17)

with M _= g(t) a block-matrix whose nm -element is the matrix U. =_ U. (t) and

with the 4 constant block-matrices A, B f, D all having their nm -elements propor-

tional to the unit matrix, namely (in self-evident notation)

A- = a- 1-2 Anm = A= 1-1 -Cm = 7.b Pnm = Cnm (18)

Exercise 5.6.3-23. Verify!

On the other hand the matrix ODE (17) is solvable (for any arbitrary assignment
ofthe 4 matrices A, B C D -- with D invertible, see below), since via the position

M = D-1 V-1 T (19)

it gets transformed into the following linear constant-coefficient (hence obviously

solvable) third-order ODE for the block-matrix V = V

]V=VDA+J B+T C
. (20)

Exercise 5.6.3-24. Verify!

Remark 5.6.3-25. Up to trivial notational changes, the matrix ODE (17) reduces

to (5.4.3-1) in the special case A = a 1, 1, C 1, D = cl.
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Let us end Sect. 5.6.3 by pointing out that the scalar/vector Newto-

nian equations of motion of two other linearizable N'-bodyproblems are

exhibited in Sect. 5.3, see (5.3-35,36), and that several other integrable

many-bodyproblems are exhibited in Sect. 5.6.5.

5.6.4 Many-body problems of Hamiltonian type

In this short Sect. 5.6.4 we report two analogous, and rather trivial, solv-

able many-body problems ofHamiltonian type.

The first model is characterized by the following solvable equations
ofmotion:

N

q, =j, (ann  . + b,. fi. +A [4n A [ . A fin, (1a)
M=1

N

Pn (C". 4. - amn fi. +2 [fin A k. A 1) (1b)
M=1

with b,,. = bmn I Cnn;  _ Cmn  
which are yielded by the Hamiltonian

N

fi,;  . ..... 4,,)=Y fanm4n. m+bnm n-fiml2-Cnm4n- ml2I

2

+ (A / 2) L'(4n A fin) (1c)
n=

These equations of motion, (la,b), correspond to the solvable matrix ODEs

(5.4.1-36) (with 2 replaced, for notational simplicity, by 2 / 4) via the parametriza-

They feature 2N2 +N +I (arbitrary) con-tion (5.5-3): Un ='4n ' 7 En ='.Pn ' 7'

stants. But the solvability of this Hamiltonian system has a rather trivial origin: in-

deed, the evolution equations (lab) are hardly nonlinear, since they entail (as it is of

course implied by the treatment that led to them, see Sect. 5.4.1) that the 3-vector

IV

(4. A fim) is a constant ofmotion.

Exercise 5. 6.4-1. Verify all the above assertions, namely the fact that the Hamil-

tonian (1c) yields the Hamiltonian equations (la,b), that these equations of motion,

(1a,b), correspond to (5.4.1-36) via (5.5-3), and that they entail that the 3-vector

N

Y (4. A fim) is a constant ofmotion.

M=1
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Remark 5.6.4-2. For N = I this model, (1), becomes the model (5.6.2-3).

A second solvable Hamiltonian many-body problem (with 4N arbi-

trary coupling constants) is characterized by the Hamiltonian

H(fi. ..... fi'; .....

N

(fin,

+(1/2) 4-nj-n7-n3-n4 (fin, A 4n2 )-  n3 A 4n4 (2a.)
nj,n2In3,n4=1

and by the corresponding Hamiltonian equations ofmotion

Ar

a + bn
N

A (2b)qn Z (
n-nj  nj -nl nj)+ J[ n-nj-nZ-n3(finj A4n2)A4n3]I

n1=1 nj,n2,n3=1

N N

P'n =11 2: [An-nl-n2-n3 (fin, A 4n2 ) A fin3.,
(Cn-nl 4n, - an-nj 16n, )+ (2c)

n1=1 nj,n2,n3=1

Here of course all indices are defined mod(N).

Let us exhibit in longhand the form (2b) takes for N2:

q,= bI j 2 + b2 fi, + a, 4, + a2 41

 AI DI A 41) A 42 + (fil A 42) A 41 + (fi2 A 41) A 41 + (fi2 AMA 421

 A2D1 A 41 ) A 41 + (A A 42 ) A 42 + (fi2 A 41 )A 42 + (fi2 A  Z ) A 41 (2d)

4-

q2= b1fi, +b2fi2 +a,41 +a2 2

+ Al KPI A 41 ) A 41 + (A A 42 )A 42 + (P2 A 41) A 42 + (P2 A 42)A 41

+Alfil A41)A42 +(fil A42)A41 +(fi2 A41)A41 +(fi2 AMA421 (2e)
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These results are obtained by applying the first multiplication trick of Sect. 5.3 to

the one-body (N = 1) version of the model treated above, (1), or rather, equivalently,
to the model (5.6.2-3) (see the Remark 5.6.4-2). Let us go through this development.

We set

N N

17n 15n) E qn  n 1 (3)

with analogous formulas for the "coupling constants" a, b,c, A (see (5.6.2-3)), as

well as

H( , 4) 17n Hn ( . ..... fi,; (4a)
n=1

with

)+ bnHn (fil I an-nj -n7,
(fin, * 4n2 -nl-n?

(fin, - finz )/ 2

4n, )/ 2 ] + (1 / 2) (4b)Cn-nl-n, (4n,
-

1: An-nj-n2-n3-n4 (fin, A 4n2 )* (fin3 A 4n4
nj,n2,n3,n4=1

Here and below all the indices n, nl,... . n4 are of course defined mod(N).

Then the N Hamiltonians Hn are in involution, and the Hamiltonian H,, coin-

cides with H,H, -= H.

But of course, as emphasized in Sect. 5.3, these coupled equations of motion,

(2b,c), can be decoupled by linear transformations oftype (5.3-27).

Exercise 5.6.4-3. Verify all the above assertions.

Exercise 5.64-4. Show (i) that the scalar/vector many-body problem
characterized by the Newtonian equations ofmotion

(Pn, P, - 7 - F, n. = a,5n. + (5a)

2V

r,,. = L (,0,,,, 71. +jO, in, - in, A F,.) , (5b)
1=1

is integrable, and (U) verify that these Newtonian equations of motion,

(5), are yielded by the following Hamiltonian (of normal type; but note

the negative sign in front of the first "Idnetic energy" term):
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IV N

H(7r,  ; p, Dr 7rn.'rm +  nm -  mj+ aj: Pnn
2

 ,m=j n=1

N

+- [Pn.PmIPI. -3p. (7.1 * 71n) + (j;nm * FmI A FIJI (6)
3

Hint (for (ift apply the second multiplication technique of Sect. 5.3, see

(5.3-30), to the integrable matrix ODE (5.4.4-2), then use the parametri-
zation (5.5-1) (for (2 x 2 )-matrices).

Remark 5.6.4-5. These Newtonian equations of motion, (5), involve

N2scalars, p,,,,, =- p. (t), and AT2 3-vectors, F,. F,,. (t) ; they are compati-

ble with the symmetrical reduction, Pnm = p.n  inm = F.., whereby the num-

ber of scalar respectively 3-vector dependent variables is reduced from

N
2 to N(N+1)12.

Remark 5.6.4-6. These Newtonian equations of motion, (5), are of

course invariant under rotations, but they are not invariant under rejlec-
tions (except in the special "scalar" case, characterized by the vanishing
of all 3-vectors, Fn. -= 0 ).

Exercise 5.64-7. Show that the scalar/vector many-body problem
characterized by the Newtonian equations ofmotion

_ Co2),0".,b. 6 (2 12 A co 77,,. + 5Ab. - 5 co

N

- 77nI 771m +  nl ' Im)+ (PW Am nI ";Im (7a)

6 (A2 _ C02) 77nm + 12 A coonm + 5A  . + 5 cobn.

N

+ (Pn[ 771m +  7nlPlm + ini '41. + 4W 'F[m) (7b)

r 6(,e - co-) 7,,. - 12 A co 4,,. +55co 4,,mnm

Ar

COW FIm +,Plm j; (7c)nt
- 17nI 41m - qIm 4nI nI

A
Im
+ 4,,1 A 41m)

q_ = 6(A2 _ Co 2), n. + 12A co + 5A qq_ + 5 Co rFm
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,,, ,,
A A (7d)(P,,,  1. + qI. F,,, + P, 4,. + q, F - F

1=1

is integrable. flint: same as for Exercise 5.6.4-4, but with (5.4.4-2) re-

placed by (5.4.4-17).

Conjecture 5.6.4-8. All the nonsingular solutions of the many-body

problem (7) are completely periodic, with period T = 127c / col ,
if A = 0 and

co is a nonvanishing real constant. Hint: see (5.4.4-19,20).

5.6.5 Many-body problems in multidimensional space

with velocity-independent forces: integrable unharmonic

("quartic") oscillators, and nonintegrable oscillators

with lots of completely periodic motions

In Sect. 5.6.5 several completely integrable, indeed solvable, Hamiltonian

many-body problems are exhibited, characterized by Newtonian equa-

tions of motion, with linear and cubic forces, in S-dimensional space

(S =arbitrary positive integer, with special attention to S= 3 ). As usual the

equations ofmotion are always written (see below) in covariant form C'S-
vector equal S-vectof"), entailing their rotational invariance. All these

many-body problems are Hamiltonian: the corresponding Hamiltonian

functions are of normal type, with the kinetic energy quadratic in the ca-

nonical momenta, and the potential energy quadratic and quartic in the

canonical coordinates (see below).

The investigation of quartic oscillators is, since the time of the Fermi-Pasta-Ularn

numerical experiment <FPU55>, at the origin (see for instance <Kr77>) of the revo-

lution that has occurred, over the last three/four decades, in the understanding of the

behavior and relevance of integrable systems. It has moreover an obvious and ubiq-
uitous applicative interest, inasmuch as it generally provides the first nonhnear Cun-

harmonic") correction to the behavior of linear Charmonic") oscillators, the physical
relevance ofwhich is of course universal.

The foundation of the following results is the integrable matrix evo-

lution. equation (5.4.4-3), which we conveniently write now in the fol-

lowing guise:
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Q=:-!(AU+UA)+bU'.
2

Here U-U(t) is a square matrix of arbitrary rank, A is a constant matrix

and b is a constant scalar (which could of course be rescaled away).

Exercise 5.6.5-1. Compare the 3 versions, (1), (5.4.4-3) and (5.4.2-6), of (essen-
tially) the same matrix ODE, and detail the changes of variables that transform each

of them into each other. Hint: rescale both the dependent and the independent vari-

ables.

In Sect. 5.6.5 we denote as usual matrices by (upper case) underlined characters,
while superimposed arrows, say F, denote S -vectors. The actual dimensionality of

vectors and matrices will, we hope, always be clear from the context. A dot sand-

wiched among two S -vectors (see below) denotes the standard scalar product in S -

dimensional space. (This is the same notation used at the end of Sect. 5.3, which the

diligent reader is advised to revisit before proceeding any finther).

And let us emphasize, once and for all, that we generally report below the inte-

grable equations ofmotion in their neatest form. Generalizations are easily obtainable

by standard changes of variables (see for instance the Remark 5.4.4-4) and/or by
"multiplication ofvariables" techniques such as the first one described in Sect. 5.3.

A rather general class of integrable Newtonian equations of motion in

S-dimensional space, with arbitrary S=1,2,3..., reads as follows:

r(MI,MZ)(1)

+b

M L

fPM, 17(MI"Ut)(1) (AZIM2)(1) j;(,U11'U2)(2) )]+ P, IFCU2,MA-t) (M11#1)(1)
. 7(,ULI.UZ)(.,)I Z (F (F M.

(2a)

Here MI I M2 = 11 ... I M; 1= L (M, L being arbitrary positive integers) and

P. = I if m is even, Pm = 0 if m is odd, m = 1,2,..., M. (2b)
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Moreover

a.A if n + m is odd, F(n,m)(I) _0 if n +m is even; (2c)

hence, for given M and L, the number N of S-vectors F(n,m)(1) involved in

(2) is N=L(M2 - 1 + Pm) / 2
,
while the number of (nonvanishing) arbitrary

constants an,m is (M2 +1-Pm)12 .
The additional arbitrary constant b in

(2a) could ofcourse be rescaled away.

Exercise 5.6 5-2. Check this simple arithmetic!

We show below that these Newtonian equations of motion, (2), are

integrable, and we exhibit Hamiltonian functions of standard type that

entail them. But firstly let us display a number ofreductions of (2a).

A first reduction yields the Newtonian equations ofmotion

K
-

L K'
(") (7 (") . k(l) ak,k' 'P) + c 1.] j;' ';k l) ) I

(3a)jj: k k'

k'=l I'=1 k'=l

where I L and k= K.

These equations ofmotion, (3a), obtain from (2) by setting

M=2K, F(2k,2kj-I)(1) =j;(2k2-1,2k)(1) =:k(l) (3b)

as well as

a2kj-1,2k-I =0 I
(3c)

a2k,,2k, =aU2,2k, =ak,,k,, =ak2,k, '
(3d)

Here all k-indices range from 1 to K, while the index I ranges of course from 1 to L.

Note the independence of the right hand side of (3b) from the indices k, and k2; this

entails a substantial reduction, which is easily seen to be compatible with (2) (with

(3c,d)).

Exercise 5.6.5-3. Verify; and also check that the reduction (3b) would be com-

patible with the evolution (2) even if the right hand side of (3c) contained a nonvan-

ishing constant, independent of the indices k, and k,; but this would not entail any

additional generality for the equations ofmotion (3a).
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The Newtonian equations ofmotion (3a) involve now the N=LK S-vectors
-(')
rk

and they contain, in addition to the arbitrary constant c=W (that could of course be

rescaled away), the K(K + 1) / 2 arbitrary constants ak,,k = ak,.,k,'

Exercise 5.6.5-4. Replace (3b) with

i;(2k,2k,-I)(1) j;(I)
,

;:(2k? -1,2k)(1)
=

(1)M=2K, 4k (4)k

and verify that the corresponding reduction (with (3c,d)) is also compatible with (2);
and write the corresponding Newtonian equations of motion (more general than (3a),

 0)and which reduce to (3a) for j;k(l) 41 '

A different reduction yields the equations ofmotion

(1)
K

I

L K

V k
J;(") . TOa

k k,k' Fk ) +Cj:j (5a)
k'=l I'=1 V=1

where and k=l,...,K.

These equations ofmotion, (5a.), obtain from (2) by setting

M=2K, j;(2kj,2k-1)(1) =j;(2k-1,2k2)(1) =;k(l) (5b)

as well as

a2,,,2,,
- 0

, (5c)

a2k,-1,2k.-I =a2k,-1,2k,-I=ak,,k,=ak,,k, * (5d)

Here all k-indices range again from 1 to K, while the index I ranges of course from I

to L. Note again the independence ofthe right hand side of (5b) from the indices k,
and k,; this substantial reduction is again easily seen to be compatible with (2) (with

(5c,d)).

Exercise 5.6.5-5. Verify; and also check that the reduction (5b) would be com-

patible with the evolution (2) even if the right hand side of (5c) contained a nonvan-

ishing constant, independent of the indices k and k,; but this would not entail any

additional generality for the equations ofmotion (5a).

The Newtonian equations of motion (5a) involve again N=LK S-vectors T 

and they contain, in addition to the arbitrary constant c =bK (that could of course be

rescaled away), K(K + 1) / 2 arbitrary constants ak,,k-2 = ak2,kl
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Exercise 5.6.5-6. Replace (5b) with

;;(2k1,2k-1X1) j:(1)
,

j;(2k-1,2k2X1) = (1) (6)M=2K, =
,k  k

and verify that the corresponding reduction (with (5c,d)) is also compatible with (2);
and write the corresponding Newtonian equations of motion (more general than (5a),

kand which reduce to (5a) forFk(l) =  k(l)

Exercise 5.6.5-7. Show that a completely analogous treatment to that given above

(from (3) onward) is applicable for odd M = 2K - 1 (rather than even M = 2K ), and

that it leads to the same results.

Obvious special cases of (3a) and (5a) obtain for L=1 and for K=l;

the former case, L = 1, is richer than the latter, K= 1, because the number

of arbitrary constants a
kIA2

is always K(K + 1) / 2, as indicated above.

Additional and/or different reductions are also possible. Let us illus-

trate this point by displaying some ofthem, in specificfew-body cases.

The simplest case involves just a single S-vector; it obtains from

both (3a) and (5a) for L= K= 1, and it reads

r=(a+ c r2') F (7)

(which coincides, up to a trivial notational change, with (5.6.2-2a)). The

integrability of this rotation-invariant equation for a single S -vector is of

course rather trivial: indeed (7) can be reduced to an equation for the

(scalar) radius r, which can then be solved by quadratures.

.

Next, let us report 4 cases involving 2 S -vectors. The first one obtains

from (3a) with K= 2, L 1, a,,, = a,, al,, = a2,1 =a2 and a2,2 = a3 .
It reads

2 2

r + r,'  2r,=a,r,+a c 7, (r, r2 = a2rl + 3 F2+ C j72 (r12' + r22 2+ 9 7, a (8)

(here and below r,2 denotes of course the squared-modulus of the S-

r2 k12 =Fk, namelyvector
k k k)'

The second one obtains from (5a) with K=2, L=l, a,,,=a,,

al,2 = a2,, =a2 and a2,2 = a3, It reads

i: - [i; 2
+i;

-

. F
- - - 2 (9)2j;2 + C1 1 2 (F1 2)] 1 r2 =a2rl + 3 '72 + C [ j;l (F1 ' j;2 ) + 72 2rl=a,rl+a . r a rz
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The third one obtains from (3a) with K=2, L=2, aIj=a2,2=aI,

(2) - (2)2(1) 1 =F2 .
Itreadsa,,2 = a2j =a2 and =j;21

F, (r,2 + r22 )+ 2 j;2 (F, - F2') (10a.)r,=alr,+a2F2+C[

-

F' (12 r2) (10b)r2 =ar,+ a, + c [ 2 F, (F, - F2) +F, r, +
2

The fourth one obtains directly from (2a) with M= 3, L=i by setting
j;(1,2)(1)= j;(2,3)(1) = i; a,,,+a2,2=a2,,+a3,3=aII al,3=a2l a3,1=a3,

Itreads

r2rl=a,rl+a2F2+C[ FI(j;I*F2)+F2 I ] , (I 1a)

r r2
-

ji: + C [ j;+a .

2 +:2 (j;I ' F (I 1b)r2 =0 3 1 2 2)

Newtonian equations of motion involving 3 S-vectors are obviously
obtained, as mentioned above, from (3a) and (5a) by Setting K= 3,L = 1 or

K=I,L=3. Let us display a different case that obtains from (3a) with

,(2)=7 F(3)K=2,L=3 by setting FI(2)=F2 21 =F2(l)=73I ,

I
and

al,2 = a2,1 =a2 ; it reads

r, =a, r, + a2 ';3 + c f F, (r,2 + r32 )+ j;, (F1 - F2 + F2 - F3)+2F3 (i 1
- F3)1 (12a)

r2 - a, + a2 )j;2 + C f F1 (F1 - F2 +F, -F,)+2F2(r,2)+j3(F, -F2 +F, F3)1 (12b)

. j;
2
+ 2)13 ) + 72 (j;I - j;2 + j;

, r.r3 = a2 rl j;3 3 (r, 32 3 ) +j;+a, +cf2F#, I (12c)

Let us now indicate how the Newtonian S -vector equations ofmotion

(2) are obtained from the integrable matrix evolution equation (1). To this

end we consider U and A as (Mx m)-block-matrices, i. e. matrices whose

elements are themselves (possibly rectangular) matrices, with the self-

evidentnotation U-
-

=U(""'), A,,,Jn,=A(",'2) so that (1) yields
'1'2 - -

6(n,') (m"-u)U( u'mz) +U(m"'u) A(pjnz) UONIA) U(1411,42) UC02M2)
-

2
E CA )+b E

- -

(13)
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where the M' matrices U"" ' are of course time-dependent,

while the M' matrices A(",'7) are constant. Of course if

the matrices U(",% I and are rectangular, their dimensions must be

chosen appropriately, so that the matrix products in (13) make sense. In-

deed we set (with S and L arbitrary positive integers):

(i). if n and in, are both even then U(',",)--o
,
where 0 is the null

(square) (s x s )-matrix, andA(m1'm2)=a, 1, where 1 is the identity (square)

(S x S)-matrix;

(H) if n and n are both odd then U('-,' )---0
,
where 0 is the null

(square) (L x L)-matrix, and A(""')
=a.,,... 1, where I is the identity (square)

(L x L)-matrix;

(iii) if n is even and m, is odd then U(M1 M2)=V(MIIM7)
,
where V(MIIM2) is

a (rectangular),(S x L)-matrix, and A(m1,mzL0, where o is the null (rectan-

gular) (S x L)-matrix;

(iv) if n is odd and m, is even then U(MI,r'12)=W(?nI'M2)
,
Where W(MI)M2) is a

(rectangular) (L x S)-matrix, and P"mIL0, where 0 is the null (rectangu-

lar) (L x S)-matrix.
Note that now the sparse block (Mx M)-matrices U and A are in fact

square k x k matrices, with k=[(M +Pm _- 1)S +(M-Pm + I)L]l 2.

Exercise 5.6.5-8. Check this simple arithmetic!

We now introduce a representation of matrices in terms of S-vectors

by identifying the S elements of the L rows of the matrices W(',,m2) as the

S components of L different S-vectors, and, conversely, by identifying

the S elements ofthe L columns of the matrices V(mi,m,) as the S compo-

nents of L (different) S-vectors:

(m ,-2) =XS(mj,,n,)(1) ,
1= L ;

(- =x!mI,mI)() ,
I= I,., L (14)(T I.,

S
V

Note that we have thereby introduced the following S-vectors (altogether,

N=(Ae - I +Pm)L /2 ofthem -- check this arithmetic!)

j;(MI'M2)(1) MI'MAI),X(MI'MOM IX(n'-'.)(') (15)44 2 S

It is now a matter of elementary algebra to verify that the matrix evolu-

tion equation (1), taking into account the above assignments, yields the

Newtonian equations ofmotion (2).
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Exercise 5.6.5-9. Do verify. Hint: see the analogous treatment of (5.3-
32), as given in Sect. 5.3, from (5.3-37) onward; as well as the following
formulas, (16).

To help visualization, we end this discussion by displaying the matri-

ces U and A for the case M= 2, 9= 3, L= 2:

0 0 Xfl,2)(I) X2(1,2)(1) X3(1,2)(1)
0 (1,2)(2) (1,2)(2) (1,2)(2)

0 W
(1,2) X1 X2 X3

(2,1)
0

= X1( XI( 0 0 0
5 (16a)

(2,1)(1) (2,1)(2)
0

Xi Xi 0 0 0

(2,1)(1). (2,1)(2)
Xi Xi 0 0 0 

"a,,, 0 0 0 0

0
0 a,,, 0 0 0

0 0 a2,2 0 0 (16b)
0 0 0 a2,2 0

0 0 0 0 a2,2

Note that more general choices for the constant matrix A are possible

(with the nonvanishing matrices A"') no more proportional to the identity

matrix; see above), but they then yield non-rotation-invariant many-body
systems.

Exercise 5.65-10. Convince yourself of this, by constructing some

such models.

The results displayed thus far have been obtained by applying to the

integrable matrix evolution equation (1) the technique of multiplication
"with a finther twist", as described at the end of Sect. 5.3. But what ifwe

apply to (1) this technique of multiplication in its simpler ("untwisted")
form? That clearly amounts to focusing on (13), which we rewrite here

for notational convenience as follows:

I Ar

kn.= _j LAJ jm+U jAjj+b (17)1 t , j Li, U'm
2

j=1 j,k=l

Here the N' matrices U- are of course again time-dependent, (t),

while the N2 matrices A. are constant; and we now like to treat them not

as block matrices (as we instead did after (13)), but rather to parametrize
them directly in terms of 3-vectors (note that we now restrict attention to
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S = 3). A convenient way is to assume that all these matrices have rank 2,
and moreover that the matrices A,. are just multiples ofthe unit matrix,

Anm=anm1-=a,,m  (18a)

where the a.'s are N2scalar (apriori arbitrary) constants, while the ma-

tfices U- take the standard form (see (5.5-1))

j; (18b)gnm(o Pnm(0+'nm(0'-6 *

We have thereby introduced the N' scalars (or rather pseudoscalars, see

below) Pnm =- p. (t) as well as the N2 3-vectors F,,. =- Fn. (t) ,
and we get for

them from (17) the following system of scalar/vector Newtonian equa-

tions ofmotion:

N

--I] (anjpjm+ajm )+b F F
nm

2
Pnj fPnjPjkPkm+[(njA jJ h7n]

r F F F (19a)
ni  ik *

km )+ Pik (:qj ":k. )+ Pkm ( nj
'

jk ) I I IP

N

rnm
2

(a
ni r-j. + aj,n r-ni

A'

+b km)]+F
ni  jkPkm Jk

' F -(nk7n )] + Fik kiPh7n +ni km  ikPjk Fj jk

j,k=l

FPnj (Fjk A + Pjk (r j A Fkm )+ Pkm (Fnj A jk
(19b)

These equations of motion feature the N2 arbitrary scalar constants an,

Of course here and below the "wedge" respectively "dot" symbols sand-

wiched among two 3-vectors indicate the standard vector respectively
scalar products for 3-vectors.
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Exercise 5.6.5-11. Verify!

Exercise 5.6.5-12. Write out the (more general, but not rotation-invariant) set of

Newtonian equations of motion that obtain if the simplification (18a) is forsaken by
setting instead (see (I 8b) and (5.5- 1))

= a,. + i J,,. - &
. (20)

Hint: these equations, more general than (19), may also be written in covariant form,
but they lack rotation-invariance because they contain the N2 constant 3-vectors J.

that introduce N
2

privileged directions.

Remark 5.6.5-13. The equations of motion (19), which are obviously rotation-

invariant, are also invariant under reflections if the N2 3-vectors F. behave as ordi-

nary vectors and the N2scalars p. behave as pseudoscalars (or viceversa).

A reduction obviously consistent with (19) is to the case when all the 3-vectors

vanish (while the converse, when all the scalars p.,. vanish, is not consistent with

(19), except in some special cases, see below). No ftuther elaboration of this "one-

dimensional" case is reported below.

If the N2

"coupling constants" anm depend symmetrically on their 2

indices,

a.=a. , (21)

so that there are effectively only N(N+1)12 of them, these evolution

equations, (19), are consistent with the reductions

Jonin (t)=q JOm (0 Fnm (t) Fmn (t)  (22)

with 77 =1, respectively 77 -1. Via these reductions the N2 scalars P.. and

the N2 three-vectors F.. are effectively reduced to N(N + 1) / 2 scalars and

to N(N-1)12 three-vectors, respectively to N(N-1)12 scalars and to

N(N+1)12 three-vectors. For instance for N=2 and 77=1, by setting

al, =al, a22 =a2 , a12 =a2l =a3 '21 =;I weP1I=PI3P22=P21PI2=P21=P32 j;12=-j;

get

, , =a, p, + a3P3+b [ P13 + 2pP32 + P2P32+ (2PI + P2 )r2 (23a)

, 2 =a2P2+ a3P3+b[P23+2P2P32 + PIP3
2
+ (2P2+ pjr2

(23b)
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1 1
[ 2 2 2-(a, +a -a P1 +r], (23c)A 

2
2),03+

2
3(P1 +P2)+bP3

A +,02 +A +AP2

- - I [ 2 2 2
r= -(a, +a2)+b '0' +P2 +P32+PI,02+r 7, (23d)

2 11I
wbile for N=2 and q -1, by setting al, =al , a2, =a2 , a12 =a2l =a3

P12=-P21 =JOY F11 = il 22
=

2.1 F12 =j;,1=F3, We get

fP3 +-b
3 +P

2 +r.2 +r32 +7 (24a)(a, + a,),o I
A j;2).';' Ir, 1 211 1

2

2)+ 2
+ 2 F3 (F3 j"--b[ 2

1
+2

2  2 _

3T, =a, r, + a
1 (2,o2 + r,

2
r. F r. '2)3'3 2

A F3)+j; 3'0 ( ,

(24b)

P (i; 2(2,02+ 2 2)+F3 r.
1 (P2 2)+2Fr2 =a2r, + a3F -b[ 2

1
AA3)+j; r.- +2 r3 3(732 3

F

(24c)

r3 (a, + a2 );3 + a3 + F2
2 2

r
2
+ r

2
+ r

2b tp (F1 A'j;2 ) + 7, (F2 - 73 ) + j;2 (F3 - 71 ) + F31 2 3 1 2) 11 - (24d)

If a, =a, =a an additional reduction, consistent with (23), respectively
with (24), obtains by setting o#)=,o2(t) =p(t), respectively

(t)=F2(t)=F(t). Then (23) read

=a a' +bp[ )02 +3
2
+3r

2

(25a)P + 3P3 A

A=aP3 + a3p + b,03[ 3,p
2

+J03
2
+ r

2

(25b)

r=[ a+b(3p2+1032
+ r

2

(25c)

respectively (24) read

a - b (02+r32 +3r2) (26a)

-

3 F3
2
+ r.2 -F) ] , (26b)r=ar+a -b[2p(FAF3)+F(3 P2

+ r
3 )+2F3 (F3

:_
- t2i:(F-7r =ar. +a F-b

3
(r2 + r2)1 (26c)3 3 3 3)+F 3
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These evolution equations, (26), are clearly consistent with the addi-

tional reduction p(t) =0. Then they read

2
+ 2)r-=r-[ a-b(r r, 1+73 [ a3-2b(F, -F) I (27a)

r3 =F3 [ a - b (r32+r') ]+F[ a3 -2b(F-F3) I ,
(27b)

which, up to obvious notational changes, coincide with (10), and are of

course consistent with the additional reduction F3(t)=F(t), which then

yields (7) (up to obvious notational changes).
Let us now go back to (23) to point out that, if a3 =0, another consis-

tent reduction obtains by setting 103 (0=0. Then (23) read

, , =a,p, + b [ )013 + (2A + 02) r
2 (28a)

, 2 =a2,02 + b [ 102
3
+ (2,02 + pi ) r

2 (28b)

z F [-j1 ('012
2

+r2) (28c)r=r (a,+a,)+b + J02 + 01)02

If a3=0 andmoreover aj=a2=a, finther reductions are possible. By

setting o(t)=o in (25) one gets

A=,03 [ a + b (03
2
+ r2) 1 , 7=1 a+ b (P32 + r2 (29)

by setting o3(t)=O in (25) (or, equivalently, o#)=,p,(t)=,D(t) in (28)), one

gets

('02 2) (3P2 2),b=,o[ a+b +3r r=F [ a+b +r (30)

and by Setting JP(0=P3(0=OI one gets again (7) (up to trivial notational

changes).
Likewise, by setting F(t)=O in (26) with a3 = 0, one gets

a-b ('02 + r 2) =(a - b r32) F3 (31)
3 r3

while by setting j;3 (t) 0 in (26) with a, = 0 one gets

a - b(,D
2
+3r2) r=j;[ a-b(3'02 +r2) (32)
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Both these evolution equations, (3 1) and (32), are compatible with the

further reduction p(t) = 0, and they thereby both yield, up to trivial

notational changes, the same evolution equation, namely (7).

Exercise 5.6 5-14. Check all these reductions and explore new ones.

All the Newtonian equations written above, both in the contexts of S -

dimensional and 3-dimensional space, are Hamiltonian: this is not sur-

prising, since they are all obtained as reductions (i. e., special cases) of

the matrix evolution equation (1) which is itself Hamiltonian, see (5.4.4-
7). In particular (2) respectively (19) obtain from the Hamiltonians (writ-
ten in self-evident notation)

1 M L

H - 1: Y
2

=, I=,,

M L

P M,+,.)(j;(9Ir4I)(') j;(M2IJU)(0)-P
m, a,,., G Pm,+,) (1

b M L

I E f PM, PM, (I - P" )(1 - P",
4

.I (FCU2,n)(1)
. j;(n,ul)(1) XF j;(U 'MOGO XF(MZ,-UL)W

. j; CU2 IM2)(1) ) I I
(33a)

respectively

1 N N

aj -F,-pjp,]ik2
j,j, 2i,j,k=l

N
U

2 [ PUPkI (j;jk Fli + Py Pli (:jk ";kI )+ PyPjk (j;kl 'j;li PY PikAPli
4i,j,k,l=l

+2[ (FY ' FkI ) rjk ' FU )-  r, - ':Ii ) rjk - FkI )- rU ':jkXFkl * FIJ I- (FkI A iIJ* (PW jk
+ Pjk OF)

(34a)

In (33a), the canonical coordinates are the S -vectors F(mi,ml)(), and the cor-

responding canonical momenta are the S -vectors fi (MI IM2)(1) (and of course

Pm is defined by (2b)); note that this Hamiltonian, (33a), entails

r M17M2 =11...M, MI+m, =odd, 1=1
....
L (33b)
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as well as the other set of Hamiltonian equations (which we do not dis-

play), from which the Newtonian equations (2) follow. Likewise in (34a)
the canonical coordinates respectively momenta are the (pseudo) scalars

and the 3-vectors p., F respectively ir. , j . , n,m=1,...,JV, and this

Hamiltonian, (34a), entails

 nm =__ 7rMn 7

' ' -

, n, m N (34b)r.=P..

as well as the other set of Hamiltonian equations (which we do not dis-

play), from which the Newtonian equations (19) follow.

Exercise 5.6.5-15. Verify!

Exercise 5.6.5-16. Write the Hamiltonian fanctions for all the many-

and few-body problems, in S-dimensional and in 3-dimensional space,

displayed above.

Exercise 5.65-17. Show that the following 2-body and 3-body prob-
lems are solvable, that they are Hamiltonian, and that these Newtonian

equations of motions, (35) and (36), can be decoupled via a linear reshuf-

fling of the dependent variables:

+ r.2)a. F. + a, r, 7 (r.2 +2 c,F - j;(F 2), n = 1, 2 mod(2) (35)+C2 n 1 2

F. = a3 F,, + a2 Fn+I + al Fn+2

7 - j;r,2 + 2 ( 1 3)+ 2 c, I ':n+2 I r32 + 2 (F, - F2 + Fn [ r12 + 2 (F2 - F3 + F,,

+ 2 c, f j;,,+, [ r32 + 2 (T, - F2) + j;,,+2 r,2 + 2 (j;2 - j;3) ] + F,, [ r22 + 2 (j;, - F,)

31 r.2 + 2 ( I
-

3
+2c  7,, [ r32 + 2 (F, - 72 + F,,, r12 + 2 (F2 - j;, +7F F

n = 1,2,3 mod(3). (36)

Hint.- note that application of the first multiplication trick of Sect. 5.3. to

the solvable equation ofmotion (7) yields

N

rn a F+ C 7 7 (37)1 n-m m m3 n-mj_M2_M3 (FMI *

M2

M=1 rnj,m2,m3=1_,N mod(N)

658



Exercise 5.65-18. Repeat all the developments given above (in Sect.

5.6-5), but taking as starting point, instead ofthe integrable matrix evolu-

tion ODE (1), the system of two coupled matrix ODEs (5.4.4-18), and

formulate conjectures analogous to Conjecture 5.4.4-16 (and perhaps also

prove all these conjectures?!).

As promised by the title of Sect. 5.6.5, devoted to Newtonian equa-
tions of motion with velocity-independent forces, we complete it by pre-

senting, via the following two Exercises 5.65-19 and 5.65-20, some re-

markable exact results for nonintegrable systems of this kind.

Exercise 5.65-19. Consider the system of 2N unharmonic (real) os-

cillators characterized by the Newtonian equations ofmotion

:.: +M' ' -M2ii,,Un Vn

-b
nm1mZm3   ml (iiM2 ii?"3 M2

iT
M3

MI M2 IM3

(anMI%_M3 ?nI
+ b.,,n2.3 Eml)(ii., -  M3 +   M2 * iiM3 (38a)

-3 t2 2C22   nVn Un

IV

(a,ii, b
MInmI _M3 -1 (iiM2   M3 +   MZ ' iTM3

MI,M2,M3=1

+ (anMl%r 3 MI
+ bn. %.3iim (5m2 -iiM3 -   -2 -   M3 (38b)

where N is of course an arbitrary positive integer, superimposed arrows

denote S -vectors with S also an arbitrary positive integer, superimposed
dots denote of course time-differentiations, dots sandwiched among vec-

tors denote the standard scalar product, and the 2N
4
+1 constants

bnmlm C2 are also arbitrary (real, n# 0). Prove that there existanmlM'-M3 M3 '

then, in the neighborhood of the equilibrium configuration

Un = Vn = iTnn =01 a ball of initial data iinq,  n(o),iijo),`(O), of non-Vn

vanishing volume in the initial-data space of 4NS dimensions, such that

all the corresponding trajectories are completely periodic with period
T = 2,T / If2l .

Hint: start from the system
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(39)F.17=I cl.," F., (F, - F, ) I

ns wiwith i; r) and where the primes denote ofcourse differentiatio th

respect to -r; then note that the solutions of these (complex) equations of

motion, considered as functions of the complex variable r, are certainly

holomorphic in a disk of the complex r -plane centered at r = 0 and of

n
(0), Fn'(0) ,

are all suffi-
any given radius, say p, provided the initial data, Fn

ciently small (the degree of smallness required depends of course on the

assigned radius p, and on the coupling constants then set

iv-jt)=exp(iK2t)F(r), r=[exp(if2t)-I]/(iQ), (40a)
n

which of course entails

_FF. (0) = _ Vn (0) 1 ':n'(0) = Wn (0) _'n Vn (0) (40b)

(so that if all the quantities iv-jO),-Fvn(O) are small, the initial data

or (39) are also small); then note that if 7 ( ) is holomorphic inF,, (0), F"(0) f r

a disk of the complex r -plane centered at r = 0 and of radius p > 2 /1921,
the corresponding -Fv,, (t), see (40a), is periodic in t with period

T = 2;r / Inj ; and finally set -Fv,, (t) = ii,, (t) + i   n (t), c.,,.3 =a+i b,, njM2M3 3

whereby (39) with (40a) becomes (3 8).

The results given in the preceding Exercise 5.6.5-19 refer to Newto-

nian multi-oscillator type equations written in covariant form in S-

dimensional space and characterized by cubic nonlinearities, see (38).
Neither of these two restrictions are however essential for the validity of

this finding, as entailed by the following

Exercise 5.6.5-20. Consider the system of N (complex, coupled)
Newtonian equations ofmotion of oscillator type

i,,, -i(2+2/p)n*,, -(I+p/2)n2 w,, = F,, Uw ,
(41a)

where the IV complex quantities w,, =- w,, (t) are the dependent variables,

C2 is a real nonvanishing constant, p is a positive integer, and the N

functions F Uw of the N dependent variables w. are arbitrary except for

the requirements (1) that in the neighborhood of w,.,,, = 0 they be analytic

and (U) that they satisfy the scaling property
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AP" F (w) (41b)Fn (Aly

Prove that there exist then, in the neighborhood of the equilibrium con-

figuration wn = *,, = 0, a ball of initial data WnM9 *n (0) ,
of nonvanishing

volume in the space (having 4N real dimensions) of initial data, such that

all the corresponding solutions of (41) are completely periodic, with pe-

riod T = 2)r/101 if p is even, with period T = 2T = 4/T/IK21 if p is odd.

(Note that the results of the preceding Exercise 5.6 5-19 are a special case

of those of this Exercise 5.6.5-20 with p = 2). Hint: see the hint for the

preceding Exercise 5.6.5-19, but start from the system

zff =F
- Z.) (42)nUZ ) Zn =Zn(

(rather than from (39)), and set

w,(t)=exp(iOt)z,(r), r=[exp(icot)-1]1(ico), (43)

(instead of (40a)), with co = pQ / 2.

Note the analogy (but also the difference) of the treatment that yields
the results given in the last two Exercises 5.65-19 and 5.65-20, to that

given in Sect. 4.5 (see in particular the proof of Proposition 4.5-9). Of

course these findings are also applicable if the nonlinear parts of these

equations of motion are missing: indeed the general solution ofthe linear

part of (41a) is clearly the linear superposition of two periodic solutions,
one with period T = 2 7r /IQI, the other with period T. = 2T/ (2 + p) (verify!),

hence it is periodic with period T if p is even, with period 2T if p is

odd (verify!). But let us re-emphasize that in the nonlinear case these

findings identify systems that are generally not integrable, but neverthe-

less do behave in a very simple (completely periodic!) manner for a cer-

tain set (of nonvanishing measure!) of initial data.

5.7 Outlook

The results presented in Chap. 5 have been obtained quite recently.
Clearly the techniques introduced herein could be exploited much more

systematically and extensively than it has been done up to now, and one

could thereby obtain a much larger collection of exactly treatable many-

body problems in 3-dimensional (and also in S -dimensional) space than
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have been exhibited herein: indeed a motivation to write this book was

just the hope to stimulate such a development. The amusing task to study
in detail the behavior of these systems remains moreover largely undone,
and it offers an ample prospect of interesting investigations.

5.N Notes to Chapter 5

The results presented in Chap. 5 are mainly based on <BC2000a> (which
we often followed verbatim, but correcting several misprints -- hopefully
without introducing new ones!); but see also the references quoted, and

the credits given, there (let us in particular mention that a computational
tool quite useful in this context is provided by <BR83>). There are how-

ever also some new results, for instance the many-body problems (5.3-44)
and (5.3-47).

The main idea on which the developments of Sects. 5.2 and 5.4.1 are

based is probably not new, see for instance <SS96>, <GS97>.

For the treatment of the magnetic monopole problem (Sects. 5.2.1 and

5.2.2) see also <Pl896>, <SMTDC76> and <S2000>, and of course the

references quoted in these papers. Our treatment follows closely
<ABC2001>.

The integrability (indeed, solvability) of the periodic non Abelian

Toda lattice (Sects. 5.4.2 and 5.4.4) has been proven by 1. Krichever

<K81> (see also <BMRL80>, <BRL81>, <RLB83>).
For the integrable matrix Nahm equations (5.4.3-21), see <N82> (I

wish to thank Mark Ablowitz for bringing these integrable matrix ODEs

to my attention and for providing this reference).
For the treatment of unharmonic C'quartic") oscillators, see

<BC2000b,c> (which we often followed verbatim in Sect. 5.6.5). 'fhe

fundamental observation that the matrix evolution equation (5.4.4-3) or,

equivalently, (5.6.5-1), is integrable generalizes the previous finding by
V. I. Inozemtsev <190>, that (5.4.4-3) respectively (5.6.5-1) are inte-

grable when the matrices A respectively  C are multiples of the unit ma-

trix.

The approach ofthe Exercises 5.65-19 and 5.6.5-20 is fally discussed

and exploited in <CF2001>.
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Appendix A: ERiptic functions

In this Appendix, for the convenience of the reader and also to define our

notation (there exist variations in the standard literature) we collect

(without any commentary) some formulas for the elliptic functions asso-

ciated with the names of Jacobi and Weierstrass.

Jacobian elliptic ftinctions.

s =- sn(u, k), c =- cn(u, k), d =- dn(u, k); (1)

0:5k:! I, k'=(l-k2)1/2' 0:! k'< 1; (2)

S
2 +C2 = 1, k

2 s'+d' =1, d
2
-k

2 C2 =kr2
=1-k

2

(3)

s'=- a[sn(u, k)]l au c d, (4a)

c' _= a [cn(u, k)]l au-sd, (4b)

d'=- a [dn (u, k)]lau = _k2 SC; (4c)

(S)2= (1 -s2)(1-k2S2), (5a)

(c')2 =(I - c
2 ) (k' C2 +I-k2), (5b)

(d')2 =(I-d2) (d2 +1-k2); (5c)

(cls)' =-d1s', (6a)

I

(d1s) =_C/S" (6b)

sff = -s (d2 +k2 C2)= -(1 + k2)S +2k2s' (7a)

Cfr = _C (d2 -k2 S2)= -(1-2k2)S -2k2 C3 (7b)

dff =-k2
d (c 2

_S2)= (2-k2)d-d3

(7c)
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sn(-u, k) = -sn(u, k), cn(-u, k) = cn(u, k), dn(-u, k) = dn(u, k); (8)

sn(u,k) =u- (I+ k2)U3 13!+(1+14k2+k4) u'15!+..., (9a)

cn(Y., k) =1_U2 /2+(1+4k2)U4 /4!-(1+44k
2 +16k4)U6 / 6! +..., (9b)

dn(u, k) = 1 - k2U2 12+k2

(4+k2)U4 / 4!- k2 (16 + 44k2+ k4)U6 /6!+..., (90

Addition formulas ofJacobian functions.

= cn(uj, k), dj dn(uj, k), j = 1, 2,sj
= sn(uj, k), cj (10a)

sn(u, + U2, k) = (SI C2 d2 + CI dI S 2)/D, (10b)

cn(u, + u, k) = (Cl C2 - SI dI S
2 d2)/D, (10C)

2

dn(UI + U2, k) = (d, d2 - k S1 CI S2 C2)ID, (10d)

D=l-k
2 S2 S2

1 2'
(10e)

Degenerate cases ofJacobian function.

k = 0, k' 1; sn(u,O) sin(u), cn(u,O) = cos(u), dn(u,O) = 1, (11a)

k = 1, k' 0; sn(u,l) tanh(u), cn(u,l) = dn(u,l) = [sinh(u)j-1 (11b)

Doubly periodic Weierstrass functions.

-2 +J]' _

-2 _W-21P(Z) P(ZI CO'CO) = z
-,

I(z W) (12)

m + 2 con, 'f(w) is the sumHere and throughout Appendix A: W = Wmn
= 2 o

over all (positive, vanishing and negative) integers m,n, excluding only the single

term with both m and n vanishing, m = n = 0 (likewise for the product fff(w)).

P(-Z) = P (z), (13)

p (z + 2m co + 2n co') (z). (14)
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co,co': "semiperiods". (typically: co' imaginary, m real, so

that p (z) be real).

'(z) =öp(zlco,co')löz=-2z-3 -21'(z-w)';0

(0= 0, (16a)

(Co') = 0; (16b)

P (Z; 92 2 93)  P (ZJ'De W') 0 (Z); (17)

COI = Co, C02 = _CO - CO" 0)3 Ct)" Col + 0-)2 + C03 (18)

p (cüj) = e" j = 1, 2,3, (19)

ei

oj dX(4X3 -92X-93)-1/21 j=1,2,3, (20)

e, are the 3 roots of the cubic equation 4X3 -92 X-93= 0, hence

el + e2 + e3 = 09 - 4(el e2 + e2 e3 + e3 el) = 92, 4e, e2 e3 = 93; (21)

p (Z) = Z-2 + ECk Z2(k-1), (22a)
k=2

c = g / 209 C3 = 93 / 28, Ck = 3 [(2 k + 1) (k - 3)]_,
k-2

c c k   4. (22b)2 2 i k-i

Differential equations.

2W(ZA =4[p(z)]'-92P(Z)-93, (23a)

[p'(z)1 2
= 4[p (z) - e, ] [p (z) - e2 (Z)- e3 (23b)

p'(z) = 6 [p (z)] 2
_ 92/2, (24)

(z) = 12 p'(z) p(z). (25)
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The last two equations imply, by induction, that the z -derivative of order 2n of

(z) is a polynomial (with z -independent coefficients) of degree n + I in p (z) ,

while the z -derivative of order 2 n + 1 of p (z) equals P'(z) times a polynomial

(with z -independent coefficients) in p (z) of degree n.

Addition formulas.

2

_j
- P'(Z2)1/ [P (ZI) -P (ZOIJ - P(ZO - P(ZOI (26)P (ZI + Z2 V(Z 

(ZI) (Z')

1 P (Z2) P,(z2) 0 (27)

1 AZI +Z2) - P'(ZI + Z2)_

kz +Z0 =P(zl)-
1 C9

1 IP'(ZI) - P'(Z2)1/ IP (ZI) -P(ZA15 (28)
2 azI

P (ZI + Z2) =: P (z2) -
1 a

f [P'(Zl ) - P(Z2 )11 IP (Z ) -P (Z2A 11 (29)
2 az,

P(ZI +Z2)+P(ZI -z,)=2p(zl)-
a2

flog [P (ZI) - P(ZA 1 (30)
Z'2

Otherformulas.

p(z + coj) = ej + (e, - ej (ej - e,) p(z) - ej (31)

where j, k,  are any permutation of 1, 2,3;

2

p(2z) = -2p(z) + 1 1P" (Z) / P'W] (32)

p(z/2) = p(z) + I I[ed(z) - e, ] [go (z) - e,+, (33)
j=1,2,3 mod(3)

Rescalings.

ACO'ACP(AZI t)r)=VP(zjO2)'OV% A;'O (34a)
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P'(AZjACO,ACO')=VP'(zjCO,CO% A#O, (34b)

P('L7;V92-IV93)=VP(Z;92-193)I /1#-02 (35a)

P'(/1-7;V 92 2Z-6 93)=VP'(Z;92293)5 "0* (35b)

Hence p(zlco.d) depends effectively on 2, rather than 3, parameters: for in-

stance, it could be considered a function of z / co and z / co' (or ol co ). Likewise, of

course, for P (Z; 92  93 )*

Degenerate cases.

co = oo, co' = i)r /(2 a), e, = e2 = a2/3, e3 = -2 a2 /3, (36a)

p(z) = a' /3 + a2[sinh(a z)]-2; (36b)

co = oo, co' = i oo, e, = e2 = e3 = 01 (37a)

-2

P(Z) =z . (37b)

"'Sigma" and "zeta" Weierstrass functions.

0U(Z) C(ZI Vj) = ZI-l' f(,_Z/W)exp [(Z/W)+(z/W)2/2]j,0,0 (38a)

( =, j"0,OVf)=Z-1+j]'[ _ -I+W-I+ZW-2];Z) (z (z W) (38b)

1 (Z) -  (Zlct), Co') = O-V) / C(Z) ; (39)

21/=-P(Z) = f 07"(Z)aw - [0-,(Z)l 0_ (z)]2 ; (40)

0'(-z)=-o--(z), (41)

q =- i (co), q' =-  (co'); 77j =- i (coj ), j = 1, 2,3, (42)

77 co' - 77,-o = i 7,- / 2 ; (43)

a(z+2mco +2nco')
m+n+mn

a(z) exp [ (z + 2m co + 2 nco') (2m 77 + 2 n;7') (44)
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 (z+2mco +2nco') =  (z)+2mi7+2nq'; (45)

a(z) = j: am, (g, / 2)' (2 93 )n Z (4m+611+Y(4m+6n+l)!' (46a)
m,n=O

aO,O 1, am,n = 0 'f m<0 or n<0, (46b)

am, (3 m + 1) a.,,,,-, + (16 / 3) (n + 1) am-2,tz+l
- (m + n - 1/ 3) (4m + 6n - 1) am-,,n ,

(46c)

C(O) = 0, U'(O) = 1, C'(O) = U'(O) = C(4) (0) = 0 ; (46d)

Y Ci Z
2k-I

 (Z) = z 1(2k-1). (47)

Relations among Weierstrass and Jacobianfunctions:

o-j (zlcod) =- exp (-77j z) u (z + coj Ico, co') / o- (coj 1w, co'), j = 1, 2,3, (48)

u = (el -e3 )1/2 Z' (49)

k2 (e2 _ e3 (el _ e. (50)

sn(u, k) = (e, - e3)1/2 a (zico, co') / o-3 (zlco,d), (51a)

cn(u, k) = o-, (ZICt4 Co')  73 (ZICOI 0)) 7
(51b)

dn(u, k) = 072 (Zjol Co') a3 (ZIC09 Oj') (51C)

2

[sn(u, k)] (e, - e3) (zlco, co') - e3 (52a)

[cn(u, k)]2 (zico, co') - e, I/ [p (zlco, co') - ej (52b)

[dn(u, k)]2 (zico, co') - e2 (zlco, co') - e3 (52c)

]2 o, co') (53a)[cn(u,k)/sn(u,k) =(el -e3) [kj(zlc - el

[dn(U, k) / Sn(U, k)]2 =(e, -e,)-l [p(zjco,co')-e21. (53b)
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Degenerate cases of Weierstrassfunctions.

o) = oo, co
1
= iT /(2 a), e, = e2 = a

2
/3, q3 = -2a2 /3, (54a)

c (z) a-' sinh (az) exp (-a
2 Z2 /6), (54b)

, (z) -a2z/ 3 +a cotanh(az) (54c)

and see (36);

co = oo, co= ioo, e, = e2 = e3 = 0 (55a)

a(z) = Z'  (Z) = 1 / Z' (55b)

and see (37).

Duplication formulas of Weierstrass functions.

4

0_(2 Z) =_VI(Z) [0-(Z)] , (56a)

 (2 z) = 2 (z) +
1
P"(Z)/P(Z), (56b)

2

and see (32).

Additional relations satisfied by Weierstrass functions.

I P(Z' ) P,(Zl) P"(Zl) . . . P
(N-2)

(ZO

P(Z2) P'(Z2) P"(Z2)' P
(A-2) (Z2)

1 P(Z') P,(Z,) P"(Z,). . . P
(N-2)

(Z")

N-1 Ar N N

(_)(N-1)(Ar-2)12 . (jjnI a jz.) fj [o-(z,,) 11U(zM - ZI) (57)I
n=1

-

M=1 n=1 I,m=1;1>m
I

Here N is a positive integer larger than 1, and the N numbers Zn are of

course arbitrary (but different among themselves, and different from zero,

both properties being of course valid mod(2co,2co')). Note that the right
N

hand side vanishes if EZn =0 ;indeed,for N =3 and Z3 = -(ZI + Z2) this
n=1

formula, (57), coincides with (27). For N = 2 it yields
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07 1+ )C I_Z2)= -(Z)12[0_(Z2)12 -P(ZA 7(z Z2 (z [0 1
.

[f*2) (58a)

whose logarithmic derivative (with respect to z) yields

,;(z, + z2) +  (zj - z,) - 2, (z) = p(z,) / [gb (z,) -p (z,)], . (58b)

V(ZI ) +  (ZD - 4 (Zl + Z2 )] 2+  r(Z1)+  '(Z2 ) +  '(Zl + Z2 ) = 0, (59a)

JzI
+ Z2) V(Z) +JZ2 A+JZ1 - Z2) V(Z) -JZ2A

=C(Zl) + 42 (Z) + C(ZO + 2 (Z2)

+ VV1 + Z2) +  2 (ZI + Z2) + C(zl - Z2) +  2 (ZI - Z2)j/ 2 (59b)

';(Zl)';(ZI) =' (Zl - Z2) [;(Z2) -JZA

+ VVI) +  2(ZI) + C(ZO +
2

(Z2) + C(zl - Z2) +  2 (ZI Z2)]/ 2 (59c)

JZI + Z2) - JZI) -  (ZO = - [P'(Zl) - fo'(Z2)1/ [P (Z) - P (z2)11 ' (60)
2

P(ZI + Z2) + P(ZI ) + P(z2) =V(Z1 + Z2) -  (Zl) - (ZOF; (61)

 ;(Zl ) + 4 (Z2 ) + JZ3 ) - JZ1 + Z2 + Z3 )

= 07 (ZI +Z2)6(Z2 +z3) U(Z3 +ZIAO-(zl)U(z2)o-(z3)6(ZI+Z2+z3)] (62)

0-(ZO +ZI)O_(ZO -ZI)U(Z2 +Z3)U(Z2 _z3)

+0-(ZO +Z2)0'(ZO -Z2)0'(Z3 +ZI)07(Z3 _ZI)

+0-(ZO +Z3)C(ZO -Z3)C(zl +Z2)47(zl _Z2) = 0* (63)

This last formula, (63), contains 4 arbitrary variables, hence many other relations

can be obtained from it, for instance by assigning special values (such as zero) to one

or more of these variables, perhaps after having perform9d some-differentiations.

Some such formulas are displayed in <BC90>.
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det [c(x,, - y. + a) /a (x,, - y.)]

a(xl -yj +a)lc(xl -yl) a(xl _Y2 +a)lc(xl _Y2) ... a (xl -

yy + a) / a(xl - yAr)

0'(x2 -

Y1 + 6 ) "*2 -YO 0'(x2 -

Y2 + a) / 07(x2 - Y2) 0'(x2 -

YN + 0 ) /7(x2 - YN)

0'(xN_Y1+a)107(xN_YI) 6(xN_Y2+a)1a(xjV_Y2)-' o'(xN - yN +a)/ c(xAr - yAr)j
N AF

=,[.+y (xj-y,)I[o-(a)]N-' fj [cr(x,,-x )o-(y,,, -y,)Jl C(x,, -Y
n,m=l;n>m n,m=l

(64)

Here (and below) a(z) _= a(z Ico, co') ,
a is an arbitrary constant and the 2N

variables xn, y,, are also arbitrary (but different: xn # xm and Yn # ym for

n:;-- m, and xn # y.; otherwise appropriate limits must be taken). The dili-

gent reader will check that, for N = 2, this formula reproduces (63) (hint:
set a =ZI +ZZ2XI = ZOIIX2 =Z32YI =Z2.IY2 =Zl)'

Ar N N N Ar

fj 0- (Y,, -XAI I fj 'g-(Yn -YA I
,

f [0-(Z +11I
.'

Ye Xj)]
n=1

N N

=Crj: (Yj_XjQj [0'(Z_Xn)16(Z_YnA ' (65a)
j=1 n=1

Here, the 2N + 1 variables z, xn, yn are all arbitrary, except for the usual re-

quirement that they be different, and it is moreover required that

N

(y, -x,) # 0, mod(2co,2o)') (65b)
j=1

If instead this condition does not hold, (65a) is replaced by the following
N identities:

N N

I V(Z - Ym  (Xn - Ym 11 U(YM -xj)]l t fj O-(YM -Y,)]
M=1 e=1'9#M

=fj [0-(Z-XM)/C(Z-YM)]' n=l,...,N (66a)
M=1

N

(Y,-X,)=O, mod(2co,2co') (66b)
j=1
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In the left-hand side of (66a)  (x) =_ jx1co, co') is the Weierstrass zeta func-

tion, as defined above. Note that the right-hand side of (66a) does not de-

pend on the index n, while the left-hand side does; this of course entails a

number of additional identities.

'V

JZ)+Y, [JXn)+' (Yn)1_JZ+S)
n=1

N o-(Z+X.) CF(z+S N [ C(X,) _1 a(X. + Yj)
ri ]I , (67a)

C(Z) U(X.) c (z + s) u (x, - x.) C(yj)

N

S =E (Xn +YJ * (67b)
n=1

Here N is an arbitrary positive integer, and ZI Xn 1 Yn are 2N + 1 arbitrary

(complex) numbers. For N = 1, up to trivial notational changes, this for-

mula coincides with (62).

IV

cotanh(z)+I I cotanh(xn)+cotanh(y,,)]-cotanh(z+s)
n=1

Ar sinh(z + x.) sinh(z + s - x.)
=I

m=1 sinh(z) sinh(x.) sinh(z + s)

 ,
'v [ sinh(x,) sinh(x. +

(68)ri sinh(yjyLsinh(x, - x.)

N

Z-1 + -1
+ YJ_ (Z + S)'I IX

11

X(Z+X.) (Z+S-xm)
IV

X,
(69)Y, rl  _'" + Yj)

-I z X. (z + S)  eAz;t=
-

-1  Yj

These formulas, (68) and (69), are degenerate cases of (67), see (54) and

(55); here of course s is given by (67b), and z, x,, , y,, are 2N +I arbitrary

(complex) numbers.

N N

P
(k+l)

(Xn)= jjxj)-NJXn)+ I JX._XI) P
(k) (Xn)

j=1
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N N

I I IC(X.) / U(XJ]" [Cr(X. - X) / U(X. -XA
M=I,m#n 1=1,1#n,l#m

N N

. U(X" -X. + 1] Xj) / (7( - X I V(k) (x.), k = 1,2,..., N - 2
.1: Xj) 0'(Xn

j=1 j=1

(70a)

Here N is an arbitrary integer larger than 2, N > 2, the N numbers xn

are arbitrary (except for the requirement that their sum not vanish,
N

jxn#0 ), of course are

n=1

the usual Weierstrass functions, and we use the notation

P
(k) (x) -= dk V(X) / dXk

. (70b)

IV

xj -I
N

(k + 2) (Xn )-(k+3) (Nlxn)- (X _XI )
-1

(Xn )-(k+2)(j=l
1=1,1#n

Ar

+ [xm / Xn
1v [(Xn - XI) / (Xm - X01 Xj + (Xn - XmY I (Xm )-(k+2),

k = 1, 2,..., N - 2 (71)

This last formula is the completely degenerate case of (70), see (37b) and

(55b).

A.N Notes to Appendix A

Most of the formulas reported in Appendix A are standard, and can be

found in any compilation of mathematical formulas, see for instance

<E53> (which we mainly followed), <MT56> or <GRJ94> (but see also

<WW27> and <BC90>). We could not find the very useful identities (A-
59b,c) in the literature, and therefore we have provided a proof of them in

Sect. 2.3.6.2 (see the last part of the proof of Proposition 2.3.62-7). The

determinantal identity (A-57), as well as the sum rule (A-65) can be

found in the classic textbook by E. T. Whittaker and G. N. Watson

<WW27> (see pp. 458 and 451). The determinantal identity (A-64) is due

to G. Frobenius <Fl892>, and (A-66) is taken from a recent paper by F.
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W. Nijhoff and G.D. Pang <NP96>; I am grateful to Frank Nijhoff for

providing these references. We show in Sect. 3.1.2.1 (see Exercise

3.1.2.1-9) how to prove the sum rule (A-67); we are not aware of its

having being displayed elsewhere (not even in the degenerate trigonomet-
ric/hyperbolic, or rational, cases, see (A-68) and (A-69)). Likewise, the

procedure to prove (A-70) is indicated in the hint which goes with Exer-

cise 3.1.2.1-10. For several other identities involving the Weierstrass

sigma and zeta elliptic functions see the last part of Appendix D.
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Appendix B: Functional equations

In Appendix B we review the results on functional equations obtained

elsewhere in this book, and we also report and introduce some new find-

ings and conjectures.

Let us emphasize that, throughout, we focus on analytic solutions of the func-

tional equations we consider. Nonanalytic solutions may also have an important role

to play, see for instance Sect. 2.1.16, but they are not discussed in this Appendix B.

The first functional equation appears in Sect. 2. 1. 1, see (2.1.1-16); we
write it here as follows:

a (x + y) [8 (x) - 8 (y) ] = a (x) a'(y) - a(y) a(x) . (1)

The unknown functions are a(z) and 8(z); as for the latter, in Sect. 2.1.1

attention is restricted to even fanctions, 6(-z) =fi(z). The general solu-

tion (with this restriction) of this fanctional equation is provided and dis-

cussed in Sect. 2.1.4; it involves elliptic fanctions (and their degenerate
versions: trigonometric, hyperbolic, rational).

The functional equation

[a(x + y) - a(x) a(y)] [q(x) - 77(y)] = a(x) a'(y) - a(y) a'(x), (2a)

appears in Sect. 2.1.8, see (2.1.8-19); its general solution is provided and

discussed in Sect. 2.1.11; it also involves elliptic functions (as well as

their degenerate versions: trigonometric, hyperbolic, rational).

As entailed by the contexts in which these two functional equations, (1) and (2),
have been introduced, as well as from their structure, (1) can be considered a limiting
case of (2) (in the same sense as nonrelativistic equations are the limit, as the speed of

light goes to infinity, of relativistic equations of motion), although, in the functional

equation context, the limiting procedure is not entirely trivial (it corresponds to differ-

ent singular behaviors ofthe solutions at the origin, see Exercise B-2).
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Note that (2a) can also be rewritten in the form

a(x +A [77W - IXA=aWP(Y) - a(Y)Ax) (2b)

-

- a(z) 77W -#(z) = a(z) (2c)

Moreover, in the process of solving (2), another equivalent functional

equation has been introduced:

a(x + y) = a(x) a(y) +  9(x)  9(y) v(x + y) (3a)

(see (2.1.11-23)). In contrast to (1) and (2), this functional equation, (3a),
features 3 a priori unknown functions rather than only 2 and, more im-

portantly, it does not feature any derivative; it is indeed, obtained by inte-

grating the functional equation (2). The general solution of this functional

equation, (3a), is also provided in Sect. 2. 1.11; of course it involves ellip-
tic functions, and their degenerate versions (trigonometric, hyperbolic,
rationao.

Likewise, the following nondifferential. functional equation can be

obtained by integrating (1):

a(x + y) = a(x) 0(y) + a(y) O(x) + a(x) a(y) x(x + y); (4a)

its general solution is, of course, also known (elliptic functions, and their

degenerate versions).

Many other avatars of these functional equations, (3a) respectively
(4a), can be obtained by appropriate redefinitions of the dependent vari-

ables. For instance the following functional equations are equivalent to

(3a):

a(x + y) / [a(x) a(y)]- v(x + y) / [co(x) co(y)] (3b)

T(x) T(y) /T(x+ y) - (D(x) (D(y) / Q(x + y) = 1, (3c)

log[a(x + y) - a(x) a(y)] = f(x) + f(y) + g(x + y), (3d)

Iog[I - a(x) a(y) / a(x + y)] = f(x) + f(y) + h(x + y); (3e)

likewise, the following functional equations are equivalent to (4a):

a(x +A / [a(x) a(y)] =,O(X) + P(Y) + Xx+ A, (4b)
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b(x + y) - b(x) b(y) = log[p(x) + p(y) + X(x + y)], (4c)

expf a(x + y) / [a(x) a(y)] I = G(x) G(y) H(x+ y). (4d)

The keys to these transformations read as follows: for (3b), co(z) a(z) / (O(z)

for (3c), T(z)=Ila(z), (D(z)=,p(z)1a(z), n(z)=V(z); for (3d) and (3e)

f(z)=Iog[V(z)], g(z)=Iog[V(z)j, h(z)=Iog[V(z)/a(z)]; for (4b) and (4c),

p(z) O(z) / a(z), b(z) = log[a(z)]; for (4d) G(z) = exp[O(z) / a(z)],
H(z) exp[X(z)].

A functional equation that seems more general than (1) and (2a), since

it features 3 dependent variables (functions of a single argument) rather

than 2, reads

a(x + y) [#(x) -,8(y)] = a(x) Y(y) - a(y) r(x); (5a)

but, in fact, this functional equation, (5a), is hardly more general than (1)
and (2), since it essentially reduces to one or the other of these two func-

tional equations (see Exercise B-2 below).
Via appropriate changes of (dependent) variables, this functional

equation, (5a), can assume other avatars, for instance

*+Y) / [U(X) U(Y)l = [,fl(x) -,fl(y)]/ [AX) -VWI (5b)

(via u(z) = 1 / a(z) , v(z) = -y(z) / a(z) ), or

U(X + Y) [U(X) W(Y) _ U(Y) W(X)]= Vf(X) U
2

(Y) _ Vf(y) U2W (5c)

(via u(z) = I / a(z) , w(z) = r(z) / a2(Z), Vf(z) =,O(z) /a
2

(Z) ). Hereafter we refer

for defhitenm to the version (5a).

This functional equation, (5a), admits the following trivial solutions: a(z) = 0

with 8(z) = -,v(z) arbitrary; a(z) = A, 8(z) = -,v(z), with A an arbitrary constant

and r(z) an arbitrary function; 8(z) = B and a(z) = r(z) with B an arbitrary con-

stant and r(z) an arbitrary function. Hereafter we ignore this Idnd of trivial solutions,

as well as those obtained from these by transformations such as those discussed im-

mediately below. This Idnd of neglect of trivial solutions extends to all the functional

equations discussed in this Appendix B, even though we do not bother to emphasize it

in every case.
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This Rinctional equation, (5a), is clearly invariant under the following transfor-

mation:

Fr(z) = A a(az) exp(b z), (6a)

 (z) = B,8(a z) + C, (6b)

T(z) = B Aaz) exp(b z) +DE(z) (6c)

where the 6 constants A, B, C, D, a, b are arbitrary.

Exercise B-1. Verify that, if a(z), A* r(z) satisfy (5), so do ii(z),  (z),
Y(z) ,

as given by (6).

Exercise B-2. Show that, as z -* 0, the only possible behaviors of the analytic
solutions of (5a) are (of course up to the transformations (6))

a(z) = z-1 + 0(l), p(Z) = Z-2 + O(Z-1), Y(Z) = _Z-2 + O(z-1), (7a)

a(z) = 1 + O(z), B(Z) = -z-' + 0(l), Y(Z) = Z-' + 0(l), (7b)

and that, in the first case, (7a),

,v(z) = a(z) (8a)

(so that (5a) becomes (1)), while in the second, (7b),

,v(z) = a'(z) - a(z) fl(z) (8b)

(so that (5a) becomes (2), up to trivial notational changes). Hint: firstly set

y = -x+ 5, 9 -> 0, in (5a), to establish (7); then set y = 5, 5 -> 0, in (5a), with (7a)

respectively (7b), and thereby obtain (8a) respectively (8b) by equating the terms of

order 8-P with p = 2,1 respectively p = 1, 0.

Remark B-3. The condition that 6(z) be even, 8(-z) =,6(z), selects automati-

cally the behavior (7a), hence the functional equation (5a) with this condition corre-

sponds to (1).

The third functional equation we report was introduced in Sect.

2.3.6.1, and its general solution is provided in Sect. 2.3.6.2; it involves

elliptic functions, including of course their degenerate versions (trigono-
metric, hyperbolic, rational). We write it here in the form (2.3.6.2- 1e):

AX -A [g(x) _ g(y)]
1 j[g(X) _ g(y)] 2

+ g(x) + g(y) J+ h(x - y). (9)
2
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The 3 dependent variables are of course f(z), g(z) and h(z); the treat-

ment of Sect. 2.3.6.2 is restricted to functions f(z) that are odd,

f(-z) = -f(z), and to functions h(z) that are even, h(-z) = h(z); note that

either one ofthese two assumptions entails, via (9), the other one.

The fourth functional equation we review here was introduced in

Sect. 2.1.16. 1; it reads as follows (see (2.1.16.1-3)):

a'(x) a(x + y + z) - a'(x + y + z) a(x) + a'(y) a(z) + a'(z) a(y)

= a(y + z) [,8, (x) +,02 (y) +,63 (z) -,6, (x + y + z)]. (11)

Note that this functional equation features 3 independent variables and 5

dependent variables (functions of a single argument). However, its known

analytic solutions are rather trivial:

a(u) = A cos(au) ; 8, (u) = b, b, +b, +b3 -b, = 0, (1 1a)

a(u) = A sin(au); 8,, (u) = b,, b, +b2 +b, -b, =2, (I 1b)

with A, a and b, arbitrary constants (5 altogether, since the sum ofthe 4

constants b, is fixed).

Exercise B-4. Verify!

Remark B-5. Any nontrivial solution of the functional equation (10), with the ad-

ditional restriction

A (-U) = -'8' (U), s = 1, 2,3,4, (12)

would be of great interest, since to it there corresponds an integrable dynamical Sys-

tem, see Proposition 2.1.16. 1-1. (The solution (Ila) with b, = 0, s = 1, 2,3,4, is of

this type, and the corresponding integrable, indeed solvable, dynamical system is

given by the Hamiltonian (2.1.15-16); the nonanalytic solution (2.1.16-1) with

(2.1.16.1-5) is also of this type, and the corresponding integrable dynamical system is

given by the Hamiltonian (2.1.16-12)).

Exercise B-6. Prove that, if a(u) is even, a(-u) = a(u), and the functions 8,, (u)

are all odd, see (12), then for every analytic solution ofthe functional equation (10) (if

any exists!) the 4 functions 8, (u) are all equal,
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AI (U) = 16(U) 1
s = 1, 2,3,4 . (13)

Hint: firstly set y = -x, and then z = -x, in (10).

The fifth functional equation we review here was introduced in Sect.

2.1.14. It reads

2a(x + y) [f(x) - f(y)]-a(x + y) [f'(x) - f(y)]

= a(X) r(Y) - a(y) AX) (14)

(see (2.1.14-8)). This functional equation features 2 independent vari-

ables and 3 dependent variables.

Clearly if a(z), f(z), r(z) satisfy this functional equation (14), so do

a(z) =Aa(az) , (15a)

 (z) = B f(a z) + C, (15b)

T(z) = B r(a z) +D ii(z) , (15c)

with A, B, C, D, arbitrary constants.

Exercise B- 7. Verify!

Two analytic solutions of (14) are known:

a(z) = sin(z + c), f(z) = cos(2 z + c) , r(z) = 0, (16a)

a(z) = sin(z + c), f(z) = sin(2 z + c), y(z) = 4cos(z + 4c), (16b)

with c an arbitrary constant.

Exercise B-8. Verify!

Exercise B. 9. Show that a(x) z:--,u + x, f(x) = x (v + x), y(x) = 2 (v -,a)

with a, v arbitrary constants, is, up to the transformation (15), the most

general polynomial solution of (14) and verify that it can be obtained

from (16) via (15) and an appropriate limiting process.
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Conjecture B-10. Up to the transformation (15) (including its limiting

cases), (16) provide all the analytic solutions of (14).

Remark B-11. There exist, however, also nonanalytic solutions of

(14), see (2.1.16-1,2,3,4).

An interesting functional equation that generalizes (14) reads as fol-

lows

Aa'(x+y)[f(x)-f(y)]-a(x+y)[f'(x)-f'(y)]=a(x)r(y)-a(Y)r(x)- (17)

It features, in addition to the 3 (dependent) functions a(z) , f(z), r(z) ,

the "eigenvalue" A.

It is easily seen that this functional equation, (17), is invariant (as well

as (14)) under the transformation (15).

Exercise B-12. Verify!

Remark B-13. For A = 2, the functional equation (17) reduces to (14),
and it therefore possesses the solutions (16); for A= 0, (17) reduces to

(5a) (up to the notational change f'(z) = -,8(z) ), and it therefore possesses

the solutions of (1) and of (2a), see Exercise B-2 (this solutions involve

generally elliptic functions; they are displayed in Sects. 2.1.4 and 2. 1. 11).

This functional equation, (17), possesses, for arbitrary A, the solution

a(z) = sin(z + b) , f(z) = [sin(z)]", r(z) = A [sin(z)] (18)

Exercise B-14. Verify!

Conjecture B-15. For A:?-- 0 and A # 2, (18) is (up to the transforma-

tion (15)), the general solution of the functional equation (17).

Remark B-16 The additional requirement that all the functions, a(z),

f(z), r(z), see (18), that satisfy the functional equation (17) be entire

entails that the "eigenvalues" A are positive integers,

An =n, n = 1, 2,3,... (19a)
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the requirements that these solutions, (18), of the functional equation
(17), all be meromorphic functions entails that the "eigenvalues" A are

integers,

A,, = n, n=0, 1, 2, 3,.... (19b)

The notion of "eigenvalue" introduced here in the context of functional equations
refers of course to the existence, when A is an eigenvalue, of nontrivial solutions of

the functional equation, satisfying the additional specific requirement that character-

izes the specific eigenvalue problem: in this instances, that (all the 3 functions that

constitute) the solutions of the functional equation be entire respectively meromor-

phic.

Finally, let us consider a functional equation that clearly generalizes
(17):

a'(x + y) [g(x) - g(y)]+a (x + y) [h(x) - h(y)] = a(x) Ay) - a(y) Ax) .(20a)

This functional equation features 2 independent, and 4 dependent, vari-

ables.(functions of a single argument). Many other avatars of this func-

tional equation are obtained by changes of (dependent) variables, for in-

stance

a'(x +A [,P(X) 77(Y) - 'P(Y) *)]+a(x +A [01W 77(Y) - V(Y) *)]

= a(x) 77(x) - a(Y) 77(Y) , (20b)

(via V(z) = g(z) ly(z) , Vf(z) = h(z) 1,y(z) , q(z) = 1 lv(z) ), and

a'(x + y) [y(x) p(y) -,u(y) p(x)]+ a (x + y) [v(x) p(y) - v(y) p(x)]

= a(x) a(y) [p(x) - p(y)], (20b)

(via u(z) = a(z) g(z) 1,v(z), v(z) = a(z) h(z) 1;,(z) , P(z) = a(z) 1,-(z)

Exercise B-17. Verify that, if a(z), g(z), h(z), r(z), satisfy the functional

equation (20a), so do

,  (z) = Aa(az) exp(h z) , (21 a)
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k(z) = B g(a z) + C, (21b)

 (z) = B [dh(a z) - b g(a z)] + D

T(z) = aB r(a z) exp(b z) +Eii(z), (21c)

where A, B, C, D, E, a, b are 7 arbitrary constants.

It is plain that this functional equation, (20a), possesses the following solutions:

a(z) = 0, no restriction on g(z), h(z) , v(z) ; a'(z) = 0, h(z) = -r(z) ,
no restriction

on g(z), r(z) ; g'(z) = h'(z) = 0, a(z) = 7(z), no restriction on v(z) ; as well as the

solutions that obtain from these via (21). These trivial solutions are hereafter ignored.
It is also plain that, if

g'(Z) = 0, (22)

the functional equation (20a) coincides, up to trivial notational changes, with (5a),
whose nontriviat solutions, as we saw above, are the union of the solutions of (1) and

(2), see Exercise B-2. Let us recall that these solutions involve elliptic functions, see

Sect. 2.1.4 and 2. 1.11, and of course as well their degenerate versions: trigonometric,

hyperbolic, rational functions. In the following we also exclude from consideration

these solutions of (20a) with (22), as well as all those obtained from these via the

transformation (2 1) (which preserves (22), see (2lb)).

Conjecture B-18. Up to the transformation (21), and excluding the trivial solu-

tions detailed above as well as those associated with the condition (22), all analytic
solutions ofthe functional equation (20a) read as follows:

a(z) = sin(z + c), g(z) = sin(z) V(Z) , h(z) cos(z) r(z) , (23a)

with v(z) an arbitrary (analytic) function;

a(z)=sin(z+c), g(z)=cos(2z+c), h(z)=sin(2z+c), V(z)=O; (23b)

a(z)=sin(z+c), g(z)=sin(2z+c), h(z)=-cos(2z+c), Y(z)=2cos(z+c). (23c)

In all these expressions, (23), c is an arbitrary constant.

Exercise B-19. Verify that (23) satisfy (20a).

Remark B-20. The additional solutions (23b) and (23c) are not special cases of

(23a).

Remark B-21. For the solutions (23hc) the functional equations (14) and (20a)
coincide, as demonstrated by the substitution

f(Z) => g(z), f'(z) => -h(z), Y(z) => 2r(z), (24)
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which also entail that (1 6a,b) correspond to (23b,c).

Exercise B-22. Reobtain the solution (18) of (17) as a special case ofthe solution

(23a) of (20a). Hint: use the relation among g(z) and h(z), which reduces (20a) to

(17).

B.N Notes to Appendix B

The functional equation (B-1) is the first one to have appeared <C75> in

the context of (the Lax matrix approach to) classical (i.e., non quantal)
integrable systems; its general solution was exhibited in the same paper

<C75>, and discussed in <C76a>, and also, more or less simultaneously,

by A. M. Perelomov (see Appendix A of <OP76b>) and by S. 1.

Pydkuyko and A. M. Stepin <PS76>.

The functional equation (B-2) was introduced and solved in <BC87>;
a more detailed discussion of the general solution of this functional

equation, and as well of (B-3) and (B-4), is given in <BC90>.

The functional equation (B-5) is a special case of the more general

(but in fact rather closely related) functional equation

V, (x + Y) = (02W  92(y) / (04(x) (04(Y)
(1)

(0,W 'p, (Y) V,W V,
W I

(Set (0,(Z)=(02(Z)=a(z), (03(Z)=,V(Z), (04(Z)=A* (p5W=l). This func-

tional equation, (1), is fully treated in the monograph <BB97b>, where

the interested reader will find additional references on functional equa-

tions of this type, such as <BP96>, <BK96>, BB97a>.

The functional equation (B-9) is, to the best of my knowledge, new.

The functional equations (B-10) and (B-14) were introduced in

<CF96>.

The remaming material in Appendix B is, to the best of my knowl-

edge, new (including the introduction of the functional equation (B-17)
with integer "eigenvalues", see RemarkB-16).
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Appendix C:
lull-IF

Hermite polynomials:

zeros, determinantal representations

In Appendix C we collect a number of formulas for Hermite polynomials;
this is only a representative sample, many other analogous results are

available in the literature, not only for Hermite polynomials, but as well

for all the classical polynomials, see Sect. C.N.

Hermite polynomials.

[[n/211

H,(x)=n! I (-1)'[m!(n-2m)!]-1 (2x)n-2m, (1a)
M=0

3
H,(x)=l , H,(x)=2x, H2(X)=4x-2, H,(x)=8X -12x; (1b)

Hn (-X) = (_I)n HnW ; (10

Hn'(x) = 2 n H,,, (x) = 2 xH, (x) - Hn, (x), (1d)

H"(x) = 2 xH,'
,
(x) + 2 nHnW; (1e)n

Y Hn (X) Zn /n!=exp(2xz-z2),
-0

W

Y (z / 2)' Hn (x) Hn (y) / n!

n=O

(1-Z2)-1/2 eXPft 2xy Z_(X2 +Y2)Z2 VZ2) (19)

Sum rules for the N zeros of Hermite polynomials:

(H)(N) = 0 (H)(Ar)HIV (Xn Zn
=

X (2)

N

(P)
Z.)-PIOrn (Znn (3a)
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(1)
17' ---,: Z., (3b)

C,(2) =2(N-1)13 _Z2 /3, (3c)

(7(3) = z,, /2, (3d)

0-,(4) =[ 2(N+2)-z,,2 ][ 2(N-1)-z2 ]/45, (3e)
n

0-.(,) = Zn (2N +1_Z2) /18; (3f)
n

IV

Z
2
=N(N-1)12 (4)1 n

n=1

'Ar

(Zn - z.)-2 =N(N-1)12 (5)

Remarkable matrices defined in terms of the N zeros Z. of the Her-

mite polynomial H,, (z), see (2): the (N x N)-matrices

2

Nn. =5,,. Zn + (1 - 8nm) Zn / (Zn - Zm) 1 (6)

Ar

_.,
(Z

n
_Zj)-2 _ (I _ 45

nm
)(Z' _Z.)-2,Anm = S. I (7a.)

A. 2(N-1)13 _Z2 /3 -z.)-2, (7b)

both have the first N nonnegative integers 0, N -1 as eigenvalues; the

(NxN)-matrix B,

IV

(z,, - z,
-4

B. = 6 5nr Z.)-4,
,, Y - (1 -,5.) 6 (z,, (8a)

B. = 9,,. (2 115) [ 2 (N + 2) _Z2 2(N-1) _Z2 (1 6 (z,, - zm)-4, (8b)n n

is related to the matrix A, see (7), as follows:

B = A(A+2), (9)

hence it has the eigenvalues ( P2 _1) , p = 1, 2,..., N; the (Hermitian)
(NxN)-matrix
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M=:M69),

M_ ((P) z,, cos (P + (1 -,5.) i (z,, - z.)
-1

sin  p , (10)

has the N zeros z, see (2), as its eigenvalues (for all values of the "an-

gle" p; this result is of course trivial for p = 0).
It had been conjectured that, if one defined an (NxN)-matrix A in

terms of N a priori arbitrary numbers z,, via (7a) and then required that

this matrix A have the first N nonnegative integers as its eigenvalues,
then the N numbers z,, would be determined and would coincide, up to a

common shift, with the N zeros of the Hermite polynomial of degree N.

But this conjecture has been disproved <C82b>. It has been likewise dis-

proved <C82b> that the requirement that the (Nx M)-matrix IV, defined

by (6) in terms of N a priori arbitrary numbers z, have the first N

nonnegative integers as its N eigenvalues, determines uniquely the N

numbers z,, (which would then coincide with the N zeros of the Hermite

polynomial of degree N; since if the N numbers z, are so defined, then

the (NxN)-matrix N does indeed have the first N nonnegative integers
as its N eigenvalues).

Determinantal representation of Hermite polynomials, in terms of N

arbitrary numbers xn:

H.(x) = (N!)-'det[ At(H) (XIX) ] , (11a)

the (IV X Ar)_MatriX M(H) (X I Xwhere x) ( a function of the variable x, and of

the N -vector x whose N components are the IV arbitrary numbers x,

:Lc -= (x,, x,,..., x,) ) reads as follows:

M(H) (X I X) =2(X-P -DLD-2XJL!+2N(x-X), (11b)?)+(x
-

X = diag[x, Xnm = Snin Xn (11C)

N

D_ =8 I
.,

(X,,_XI)_'+G_'5nm)(Xn_X.)_" (11d)
1=1,1#n

Other determinantal representations of Hermite polynomials - indeed,
of all classical polynomials, and even more generally, of any polynomial
characterized as the solution either of a linear differential equation or of a
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linear recursion relation - can be easily manufactured, see Sect.. 2.4.5.5

(for explicit examples see the literature quoted in Sect. C.N).
Let us end this Appendix C by re-emphasizing that, although here we

only reported results for Hermite polynomials, analogous, and also more

general, results are as well available for all the classical polynomials, see

Sect. C.N.

C.N Notes to Appendix C

The results reported (only for Hermite polynomials) in Appendix C are a

representative, but incomplete, sample of those that can be found in the

literature (for all the classical polynomials: Jacobi, Laguerre, Gegen-

bauer, Lagrange, besides Hermite); see firstly the standard compilations

covering classical Polynomials, for instance <S39>, <H65>, Vol. 11 of

<E53>, and <GRJ94>, for the standard formulas (definitions of the clas-

sical polynomials, differential and recursion relations, generating func-

tions); then see (in addition, again, to <S39> for some key properties of

the zeros) the following papers which introduced the main new ideas

<C78a> and which provide overviews on the "new" results (zeros, re-

markable matrices, determinantal representations): <C78b>,

<ABCOP79>, <C80a>, <C81a>, <C81c>, <C82c>, <C84b>; and finally,
if need be, see the following original papers: <C77a>, <C77b>, <C77d>,

<ABC78>, <BC79>, <C80b>, <C82a>, <C82b>, <C85a>, <C85d>.

For certain relations among classical polynomials in the limit in

which certain of their parameters diverge see <C78d>, <C78e>.

For certain results related with the limit in which the degrees of the

polynomials diverge, so that their zeros fill a continuum distribution, and

(the analogs ot) the "remarkable matrices" become integral operators,

see: <CP78b>, <CP78c>, <C79a>, <C79b>.

For some results analogous to (some of) those presented in Appendix
C for the zeros of Hermite polynomials, but featuring instead the zeros of

combinations of Hermite polynomials, see <ABC78>.

Finally, for some analogous results featuring the zeros of Bessel

functions (of which there are an infinite number, in contrast to the poly-
nomial case), see <C77c>, <C77e>, <AC78a>, <AC78b>, <AC78c>.
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Appendix D:
  F

Remarkable matrices and related identities

By remarkable matrices we mean matrices, generally defined by rather

neat expressions containing many arbitrary parameters, which feature

simple properties, typically an explicitly known spectrum given by a very
neat rule, and often as well explicitly known eigenvectors also given by
neat expressions. There generally follows the validity of identities, ob-

tained for instance by writing in long-hand the eigenvalue equation satis-

fied by the remarkable matrix, or by evaluating the traces of its powers,
or its determinant, in terms of its eigenvalues. In Appendix D we report,
with minimal commentary, a representative sample of such formulas. The

developments that led to these formulas have been described in various

places throughout this book, mainly in the parts treating Lagrangian in-

terpolation, see Sect. 2.4 and its subsections (in particular, of course,
Sect. 2.4.5 and its subsections), as well as Sect. 3.1 and its subsections.

Hereafter, unless otherwise specified, indices ran as usual from 1 to

N, and numbers denoted as on  Xn and so on are arbitrary (possibly even

complex) but distinct (on :P-- 0. if n #- m ; Vn # V. if n # m; and so on; most

formulas remain valid even if this condition is dropped, but in such cases

suitable limits may be required).

Proposition D-1. Define the (N x N)-matrix C in terms of the N90

arbitrary "angles" on by the neat rule

N

Cnm(g) =-' I cotan(O, -0,), if n = m, (1a)
1=1,1#n

Cn,,, (2) : : ' [Sn(on - OJI-1 I
if n:p-- m - (1b)

Then the N eigenvalues Cn and the iv (right) eigenvectors U
(n)
(0 of this

(NxN)-matrix CON-01

gojt(n) (0 = C U(n) (D (10
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are given by the simple rule

c,, =2n-N-1 n = 1, 2,..., N, (1d)

N

U(n) (0 =exp[i(N+1-2n)O.] rl sin(O,,,-O,) (le)11=1,1#M ]-I
Proposition D-2. Define the (NxN)-matrix ! Uo in terms of the N

arbitrary "angles" 0,, by the neat rule

Ar

1 nm UO =CnmUo Cotan(On - 01) if n (2a.)

i n. UO = i cotan(O,, - 0.), if n:p-- m. (2b)

Then the iv - 1 (hence, all but, at most, one) eigenvalues a,, of this

(N x N)-matrix E0, and the corresponding right eigenvectors, W"

g(n) (P) = a0 W(n)(p) n = 1, 2,..., N - 1, (2c)E

are given by the simple rule

a,, =2n-N n = 1, 2,...,N - 1, (2d)

IV

9(n)(q)=exp[i(N-2n)Om1 sin(O. - 0) n = 1, 2,...,N- 1; (2e)
M

and these N -I ei envectors W(n) (q) are also eigenvectors, all of them9 -M

with zero eigenvalue, of the matrix J defined by the simple rule that all

its elements are unity:

Jnm =1
I

(2f)

iii(n)(p)=O n = 1, 2,...,N - 1, (2g)
-M

which also entails the (obvious) matrix identity (see(2a,b)

i E(q) = 0 (2h)
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Moreover the (N x N)-matrix E(O possesses obviously the eigenvalue 0,
with the left eigenvector u characterized by the simple rule to have all its

components equal to unity:

U. =1, (2i)

ii Eo = 0; (21)

while of course u is also an eigenvector of J (of course both right and

left, since J is symmetrical), with eigenvalue N:

Ju=uJ=Nu. (2m)

Hence if N is odd, the matrix E(q) possesses the N distinct eigenvalues
-(N-2),-(N-4),...,-1,0,1,...,N-4,N-2, and it is therefore diagonaliz-
able; while if N is even, it possesses the N-1 eigenvalues
- (N- 2), - (N - 4),...,- 2,0,2,...,N - 4,N - 2, and, iff it is diagonalizable, the

eigenvalue 0 has multiplicity 2 (but, for N even, ! (q) need not be di-

agonalizable; for instance for N = 2

E(q) = i cotan(O, - 02)11 11), (2n)

and the only case when this (2x2)-matrix is diagonalizable is when it

vanishes identically, namely if 0, -0, =,T/2 mod(7r)); while the matrix

A(,Oa,,6,;v)=a1+,8jj+ri O
, (2r)

has, in addition to the N - 1 eigenvalues

a,, =a+r(2n-N), n = 1, 2,...' N -1, (2p)

the eigenvalue

a,, =a +,8N; (2q)

and if these N eigenvalues are distinct, it is of course diagonalizable.

Remark D-3. The similarities and differences among the results of

Propositions D-I and D-2 should be emphasized; note in particular that,
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for any given AT, their eigenvalues and eigenvectors are different, for in-

stance for odd N the N eigenvalues Cn of g(o) are even integers, see

(1d), while the N - 1 nonvanishing eigenvalues of E(q) are odd integers,

see (2d); and this in spite of the fact that their diagonal elements coincide,

see (1a) and (1b), hence their traces also coincide; indeed both their traces

vanish,

trace[ Co I = trace[ EUO 0
,

(3a)

consistently with the symmetrical location of their (real!) eigenvalues to

the left and the right of zero, and also consistently with the trivial identity

IV

Y cotan(On - 0.) = 0
.

(3b)
n,.=I;n#.

Proposition D-4. Define the (N x N)-matrix go in terms of the N

arbitrary "angles" on by the neat rule

Ar

MJ0 COS(0n)SWO) 1SWO. - 01) 1
if n = m, (4a)

Mn.0 = -cos(On) sin(On) / sin(On - 0.), if n#m. (4b)

Then the N eigenvalues Un and the N eigenvectors v`)o of this

(N x N)-matrix go,

M(D ,(n) (0 `= Pn 2 (n) (0 ,
(4c)

are given by the simple rule

Yn =n-I n = 1, 2,..., N, (4d)

'V

(n)U19 = [COS 0. ]n-I [Sin
N-

EM om I fj Sin(on, (4e)
1=1,1#m

Remark D-5. Note the possibility to generalize/reformulate these re-

sults, see (4), by shifting the arbitrary "angles" On (which are all obvi-

ously defined mod(2;7)) by an arbitrary (common!) amount 0, On -> On + 0

(and then perhaps setting 0 =)r/2 to get a neater result). Also note the

isospectral character of all these three (NxN)7matrices, and
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,go, as manifested-by the independence of their spectra, see (1d), (2d)
and (4d), from the N parameters 0,

Proposition D-6. In addition to the trigonometric identities implied by
(1c) with (1a,b,d,e), by (2c) with (2a,b,d,e) and by (4c) with (4a,b,d,e),
there also hold the following sum rules:

IV

I cotan(O,, - 0.) cotan(On - 01) = -N(N - 1) (N - 2) / 3
, (5a)

11 #n

COS
2

0. Sin om Si'l 01 [Sin(0,, - 0.) sin(O,, - 01)]_1 =N(Y-1)(N-2)13,
n^1=1;n#m,m#Ij#n

(5b)

Ar

sin(2 0j sin(Om + 0,) [Sin(0, - 0.) sin(O,, - 01)J-1 =-2N(N-1)(N-2)13,
n,mj=I;n#m,m#I,Iv n

(5c)

N

I sin(On + 0.) sin(On + 01) [Siji(On - 0,J sin(O,, - 01)]_1 =N(N-1)(IV-2)13,

(5d)

N

sin(219n + 19m + 01) [sin(on - 0m) Sin(on - 01)1-1 = 0 (5e)
n- #n

Remark D-7. Other identities can be obtained from these by shifting
(all the) arbitrary quantities on, namely by replacing on with 0,, +0 (pos-

sibly with 0 = 7c / 2 or 0 = 7c / 4 or 0 = ;r / 8, to get neater results); in this

manner one can, for instance, replace the sines with cosines and the co-

sines with sines in the numerator in the left hand side of (5b,c,d,e). And
of course other identities may be obtained by combining those displayed
above with one another as well as with those obtained by such shifts.

Proposition DA Define the (NxN)-matrix RQo,M and ;g(o,a), and

the N N -vectors w
(n)
0, in terms of the 2N + 1 "angles" 0, 1Jon I a, by

the neat rules

N

R,jp,P)= fj [Sin( 0n-i9j)/sin(0,,,-0j)j , '(6a)
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NO,a) =&2+ a,0, B,,. CO, a) = 11 [SbI(O" - 01 + a) / Sjn(O,,, _ 0,)], (6b)
1=1,1--m

E(")(O = exp[i(2n-N-1) 0.]; (6c)
M

there hold then the following identities:

A('00 = 1; (6d)

ROO, q) 907,M = ROO,9), (6e)

AC99,q,):9(77j,'7,)'**A(77P D A( O,D, p = 1, 2,3,... (6f)

1900,01-1 = A(-O, (0) ; (6g)

(n) (n) (6h)0) = A0

ACO, 0) = 1 ; (6i)

A(O, a) ACO,8) A(0,8) A(O, a) =:9(,0 a +,B), (61)

P P

90fj A(O, a.,)= aj, p 1, 2,3,... ,
(6m):g(i

S=I s=1

LB(-O, a)]-' = mo,- a); (6n)

ACO, a) E()0 =,8,, (a) W(n) (6o)

,8,,(a) =exp[i (2n-N-1) a] (6p)

trace[&O, a)] = sin(Na) / sin(a), (6q)

bi(I aj (6r)trace[ &0,as)] = sin(N as) s

S=I S=I

detLB(O,a&j .
(6s)

RemarkD-9. The N eigenvalues fln(a) of the (NxN)-matrix A(O,a)

are independent of the N parameters Om, and its N eigenvectors w(') Uq

are independent of the parameter a (see (6o), (6p), (6c) ); hence any
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change of the parameters 0entails for ALOa) an isospectral deforma-

tion, as displayed by the formula

AQ9, a) = A( o, P) B(O,a) (6t)

A((o, a) = A( q,0 ACO, a) A(O, (o). (6u)

Remark D-10. The following trigonometric identities are merely ex-

plicit versions of some of the formulas written above (specifically: (6q),
(6r), (6o,p), (6g), and (6f) an (6e)):

Ar N

,
fj [sin(on-0.+a)/sin(O,-0.)]=sin(Na)/sin(a), (7a)1]

n=1 m=I, m#n

P

 
A' "

[sin(on,_ -0m, +a.,)/sin(On -0. )H I ri
s=1 n,=1 m,=I,m,#n,

P P

sin(N as)/ sin(L aj n. =- nP, p = 1, 2,3,... (7b)
S=1 S=I

Ar Ar

Y COS[M (on - 01 +a)] fj [sin(on - Ok + a) / sin(O, -OJI1
1=1 k=l,k#l

m = N - 1,N - 3,N - 5,...,l or 0; n = 1, 2,..., N; (7c)

IV Ar

sin[m (on - 01 +a)] fj [sin(on - Ok + a) /sin(O,- OJI0
1=1 k=l,k#l

m=N-1,N-3,N-5,...'IorO; n=1,2,...,N; (7d)

N N N

E rl [Sn((On - 0j) / Sn(OI - 0j) I I WWI - (00 Sn(Pm - (001 1 gnm 7

1=1
I j=l'j#l ]  k=Lk#m

(7e)

N

[ 
N N

-0 - 00111 1- 17j) fj sin(771 k) Sin(PnI: fT [Sn(Pn - 17j) / Sn(171  k=l,
k*m

(7t)

Several other trigonometric identities are implied by the other formulas

written above.

695



Proposition D-11. The (NxN)-matrix Qgr), defined in terms of the

N +I arbitrary "angles" on, y by the neat rule

Q. (0-1 r) = COS(On - 0. + r) I
(8a)

has the 2 eigenvalues

q()(O,r)=(NI2)1 cosr[ Sin2 r + r201
1/2

(8b)

q()(,Oy)=(NI2)1 cosr[-cos2r-2rjO]1/2

(8c)

IV

,V20 N-2 cos[2 (0,, - OJ] = I- 2,v, (0), (8d)

AT-2 Y Si
2

61 0.) = [I - 2),, (Dj/2, (8e)

and all its other eigenvalues (if any, namely if N > 2) vanish; the 4

[(2N) x (2N) ]-matrices Q(O,;,;c,z-) with c=+l,-l and z-=0,1, defined in

terms of the matrix Q(,Oy), see (8a), by the neat "block-matrix" rule

Q(O,r) i1-"o-Q(O,,v+7r12)
Q(O-,,-; a, Z-) I+r

- 0- = +1,-I, r = 0,1,
i crQL9 2) QLO r)

(9a)

have the 2 eigenvalues exp(ir), and all their other 2N-2 eigenvalues

vanish; and they satisfy the neat relations

Q(O, a; a, r) Q(O,,6; u,r) = Q(O, a +,8; u, r) . (9b)

RemarkD-12. The 2 nonvanishing eigenvalues of the (NxN)-matrix

Q(O,,v), see (8a), depend on the N parameters 0,, only via the single

qUant'tY V2 (9) (or vl 0), see (8b,d) (or (8c,e)); the 2 nonvanishing ei-

genvalues of the 4 [ (2 N) x (2 N) ]-matrices QCO,,V; u, -r), see (9a) with (8a),

are independent of the N parameters 0, hence their variation when these

parameters change is isospectral.

Proposition D-13. There holds the following trigonometric identities:
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tracet LQ(O, 7)], 1 =-  f (10a)I I I COO, - 0', + r)
nl,...,n,=l s=1jn,,janj]

P
= 2" N'

b/2]]

(Cos 7) P Sin2 Y + 720
r

(10b)(2r

= 2" NP
b/211

(COSY)P`1COS2y-2r, (,]r (10C)I
r 0

 P)2r

where p is an arbitrary positive integer, p 1, 2,3,... , 2] is the inte-

ger part of p/2 (namely [[pl2]]=pl2 if p is even, [[pl2]]= (p -1)/2 if

p is odd), and the quantities y,0, r,(q) are defined by (8d,e) in terms of

the N arbitrary "angles" On.

Proposition D-14. Let the (NxN)-matrix M=M(q,a2,...,ap;4,4,...,b,;cqz)

be defined as follows:

X 1 n n,

M .__

cv(c_';q), (c q; q),,-, (q-
+

; q),,
(Dr+2 q cq ,'7" a2' _'aP;q,z),p+2 M-N -.+I

(cq" -1) (cq cq cq" , bl, b, b,;(q; q) q)n-1 (q; q) j
c

(Ila)

where

(a,q), =fj (1-aqs) =Q-a)(1-aq)(1-aq2) ... (1-aq1_1), (a;q),, =1, (11b)
s=O

and por is the basic hypergeometricfunction,

(a,; q) , (a,; q) j
... (ap;q)j zj

P(D' ( a, a2,..., ap;; q, z (11C)
b, b2 _, b, ... (b,; q) j

(q; q)j=0 (b,; q) j (b2;q)j

The N eigenvalues X =,Un(a,, a29*-,aP;bb21 b,; c; q; z) of this matrix, and

the corresponding eigenvectors w( ) (q),

Mw(n) (q) =,u, w(") (q), (11d)

are then given by the following neat rules:

JUn = Cn-1 P(l)q( a, a2,'.., ap;
q,zq

n-1 (lie)
bj,b2,...1b,;
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(n)
=q

(M-1)(n-1)
W 

Here p and r are two arbitrary nonnegative integers, and

a,a2--*jaP;bj,b2,..., br; c; q; z are p + r + 3 arbitrary complex numbers (up to

the obvious restrictions required by the definitions given above).

Remark D-15. For A' = 2, by equating the trace respectively the de-

terminant of M, see (11a), to the sum respectively the product of its 2

eigenvalues, see (11e), one gets the following (rather trivial) linear re-

spectively (perhaps less trivial) quadratic identities relating "contiguous"
basic hypergeometric functions (see (1 Ic) ):

(c - q) p,j
(D

r+1

c, a-

q,z +(l-cq) P,(D,,
cq27q;

q,,z(c q-',b';  cq, b;

(1-q) P(Dr q,z +c 0,( !; q,zq)] (12a)I b;

respectively

(c -q) (1 -cq) P,Or,
C, a; qz) P+,(D,+, q2,q, q, +q(l-c)2

P+, (D,+j  cq' g;
q,Z)]2

c
z)(cq b; Cq, b,

=c(I-q)2 p(Dr
a;

q,z P(Dr ( a;
q,zq (12b)

b-(b-
Here of course a denotes the arbitrary p -vector of components as, and

likewise b denotes the arbitrary r-vector of components b, (with p and

r arbitrary nonnegative integers).

Proposition D-16. Let the (NxN)-matrix
P

be defined as follows:

(_AV (AI-I (1-A-1 r+nr+n-n C I% --Iap;
M = u+2Fr,,

"'

(N-1)!(n-m-r)( _N+1)n-1(M_W (r+n-lvr+n-m+LA,fi2 ......flr; Z)
(13a)

where
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1-1

(a), =11 (a+s) =a(a+1)(a+2)-(a+1-1), (a), =1, (13b)
S=O

and
,
F, is the standard hypergeometric function,

P
F_

aja2,-,a,;
z

(a), (a2)j-(a,)j zi
(13c)

A'A" j= j!

Then all the N eigenvalues of this (nondiagonalizable) (Nx N)-matrix

coincide with the hypergeometric function
P
F,

a, , a2,...,

aP;zj, see (13c). A,A, - - -, flr;

Here p and r are two arbitrary nonnegative integers, and

aj,a2l .... aP;)6j,)6 ,...,)6r; 7; z are p + r + 2 arbitrary complex numbers (up
to the obvious restrictions required by the definitions given above).

Remark D-I 7. For N = 2
 by equating the trace respectively the de-

terminant of k, see (13a), to the sum respectively the product of its 2

(equal) eigenvalues, see (13c), one gets the following (relatively trivial)
linear respectively (perhaps less trivial) quadratic identities relating
cc

contiguous" hypergeometric functions (see (13c)):

P,F,+,
YIE z) + Q +;v) ,Fr,

r+2,a; z)=2 F, ; z), (14a)
V +

2

n03
2-1)

r+I +r
2

+

r Z 12F z P+,F z P+,F,+, PFP+1 _LA
r,

r+L,#;  rfl; Z11  r, A,
(14b)

Here of course a denotes the arbitrary p -vector of components a, and

likewise 6 denotes the arbitrary r -vector of components 8,, (with p and

r arbitrary nonnegative integers).

Proposition D-18. Let the (NxN)-matrix W` _=W`(0;00;CO 02;CO)OC

be defined as follows:

W(P) = (-I)P exp - 2 (p / N) 77 [0, + p co + (on _0j

- jo-[On - 0. + 00 + 2 (p / N) co]l a(O,)j -
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IV

fj fc[O,, - 01 + 2 (p / N) co]l c(O. - 01)1, (15a)

where 0_(Z) U(Z I Col I C02) is the Weierstrass sigma function, see Appendix

A, co coincides with one of the two semiperiods, 0)1  C02 of these sigma

functions, 77 is the corresponding complementary quantity, see (A-42),
the N +I numbers 0,,, 0, are arbitrary and p is apositive integer defined

mod(N). Then the (N x N)-matrix W(P) satisfies the matrix formulas char-

acteristic of a shift operator,

W(P) = [W(I)
I-

(15b)f

W(PI) W(Pz) ff'(P +P2)
-

I (15c)

trace[ ff(P) = N,5,p p = 0, 1, 2,...mod(N) (15d)

det[ E(P) ] (_I)p(N+l) 9 (15e)

and its N eigenvalues are given by the simple expression

exp(2i7rpn1N) ,
n = 1, 2,..., N. (15f)

Remark D-19. The relations (15d) and (15c) yield via (15a) the fol-

lowing identities:

N N

exp(-2 p qOj F1 [o-(O,, - 0. + 2 co p / N) / c(O,, -Oj
n=1 M=I'.# 

=,5,,p ]Vexp[ 2(p1N)i7(0, +pco -10.) (16a)
j=1

IV

Y4 exp[2P77(o -01)1[c(on-O,+O,+2coqlN)lu(O,,-O,+2co(p+q)IN)].
1=1

.[o-(Ol -0,,, +00 +2c9p1N)1u(Oj -Om +2copIN)].

IV

- fj lo-(O,,-Ok+2ct)qlN)u(O,-O,+2ct)plN).
k=l,k#l

- [ o-(Om - 0, + 2 co (p + q) / N) o-(O, - Ok) J_' I
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= exp(-4 17 co p q / N) [u(O,) / u(2 co p / N)J . (16b)

Here N is an arbitrary positive integer, N   2; p and q are two arbitrary

integers, defined mod(N); the N+1 quantities 0, 0,, are arbitrary (possi-

bly complex) numbers, up to the restrictions required to make proper

sense of these formulas; c(z) _= c(z I co, co,) is the Weierstrass sigma func-

tion, see Appendix A, with semiperiods co, C02 ,
while co coincides with

one of these two semiperiods and 17 is the complementary quantity to CO,

see (A-42). The indices n, m in (16b) can take N integer values from 1

to N; and since this is as well true for p and q, the formula (16b) entails

in fact N' identities.

RemarkD-20. For N = 2
,
the formula (15e) with (15a) and p (and

0 = 0, - 0, ) yields the identity

C(Ig + 00 + CO) 07(o _ 00 _ CO) 072 (CO) _ 0.(0 + CO) 0-(0 _ CO) 0-2 (00+0))

= C2(0) C2 (00) eXP[217 (00 + CO)] . (17)

Proposition D-21. There hold the N identities

Ar N N

1: 1 [ fj (a. c, -b dj) (a. - xb.) 11 (a. b, - bm aj)
M=1 1=1,1#n f--IJ;IM

N

fj (d, - x c,) 1/ 11 (a, - xb,) n = 1, 2,..., N (18)
1=1.1#n k=1

Here a,,,b,,,c,,,dn,x are 4N+I arbitrary numbers (up to the obvious re-

strictions required to make good sense of (18)).

Remark D-22. The identities (18), whose left hand side corresponds
merely to the "partial fractions" decomposition of the product in the right
hand side, provides a convenient tool to identify "sums which can be

transformed into products".
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D.N Notes to Appendix D

The original idea to identify "remarkable matrices", in the specific sense

used herein, should be perhaps traced to <C78a>; see also <C77a>,

<CP79>, <ABCOP79>, <C80b>, <C80c>, <C81b>, <BC81>. A more

complete fruition of these ideas came via the connection with the stan-

dard theory of Lagrangian interpolation; for an overview see <C84b>, for

explicit applications (also involving basic hypergeometric functions) see

<C86b> and <C88>; for a more elementary treatment (aimed at computer

applications), see <C97a>, <C99a> and <C95d>. A final boost to this ap-

proach came from the connection with the generalized theory of Lagran-

gian interpolation <C93a>, see <C98b> and some of the findings in this

book (mainly in Sect. 3.1.2.1; see also some of the identities reported in

the latter part of Appendix A).
The remarkable matrices, and related trigonometric identities involv-

ing angles that are rational fractions of 7r, obtained in <CP79>, are re-

ported in Sect. 15.823 of <GRJ94> (where two different notations, A(')

and b, and likewise A,(,e) and c, are used for the same quantities); some

of these findings are special cases of results reported in Appendix D, in

particular the matrix A defined in Sect. 15.823 of <GRJ94> coincides

with ALO- a,,6,,v), see (D-2o), in the special case 0,, =71MIN, a=-1, 6=1,

= 1, thanks to the (obvious) identities

IV

cotan[;r(n-m)1N]=O .

M=I'M#n

Not all the formulas obtained in the papers quoted above are reported
in Appendix D; but we trust the selection reported there, which comes es-

sentially, and in this order, from <C97a>, <C84b>, <C99a>, <C95d>

(whose results are reformulations and simple generalizations of those

given in <C85c>, <C86b>, <C98b>), is sufficiently representative to pro-

vide a fair idea of the formulas that -may be found (with their proofs!) in

the papers quoted above, and, perhaps more importantly, of the kind of

identities that the alert reader may uncover by using the techniques de-

scribed in those papers and in the relevant sections of this book. And, of

course, the material contained in the preceding Appendix C, and in the

references quoted in Sect. C.N, provides additional examples of remark-

able matrices and of related identities.
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A irspendix E:Z-1-11

Lagrangian approximation for eigenvalue problems
in one and more dimensions

In the last part of Chap. 2, and in the first part of Chap. 3, a finite-

dimensional representation of the operator of differentiation is introduced

and its relation with the technique of Lagrangian interpolation is eluci-

dated. In Appendix E we tersely outline the possibility to exploit such a

representation in the context of numerical analysis, in particular to evalu-

ate the eigenvalues of differential operators. Our purpose here is merely
to introduce the main idea in the simplest context; the readers who are

interested in pursuing this approach are referred to the literature (see Sect.

E.N), although it should be made immediately clear that much more can

probably be done than has been done up to now. This is likely to be espe-

cially true for applications in the multidimensional context, based on the

results reported in the first part of Chap. 3; while our presentation here is,
for simplicity's sake, mainly focussed on the one-dimensional case

(Sturm-Liouville eigenvalue problems). Let us also mention that the tech-

niques of Chap. 3, including in particular the consideration of time-

dependent nodes and of their time evolution, might have other interesting
applications in numerical analysis, for instance in the context of fluid me-

chanics; but we are then talking of (possible) ftiture developments.
Consider the Sturm-Liouville eigenvalue problem

C, (x) Ky (x) + C, (x) V., (x) + Co (x) vf. (x) = A. Vf. (x), (la)

in the finite interval a:! x:! b, with boundary conditions

v. (a) = V. (b) = 0. (lb)

Assume that all the eigenvalues A. are real and that they are bounded

below, so that they can be ordered as an increasing sequence,

A, :! A,,, ,
m = 1, 2,... . (2)

Generally this ordering corresponds to the property of the eigenfunction
Vf (x) to posses m - 1 zeros inside the interval (a, b).
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We now set

V. (x) = (x - a) (x - b),rp. (x), (3)

transforming thereby the eigenvalue problem (1) into the equivalent

problem

A  9. (x) = A.  p. (i), (4a)

V.(x) regular at x =a and x = b, (4b)

where A is the differential operator (singular at x = a and x = b) defined

as follows:

A= a2(X) (dldX)2 + a, (x) (d / dx) + ao (x) (5a)

where

a2W = C2W Y
(5b)

a, (x) = cl (x) + 2 [(x - a)-' + (x - b)-1 ] C2W (5c)

a, (x) = co (x) + [(x - a)-' + (x- b)-] cl (x) + 2 [(x - a) (x - b) C2 (X)' (5d)

Exercise E-1. Verify!

Let us moreover assume that the functions c,(x), c,(x) and cjx), see

(1a), are entire and that c,(x) has no zeros (even for complex x). This

implies that any solution VI(x) of (1a), hence as well the eigenfunctions

V (x) of the eigenvalue problem (1), are entire functions of x. This is, of

course, not the case for the generic solution (O(x) of (4a) with (5), that

generally has simple poles at x = a and at x = b, see (3). But the eigen-
functions 9. (x) of (4) with (5) are entire; indeed they, and the corre-

sponding eigenvalues A., are determined by the requirement that the sin-

gular Sturm-Liouville equation (4a) with (5) possess an entire solution

V. (x) (see (4b), itself implied by (3) with (1b)).
Let us now associate to the differential operator A, see (5), an

(N x N)-matrix A, via the replacement x => X, d/ dx=> D,

,4=a,2(M:22 +aIUX D+aO UX, (6)
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with X respectively p defined by (2.4.1-1) respectively (2.4.1-2),

X = diag(x,,; n = 1, 2,..., N), (7a.)

IV

(P)
-

= 45nm 1], (X,, - x/ )-1 + (1 - 15nm) (Xn - Xm)
-1

(7b)
1=1

in terms of N distinct, but otherwise arbitrary, numbers xn. Let a,, be the

N eigenvalues of this (N x N)-matrix A:

4
(n) (n)

,
A E =an _V n = 1, 2,..., N. (8)

These eigenvalues, am, need not be (all) real, since the matrix A need not

be Hermitian (see, however, below). Indicate by  m those eigenvalues am

which are real,

 . =am ,  . real, (9)

and order them in increasing order,

(10)

(see (2)
It is now plausible to conjecture that, for sufficiently large N, and

small m, the m -th real eigenvalue  m of the matrix A provides an ap-

proximation to the m -th (real) eigenvalue Am of the Sturm-Liouville

problem (1),

;z  ,m (m "small", N "large").

Indeed, if the eigenfunction p. (x) is a polynomial of degree less than N, A.

coincides with  m (or at least it coincides with an eigenvalue of (1); and the ordering
conventions (2) and (10) support then the conjecture (11) ).

Exercise E-2. Review the results that imply the validity of this statement. Hint:

see Corollary 2.4.1-4.

But the requirement that identifies the eigenfunction (p. (x) of (4a) is the condi-

tion that this function be entire. An entire function is generally well approximated by
a polynomial, the more so the higher the degree of the polynomial is (note that, pre-

sumably, the accuracy of the approximation in question refers to a comparison limited
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to the real interval a:! x:! b, or perhaps to its neighborhood in the complex x -plane).
Hence it is reasonable to expect that, if  0. (x) is generally (for large enough N ) wen

approximated by a polynomial (of degree less than N), since  . would exactly coin-

cide with A. if  9. (x) were exactly a polynomial (of degree less than N ), than, for

large enough N, will generally approximate A. well.

The conjecture (11) is reinforced and made quantitative by the (non-

rigorous but plausible <C83b> <C83c>) estimate

A,,, -  . (N) I / IA. I ;t: [(ir / 2) (m / N)I'v-2. (12)

Note that the convergence at large N of  . (N) to A. entailed by this

formula is quite fast.

For a justification of this formula, (12), the interested reader is referred to the lit-

erature <C83b>, <C83c>, <C84b>.

Note that, in (12), we wrote  . (N) in place of to underline the dependence

of this number on N. This quantity,  ., depends moreover on the choice of the N, a

priori arbitrary, numbers x,, that enter in the definition of the two matrices X and

D, see (7) (indeed to obtain the estimate (12) the assumption is made that the nodes

x,, are equispaced in the interval (a, b) ). The dependence on the values of these pa-

rameters x,, is however expected to be weak: indeed when (D. (x) is a polynomial (of

degree less than N), the exact result for the eigenvalue is obtained for an arbitrary
choice of the N numbers x, But in any case the freedom in the choice of the N

nodes x,, can sometimes be taken advantage of, as it were a priori: for instance

sometimes an appropriate choice of these N parameters x,, can guarantee that the

(N xN )-matrix A be Hermitian, hence that all its eigenvalues a,, be real, clearly a

desirable feature.

The advantage of this method to evaluate numerically the (first few)
eigenvalues of a Sturm-Liouville type problem reside in its simplicity and

efficiency. The simplicity is evidenced by the fact that the problem to

compute the eigenvalues of a differential operator gets transformed into

the task to compute the eigenvalues of an (,VxN)-matrix, without the

need to perform any integration (as is instead the case in most other

methods, for instance in variational ones). The efficiency is suggested by
the estimate (12), and it is indeed confirmed by numerical tests <D83>,
<CF85>.
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The general philosophy of this approach is based on the ideas of col-

location and discretization; one evaluates the continuum problem under

consideration at a number of discrete points, the N nodes, and uses the

information from all these points to approximate the values of the deriva-

tives of the unknown function at these points. The fact that one is effec-

tively using the values of the function at all the nodes, to evaluate the de-

rivative of the unknown function at each node, is a main cause of the fast

convergence at large N evidenced by (12). On the other hand one has in

this approach to cope with full (N x N)-matrices, rather than only three-

diagonal ones (or few-diagonal ones), as it is instead the case in ap-

proaches, based on discretization, where the derivatives of the unknown

function at one point are expressed via the values of that function in the

immediate, or close, neighborhood of that point.
Finally let us reiterate that, so far, the additional potentialities of the

generalized approach described in the first part of Chap. 3 have been

hardly used, to the best of my (most imperfect) knowledge, in numerical

analysis, at least from the point of view emphasized in that Chap. 3: finite

dimensional representations of the differential operator, with large flexi-

bility in the choice of the nodes, especially important in the multidimen-

sional context; including the possibility to let them evolve in time, in the

context of problems which study the time-evolution of (discrete, or con-

tinuous) systems. There seems therefore to be much scope for further

work in these directions.

E.N Notes to Appendix E

The idea on which the approach outlined in Appendix E is based was in-

troduced in <C83b>, and pursued in <C83c>, <C84a>, <C85c>; see also

<D83>, <D85>, <Ca86> and, for numerical applications, <CF85> and

<BCP90>. The presentation of Appendix E follows rather closely Sect. 6

of <C84b>.

While some of the numerical examples discussed in <CF85> are

multidimensional, they do not employ the more advanced technique, see

the first part of Chap. 3, that extends the Lagrangian interpolation ap-

proach to a multidimensional environment. The main advantage of such a

technique is the great flexibility it entails in the choice of nodes. The pos-

sibility of applications in numerical analysis are mentioned (but without

subsequent follow up, so far) in (section VI of) the paper <C93a> where

this multidimensional extension of the Lagrangian interpolation approach
was first introduced.
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Appendix F:

Some theorems of elementary geometry
in multidimensions

In Appendix F we report several theorems of elementary (Euclidean) ge-

ometry, whose common origin is in some basic properties of determi-

nants. The justification for including such a topic in this book is because

a first result of this kind emerged naturally in the context of the treatment

of the generalized Lagrangian approximation technique, see Exercise

3.1.2.2-4. We discuss below this nice result <CK96> firstly, and we then

proffer several other theorems, mainly using the format of proposing ex-

ercises (equipped with appropriate hints). It will be clear to the alert

reader who studies these findings, how lots of other, analogous, results

could be manufactured (or should one say discovered?).
Define the following (N x N)-determinant:

1 41) XM
...

X111) r2 &1))
2

(2) (2) (2) 2(2 (2))
Ar =

Xi X2 ... XS r

I (1a)

N) (N)
...

(N) 2 (X(N))1 4 X2 4 r
-

of course with

N=S+2, (1b)

and with

S

r2UX XS2 (10

Here S is an arbitrary positive integer, the determinant (1a) has N = S + 2

lines and of course as many columns, see (1b), 7 stands for the set of

N S -vectors F(), n = 1, 2,..., N, and x,(), i = 1, 2,..., S are the S coordinates

of the S -vector 7(') in some Cartesian coordinate system.
If one translates or rotates the Cartesian reference frame, the coordi-

nates xj() of course change accordingly; but the value of the determinant

(1) does not change.
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Exercise F-1. Prove this fact. Hint: remember that a determinant does

not change if to a column one adds any other column times an arbitrary
constant (the addition to be of course made element by element), and that

if every element of a column gets multiplied by an arbitrary constant, c,

the value of the determinant gets multiplied by the same constant, c (note
that it is quite easy, using the first of the two properties of determinants,
to prove invariance under translations; the proof of invariance under ro-

tations is more cumbersome; it is actually implied by the following de-

velopments, see RemarkF-3 below).

These invariance properties of A(Dr, see (1), suggest that this quantity
have an intrinsic, geometrical, significance, namely that it can be defined

in terms of the N points F,, in S -space (as it were, independently of the

specific values of their coordinates in some specific Cartesian reference

frame). Indeed, we find below that it can be defined geometrically in sev-

eral different ways, and the equalities among these different definitions

entail nontrivial theorems of elementary geometry.
A first approach goes as follows. Select one of the N vectors F("), say

j;(P), and define the simplex I:p in S-space having as its S+1=N-1 ver-

tices the N-1 points 7(n)
,

n = 1, 2,..., p - 1, p + N, as well as the

(unique!) hypersphere S, in S -space that goes through these N-1 points.

Now translate the Cartesian system so that its origin coincide with the

center of the hypersphere S
P

.
In this new system of coordinates the de-

terminant (1) (whose value has not changed, since we only performed a

translation), reads

1 Xj(') X(')
...

XS(I) R
2

2 P

X(2) (2) (2) 2

1 X2 ... XS RP

(P-1) (P 1) (P-1) 2
1 X X R'

Affr) IW X2W S

W

P (2)
I '

X1 X2 ... XS rp
(P-") X(P+1)

...

2

Xi 2
X(P*") R
S P

(N) (N) 2

Xi X2 XS(,V) R'
P

where RP is now the hyperradius of the hypersphere SP (see (1c) and r,

is the Euclidean distance in S -space (see (1c) ) of the point F(P) from the

center of coordinates, or, equivalently, from the center of the hypersphere

SP (equivalently, rp is the hyperradius of the, uniquely defined, hyper-

sphere sp ,
concentric to SP ,

on which F(P) lies).
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Now subtract the first column of the determinant (2a), multiplied by

r,, from the last. This does not change the value of the determinant,

which now reads

X(I)
1

X(I)
2 ...

XG)
S

0

XJ(2) X2(2) ...
XS(2) 0

A(:r)
(P-1)

xi
(P-1)

X2
(P-1)

XE 0
(3)

XI(F) (,17
xi

(P)
... xS

2 2

rp
- R

P

(P+I)
xi

(P+1)
X2

(P+I)
xS 0

(N)
xi

(N)
xi ...

XS(N) 0

Hence

2) WAr = (-l)N+" (rp' -RPP (4)

where WP is the (AT- - 1) x (N - 1) determinant that obtains from Ar, see

(2) or (3), by eliminating the p -th line and the last column,

XM
1

X(I)
...2

X(I)
S

x(2)
1

x(2)
...2

x(2)
S

=W I x
(P -1)
I

(17-1)
...X2

(P-1)
xS

. (5)
P

x
(P'1)
1

x(P+I)
...2

(P+I)
XE

x(Ar)
1

x(Ar)
2

x(Ar)
S

But it is well known that this determinant, Wp, coincides (up to a sign,

and the numerical factor (jv-l)!) with the volume V(') of the simplex
E'. Hence we arrive at the following
P

Proposition F-2. Up to its sign, and the factor (N - ir, the determi-

nant A(E), see (1), is the product of the volume V of the simplex V"), in

S-dimensional space, having as vertices N-I=S+l of the N points 7(n),
times the area A of the plane (2-dimensional) annulus whose two radii

are given by the following prescription: one of them is the hyperradius R

of the hypersphere S(') in which the simplex E('-') is inscribed (namely,
the hypersphere which goes through the N-I = S+I vertices of the sim-

plex the other one is the hyperradius r of the concentric hyper-

710



sphere s on which lies the extra point (that one of the N points F(n)

which is not used to define the symplex 2:(')).

It is clear that this Proposition F-2 is implied by the above treatment and that it

provides the desired geometrical interpretation of the determinant (1).

Remark F-3. To prove Proposition F-2 the invariance of (1) under translations of

the Cartesian coordinate system was utilized, but its invariance under rotations (of the

Cartesian coordinate system) was not invoked; this property is now implied by Propo-
sition F-2, which provides a purely geometrical definition of the value of Ar,

clearly independent of the choice of the Cartesian system.

The validity of Proposition F-2 provides N different geometrical in-

terpretations for the determinant (1), corresponding to the arbitrary choice

that must be made of one point, say F(P), which is singled out and treated

differently from all others, F(n) with n = 1, 2,..., p - 1, p + IV; the identity

of these N geometrical interpretations gives rise to a (purely geometrical)
theorem. While we leave the formulation of this result in the context of a

space with an arbitrary number S of dimensions (S > 3) as an exercise

(unnumbered!) for the diligent reader (solution: see <CK96>), we now

report the formulations <CK96> of this finding for S = 1, 2,3 (consistently
with the title of this book!).

Theorem F-4. Let x(l), x(') and X(3) indicate 3 points on a straight
line. Choose any one of them, say x(3), and let X(3) = (x(') + x(2)) / 2 be the

center of the segment [X(l), X(2) 1, of length 2 R3 = Ix(1) -X(2) 1; also let

r3 = JX(3) _ X(3) I be the distance of the point X(3) from X(3)
.
Let C3 respec-

tively C3 be the two coplanar concentric circles centered at V), havi

respectively radii R3 (so that x(l) and x
(2) lie on C3) and r3 (so that x

(3)

lies on C3). Let A3 =,T(r32 -R32) be the area of the plane annulus comprised

between C3 and C3. Let P3 = R3 - A3 be the volume of the annular cylinder

characterized by the height R3 and the radii r3 and R3. Let P, respectively

P2 be the analogous quantities, corresponding to the choice of x(l) re-

spectively x(2) in place of X(3)
.
Then

P1 = P2 = P3 (6)
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This Theorem F-4 could of course be interpreted as an elementary result in 3 -

dimensional geometry (since the annular cylinders of volume Pj are 3 -dimensional

objects), or in 1 -dimensional geometry (since the starting point of the treatment are 3

points on a straight line). It is of course implied by Proposition F-2 with S = 1
.
The

diligent reader will draw appropriate diagrams to display graphically the geometrical
significance of this elementary finding.

Theorem F-5. Let 7(n)
,
n = 1, 2,3,4, indicate 4 points in the plane. Se-

lect any one of them, say 7('). Let T4 be the area of the triangle with ver-

tices j:(1), ;;(2), j:(3) ; C4 be the circle on which these 3 points lie; and C4 be

the concentric circle on which 7(4) lies (draw the diagram!). Let A4 be the

area of the annulus comprised between the two circles, and P, = T4 - A4.

Let P
,
n = 1, 2,3 be analogously defined, by replacing the role of F(4) with

;:(n)
, n1,2,3. Then

PI = P2 P3 = P4 * (7)

Theorem F-6. Let n=1,2,3,4,5, indicate 5 points in 3-

dimensional space. Select any one of them, say 7('). Let T, be the area of

the tetrahedron with vertices 7('), F(2), F(3), j;(4) ; C, be the sphere on

which these 4 points lie; and c, be the concentric sphere, of radius r, on

which i;(5) lies. Let A5 be the area of the plane annulus comprised among
the two concentric circles of radii r, and R,. Let LeP5 = T5 * A5' t P,

n = 1, 2,3,4 be analogously defined, by replacing the role of i;(5) with F(n),

n = 1, 2,3,4. Then

PI = P2 = P3 = P4 = P5' (8)

These two Theorems, F-5 respectively F-6, are clearly immediate consequences

ofProposition F-2 with S = 2 respectivelyS = 3.

In the formulation of all these results we have always tacitly understood that the

points under consideration are generic. All results remain of course valid as well for

nongeneric configurations (for instance, in the case of Theorem F-5, if 3 of the 4

points in the plane are aligned, so that they form a triangle of vanishing area), but in

such cases one must assign an appropriate (limiting) value to indeterminate products

(of type 0 - oo
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Exercise F-7. Generalize all the above results by replacing hyper-
spheres with quadrics (in S -dimensional space). Hint: replace the defini-

tion (1c) with

S

2
r UX ajkXjXk (9)

j,k=t

Solution: see <CK96>.

Many more theorems of elementary geometry can be obtained by
analogous techniques; the examples given below, mainly in the guise of

exercises, are restricted to spaces of one and two dimensions.

Exercise F-8. Consider 4 points on a straight line (embedded in a

plane), and indicate by X(n)
,
n = 1, 2,3,4, their coordinates (on the line).

Select any (unordered) pair of them, say x('), X(2) (there are of course 6

possible choices). Construct the circle, C, that has the segment

[ x(1)
,
x(2) 1 as its diameter, and the two concentric circles (in the same

plane), 'C12,3 respectively C12,4 on which x
(3) respectively P) lie. Let A12,3

respectively A12,4 be the areas of the two annuli comprised between C1,

and C,2,3 respectively C12,4; let B12 be the area of the rectangle (in the

plane) of sides jx(l) -x(2)1 and JX(3) _X(4)1 ; and define the product

P 2=BI2 'AI2,3 , A12,4 .
Let Pn. be the quantity analogous to P, but with the

pair x(l), X(2) replaced by X(n) ,x(m). Prove that the 6 quantities P,. are all

equal,

PU  P13 = P14 = P23 = P24 = P34 (10)

p =;r2Hint: show that JV4Ux17 where V4Ux is the (Vandermonde) deter-

minant

2 X13XI X1

X2 X3X2 2 2

V4 UX
2 3

X3 X3 X3
2 X3X4 X4 4

(and to evaluate this determinant, rather than using the standard Vander-

monde formula, exploit its translation invariance, setting the origin of co-

ordinates in the middle of two points, say at the center of the pair x('),
X(2) ; then subtract the first column, multiplied by a suitable factor, from

the third, and likewise the second from the fourth,
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Exercise F-9. Consider 5 points on a straight line (embedded in a

plane), and partition them into a pair and a trio (both unordered; this can

be done in 10 different ways). Now draw (in the plane) the circle C that

has as diameter the segment joining the selected pair of points, and the 3

concentric circles, C, 1 C2  C3 ,
on which the other 3 points lie. Let A be

the area of the circle C, and 41, 4, respectively,43 be the 3 areas of the

3 circular annuli (in the plane) comprised between C and cl, c, respec-

tively C3 .
Next select one point from the trio (this can be done of course

in 3 ways), and draw (in the plane) the circle e that has as diameter the

segment joining the other two points, as well as the concentric circle a

on which the chosen point lies, and let 2 be the area of the circle i , and

2' the area of the annulus comprised between these two circles,  ! and a

(draw diagram!). Finally let

P = (A,4)1/2 A, A2 A 21
- (12)

Given 5 generic points on a straight line, there are 30 different construc-

tions that lead to as many, a priori different, evaluations of P. Prove that

all these values of P are equal, and that they indeed coincide with

7C5 IV5 OX1/ 4, where V5(x) is the (5x5) Vandermonde determinant corre-

sponding to the 5 points,

X1 X12 X13 X14
2 3 X4X2 X2 X2 2

2 X33 X4X X3 3
(13)VU X3

X42 XA3 4

X4 X4

X52 X53 X4X5 5

Hint: to evaluate VUx , exploit its translation invariance by setting the

origin of coordinates in the middle of a pair of particles; then subtract

from the third, fourth respectively fifth columns the first, second respec-

tively third columns multiplied by an appropriate factor; then proceed as

in the proof of Proposition F-2 (with S = 1, N = 3).

Exercise F-10. Let i;(n) be 4 generic points in the plane. Select any

(unordered) pair of them, say F (') and 7 (')
; this can be done in 6 different

ways. Let C12 be a circle that goes through these two points; there are of

course an infinity of such circles, characterized by their radii R, with

jr(l) - r(2)J: 2R<oo. Let C,2,3 respectively C11,4 be the two circles, both

concentric to C121 on which the other points, F(') respectively 7('), lie;

once C12 has been chosen, these two circles are uniquely defined (draw
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diagram!). Let A,,,, respectively A,,,, be the areas of the circular annuli

comprised among C,, and C,,,, respectively C,,,,; and let T12,3 respectively

T12,4 be the areas of the two triangles with vertices F('), F(') and i:(3) re-

spectively F(4)
.
Then set

P = IA2,3 T12,4 + s A12,4 T12,31 1 (14)

with the sign s determined as follows: s = a a', where o- = + if the circle

C12 falls between C12,3 and C,2,, and o- otherwise, and o-= + if the

points 7(3), 7(4) lie on the same side of the straight line going through j;(1)

and F('), u'= - otherwise (note that, in the borderline cases, the value of

the sign s becomes irrelevant, since one of the addenda in the right hand
side of (14) vanishes). Prove that the value of P is then independent, not

only of the initial selection of the first pair of points (out of 6 possibili-
ties), but as well of the value of the parameter R (which can vary con-

tinuously within its allowed range), and that in fact

P = (7r12)jAr 1, (15)

with A(:r) defined by (1) (with S = 2, IV = 4). Hint: to evaluate A(E) take

again advantage of its translation invariance, but now in a different man-

ner than that used to prove Proposition F-2: choose the origin of coordi-

nates at a point at the (same!) distance R from the two points of the se-

lected pair; then subtract the first column, multiplied by R2, from the last

Exercise F-11. Let i;(n)
,
n = 1, 2,3, be 3 (distinct) aligned points in the

plane, that lie on a common straight line, and F() be a fourth, nonaligned,
point in the plane, that does not lie on that straight line. Let, say, F() be

the (uniquely defined) middle one of the 3 aligned points, and set

a =ji;(2) _i;(I)j / IF(3) _i;(I)j ,
hence 1 -a = ji;(3) _ j;(Z) I / ji;(3) _ F(1) Iwith 0 < a < 1.

(Check!). Now let p = 1, 2 or 3 and indicate with A, the area of the an-

nulus comprised among the circle C
P

that goes through the 3 points T()

and i;(n) with n taking the two values, in the set (1, 2,3), different from p,

and the concentric circle cp on which F(P) lies (draw diagram!). Prove

that

(1-a)A, = Az = aA3 (16)
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Hint: see the previous Exercise F-10, for the special configuration con-

sidered here.

Exercise F-12. Let T(') be 5 generic points in the plane (the require-
ment of genericity entails that no 3 points are aligned). Select any one of

them, say F(') (there are of course 5 possible choices). Now translate and

rotate the Cartesian reference frame so that in the new coordinate system,
call it K5 ,

the hyperbola characterized by the equation xy = H, with an

appropriately chosen value of the parameter H5. go through the 4 points

F(I), j;(2), 7(3), j;(4). (i) Prove that these requirements determine uniquely
the translation, the rotation (up to a minor ambiguity, see below), the

modulus of the quantity H, and the corresponding hyperbola, as well as

the new reference frame K, (up, as regard K, to the trivial symm i

corresponding to a rotation by 7r / 2 and a change of sign of H5 ,
or a ro-

tation by ,T without change of H
5 ; hereafter we stick to one specific

choice, K,, among these, essentially equivalent, Cartesian frames of ref-

erence). Set then h5 = X(5)Y(5) ,
where x('), y(5) are the Cartesian coordi-

nates of 7(') in the new (translated and rotated) reference frame K,; hence

the hyperbola defined, in the new reference frameK5, by the formula

xy=h5 goes through the point j;(5)
. Next, select one of the 4 points F(l),

i:(2), j;(3), i:(4)'Say ;;(4) (there are of course 4 possibilities). Then translate

(without any rotation) the reference frame so that, in the new reference

frame (call it K,4), the hyperbola defined by the equation X2 _YI =H,4,

with an appropriate choice of the parameter H,41 go through the 3 points

i:(I), F(2), ;;(3). (ii) Prove that there is a unique translation that does this,
with a corresponding unique value of H.4 (note that only the translation

can be adjusted in this case, not the rotation, in contrast to the previous
case; indeed, in this case the hyperbola is required to go through 3 points,
above it was required to go through 4 points). Set now

h54 = [X(4) ]2 _ [Y(4) 12, where P), y(4) are the new coordinates of F(4); hence

the hyperbola defined, in the new coordinate system, by the formula

X2_ Y2= h, goes through the point F(4). Finally evaluate the product

P54= IH5-h5llH,4 -h541T123 where T123 is the area of the triangle whose 3

vertices are the 3 points 7('), 7(2)
,

i;(3) ; and let P,,. be the quantity analo-

gously defined, with 5 replaced by n and 4 replaced by m. There clearly
are 20 a priori different determinations of P

,,., corresponding to 5

choices for n and 4 for m (m# n, of course). Prove that they all have the

same value,

716



P =IA(,2) OTI/2, (17)nm

with the (5 x 5)-determinant A(,2) r defined, in terms of the Cartesian co-

(n) (n)ordinates x Y of the 5 points 7(n) in the plane, by the formula

x
(1)

Y
(1) [X(l) ]2 [Y(1) 12 X(I) Y(I)

,&(52) (18)
x

(5)
Y

(5) [X(S)]2_[Y(5)]2 X(5)Y(5)

Hint: prove first of all that this determinant, (18), is invariant under

( T(n) _4
 :-(n)

= F(n) + j;(O)translations r and rotations

(X(n) ___, y(n)
= X(n) COS 0 _ Y

(n) Sill 0 ,Yy(n) X(n) sin 0 + y(") COS 0 ); then take

advantage of this fact to show that, in an appropriately rotated and trans-

lated reference frame (as suggested by the formulation above)

'2)2)
= -(h5 -HOA0 (19a)A(5 4

with

X
(1)

Y
(1) [X(1)12 _[YG)12

A(2)
4 (19b)

X
(4) Y(4) [X(4)]2 _[Y(4)]2

then note that this determinant, (19b), is invariant under translations (not
rotations), and take advantage of this fact to show that, in an appropri-
ately translated reference frame (as suggested by the formulation above)

2A(4)1 = 21 h54-H54IT123 (19c)1

Exercise F-13. Drop, in the preceding Exercise F-12, the condition

that the 5 points F(n) be generic; can you obtain thereby some new geo-

metrical theorems? Hint: see Exercise F-11.

Finally let j;(n)
,
n = 6, be 6 generic points in the plane, and let us

focus on the following (6 x 6)-determinant defined in terms of their Carte-

sian coordinates x(n)
, Y(n)
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X
(1)

Y
(1) [X(l)]2_[Y(1)]2 X(I)Y(I) [X(l)]2+[Y(I)]2

2) (EA(6 D (20a)

X
(6)

Y
(6) [X(6)]2 _[Y(6)12 X

(6) Y(6) [X(6) ]2 +[Y(6)]2

Exercise F-14. Prove that this determinant, (20a), is invariant under

(F(n) = F(n) + i;(O)translations r and rotations

( X(n)
___), y (n)

= X( ) COS 0 _ Y
(n) Sin 0

, Y
(n)

__> y(n) X(n) sinO+y
(n) COO). Hint: use

the basic properties of determinants (see hint in Exercise F-1).

Exercise F-15. Show that there are several equivalent definitions of

the determinant (20a), for instance

X
(1)

Y
(1) [X(l)]2 X(I) Y(I) [Y(1)]2

A(,2) r=4 (20b)
I X

(6)
Y

(6) [X(6)]2 X(6) Y(6) [Y(6) ]2

and

1 X X(VI) (1+a)[x('1',j6x(I)y(' +(I-a)[y(1)12, IVX
(1)
+ 5Y

(1)
+77

(2)
0,A6

1  6)  6) [ 6)f  6)f ) 6) 6) (1+a)[X(6)]2+'6X(6)Y(6)+ a a)[Y(6) 32 + rX
(6)
+ 15Y

(6)

+771

(20c)

where a, 6, r, 5, q are 5 arbitrary coefficients. Hint: use the basic

properties of determinants.

Exercise F-16. Show that, given 5 generic points F(") in the plane,
there is a unique quadric (defined, in a given Cartesian frame, by the

equation

(I+a) X2 +,6xy+(I-a)Y
2
+ rX + ly Y + I = 0 (21)

with the 5 parameters a, 6, v, 5, 77 determined in terms of the Carte-

sian coordinates of these points) which goes through these 5 points. Hint
obtain 5 linear nonhomogeneous algebraic equations for the 5 parameters

a, 6, Y, 8, 77 by setting x = x
W

, y y
(n)

,
n 5 in (21).

Exercise F-I 7. Show that

A(62) = A(52) - D(6) (22)
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with A(,) defined by (2), A(,2) defined by (18) and D(6)
=_ D(6) r defined as

follows:

D(6) r =d(6) (i;(6)

= (1 + a6 ) [X(6) ]2 +J86 X(6) Y(6) + (1 - a6 )[Y(6)]2 +76 X(6) + g
6 Y(6) + 176  (23)

where the 5 parameters a6l A  761 g
6  N are (uniquely) defined by the

requirement that the quadric uniquely characterized (see Exercise F-16)
by the equation

d(6)0 = 0, (24)

(see (21) arid (23) ) goes through the 5 points ;;(n)
,
n = 1,, 5. Hint: set

a=a6, fl=A, 7 = JV6 Y
'3 = '56 7 q = 776 in (20c), and use (23) and (24) (this

latter formula entails of course d(6) (i:(n) ) = 0
,
for n = L...' 5

Let us endAppendixF by formulating the following

Theorem F-18. Let F(n), n = 1,, 6, be 6 generic points in the plane,
(n)and x

, y(") their Cartesian coordinates (in some reference frame). Select

any one of them, say F(P), L p:!:- t 6 (this can of course be done in 6 differ-

ent ways). Then define the following two quantities: the (5 x 5)-
determinant

5

X
(1)

Y
(1) [X(1)12 _[Y(12 X(1) Y(1)

X
(P-1)

Y
(p-1) [X(p-1)]2_[Y(p-1)]2 X(p-I)Y(p-1)

(25)
X(P+I) Y

(p+l) [X(p+l)]2_[Y(p+l)]2 X(p4-1)Y(p+I)

1 X
(6)

Y
(6) [X(6)12 -[Y(6)i2 X

(6) Y(6)
,

and the quantity

D(P) r=(l+a P)[X
(p) ]2 +'fl, X(P) y(P) + -a

P
) [Y(p) ]2 +rP X

(P) +,5, Y
(P)

+ 77p

(26)
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where x(p), Y(P) are of course the Cartesian components of F(P) and the 5

coefficients ap, 6p, r,, 5p, qP in (26) are uniquely defined by the re-

quirement that the quadric defined by the formula

(I+aP)X2 +'BP Xy+(I_aF)Y
2

+;,", X +,5FY+ 77P =0, (27)

go through the 5 points i:(p+l) j;(6). These two quantities,

A(,2) and D(P), see (25) and (26), are defined in terms of the Cartesian

components of the 6 2-vectors F(n), but their values are independent of

any rigid motion (translation or rotation) of the coordinate system, hence

they should be both considered as geometrical objects having an intrinsic

significance, independent of the coordinate system used to evaluate them:

for A(,), this has already been shown above, see Exercise F-12; as for the

value of D(P), it clearly provides an intrinsic measure of the failure of the

point F(P) to lie on the (unique!) quartic that goes through the 5 points

;;(I)I.... i:(pl)' F(pl) 7(6), since (26) and (27) entail that D(P) vanishes if the

point F(P) also lies on this quadric. Generally, given 6 generic points, to

every one of the'6 possible different selections of ;;(P) from the set f i;(n)'

n = 6 1 ,
there correspond different values of A(,) and D(P), see (25)

and (26); but the product of these two quantities is always the same, for

these 6 choices of p, indeed

'  2) j;(p-1), i;(p+l) j;(6) ).DPOT =A(,2) r (28)
5

with A(,2) r defined by (20).

Proof Ihe uniqueness of the quadric (27) is proven in Exercise F-16; the intrin-

sic (coordinate-independent) nature of A(,2) is proven in Exercise F-12; the intrinsic

nature of D(P) is entailed by (28) and by the intrinsic nature of A(,2) (see above) as

well as A(,2) (see Exercise F-14); the result (28) is proven in Exercise F-I 7 (with 6

replaced by p ).

Remark F-19. The value of the determinant A(,) ,
see (20), is an in-

trinsic measure of the failure of the 6 points ;7(n)
,
n = L...' 6 ,

to lie on one

and the same quadric (of course, if they do, A(,2) vanishes, see (28), (26)

and (27) ).

Exercise F-20. In the formulation of Theorem F-18 the adjective ge-

neric was used to qualify the 6 points i:(n) in the plane; but this Theorem
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F-18 is of course valid for any configuration of the 6 points F(n)
,

al-

though for some special configuration it may entail assigning appropri-

ately a value to an indeterminate product of type O-CO. Is it possible to

obtain interesting theorems by focusing on special configurations of the 6

ointS j;(n) (in analogy to what is done above in Exercise F-I1)?
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Fig. G. - 1. The "upper curve" is bolded (see text for explanantion).
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Appendix G:

Asymptotic behavior of the zeros of a polynomial
whose coefficients diverge exponentially

Let z,, (t), n = 1, 2,..., N, be the N zeros of a (monic) polynomial of degree
N in z whose IV coefficients depend exponentially on the real parameter
t :

IV

[Z,,(t)]Ar+l C.(t)[Z,(t)]N-m = 0, n = 1, 2,..., N, (1)

c. (t) exp[(p. + i r.) t] ,
m = 1, 2,.. -,

N (2)

The constants U. are N arbitrary (nonvanishing) complex numbers, and

the constants pm,,v. are 2N arbitrary real numbers (N is an arbitrary
positive integer, N > 2).

We now formulate, and then prove, Proposition G-J, that details the

behavior of the zeros z, (t) of (1) with (2) as t -> 00 .
Since the formula-

tion of this Proposition G-1 is fairly involved, the reader is warned that it

might be easier to appreciate its significance fully, by proceeding, imme-

diately after a first cursory reading of it, to understand the strategy of its

proof, as detailed below.

Proposition G-1. As the real parameter t tend to (positive) infinity,
t --> 00,

Z '_ (+)(t)f1+O[eXP(_ (3a)n
W z Zn Pn 0]

zn(+) (t) = Fn (t) exp(qn t) , (3b)

Fn Q) = Y,, expQ r,n 0 - (3c)

Here the superscript "plus" attached to z(--) (t) serves to distinguish this
n

quantity from z,, (t) (clearly z(+) (t) is the "dominant part" of Zn (t) as
n

t --> oo ), and also as a reminder that we are investigating the behavior as t

tends to positive infinity ( an analogous superscript should be attached to
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F,, (t) and to Zn ; it is omitted to simplify the notation). The IV complex

constants Zn, and the 3 N real numbers & > 0, qn and r,, are given by the

following prescriptions.
Identify on a Cartesian plane the N points with integer abscissas

m = 1,2,..., N and ordinates p., and in addition the origin (abscissa m = 0,

ordinate p, = 0). Draw the (clearly unique and continuous, if generally

segmented) curve, which is the upper envelope of the N(N+1)12 seg-

ments that connect pairwise these N+1 points (see the example with

N = 7 in Figure G-1); hereafter we refer to this segmented curve as the

upper curve. Associate to each segment of the upper curve the following

numbers (the labels s identifies subsequent segments of this curve, from

left to right): m(-) and m(--) are the values of m that correspond to the be-
S S

gmnmg and to the end of the s-th segment (so that

MH =0, MW (-) m(+) = N where S is the number of segments that
I s

= MS+j  S

make up the upper curve);

N H
ns =ms -m, ,

S S, (4)

(hence ns is the number of points that lie below the s-th segment, in-

creased by one, see Figure G-1 of course the n, add up to

S

N, n, =N);
S=1

Z(S) = -( ) I Z I/n" S S (5)
M M(-)

(with the convention CO

(6)q Pm S S

I/[ m(+) - m(-) 1 (7)
S

W -M(-)])-P-(A Pm(+) + [M(+ MIPn,(-) I/ IM(+)
SI (UM-MS

s s

(8)

Note that the last formula implies that p
(s) is positive, p

(s)
> 0, since the

straight line defined, as a function of the variable m, by the expression

(-) I P.,(+) + [M(+) - M]PM,) I/ [m(+) - M(-)AM) [M - M
S S S S

(9)
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is, by construction, above all other points (m, p.) with m # m,'-' and

m# m(+). (See Figure G-1, and note that we assume here to be in the ge-S

neric case, thereby excluding that three or more of the N +1 points identi-

fied above lie on the same straight line; the exceptional cases when this

instead happens are discussed below).
Then, to each segment s, are associated ns asymptotic values z,(,+) (t),

see (3a), with the following identification of the parameters in (3):

Y,,=z(')exp(2;rij/n,), j=1,...,n, (10a)

Pn
- p(s), qn = qW, r,, = r(s) (10b)

For instance, in the case of Figure G-1, S=3; nj=2,n2=3,n3= 2,
(1) 112 (2) 113 (3) 1/2 (1)Z (_ZT2 ) C -U U) q p2 /2,Z

5 IU2) Z
I
/

q(') = (P5 - p2)/3, q
(3)

=(p, -,D,) / 2; r(l) =Y2/2, r(2) (r5 r2)/3,

r(3) =(r7 - r5)/2; and

P(')= min [mp,12-p.] (11a)
.=I,...,7;m#0,2

P(2) = min ff(m -2)P5 +(5-M)P2]13-,Dm (11b)
.=I,...'7;m#2,5

P(3) = min f [(m - 5)JD7+(7-m),Dj12-pm I (11c)
7; m#5,7

Hence

Y,, =exp(2)rin/2) (_ 2 )1/ 2 ,p, = p(l), q = q(1), r,, r(l), n 1,2, (12a)

_E7 )1/3' Pn =P(2)
n

(2), (2), n = 3,4,5,Y,,=exp[2zi(n-2)/3j( IIC2 , q =q rn = r

(12b)

(3) (3) (3)z =exp[27ri(n-5)/2](- 77/C5)1/21 Pn=P , qn =q , r, = r ,n = 6,7.(12c)

To sum up: as t -> oo, the dominant terms z,(,+) (t), giving the asymp-

totic behaviors of the N zeros Z. (t) (see (3a)) are divided into S families,
where S is the number of segments that compose the upper curve. Each

family includes n, values (see (4)) which, in the complex plane, lie equi-

spaced on a circle centered at the origin (see (3) and (10)), whose radius

evolves proportionally to exp [q() t ] (see (3), (10) and (6)), and which ro-
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tate with constant velocity as entailed by the factor exp [i r(-) t I (see (3c)

and (10b)). The radius of the s -th circle diverges to infinity or converges

to zero (in either case, exponentially), depending on whether the S Ah

segment has positive or negative slope (see (3b), (10b) and (6)); it is con-

stant if the s -th segment is horizontal (so that q(s) vanishes, see (6)). In

the case of positive slope (q(s) > 0), namely when the radius of the circle

diverges exponentially as t -o
,
hence the corresponding n, zeros spiral

W
to infinity, they may, or may not, approach their dominant parts Zn

see (3); this depends on the behavior of the difference zn Q) - zn(+) Q), which

is 0 (exp I [q(") - p ( ') ] t 1) (see (3) and (10)), hence vanishes or diverges de-

pending on the sign of the difference q(s) -p(s). The zero z,, (t) approaches

of course its dominant part z(+) (t) if this does not diverge, namely when

q,, :! 0 (see (3b), (6) and (10b)).
As mentioned above, this outcome describes the situation in the ge-

neric case in which no segment of the upper curve contains one additional

point besides the two extremal ones. In the special cases when a segment

of the upper curve contains one, or more, additional points (as it might for

instance be the case in the example of Figure G-1 if p, were a bit larger,

so that the point (3, p,) lie on the segment joining (2, p,) and (5, p,) ), then

the formula (3) remains valid with the same definitions of q,, and also

(essentially; but see below) of P. (see (3a,b) and (10b)), while the defini-

tion (3c) of Y,, Q) is instead replaced by a new one, as we now explain.

But firstly let us note that the n,, quantities Y,, Q) defined by (3c),

(10a) and (5) are the n, finite (i.e., nonvanishing and nondivergent) roots

of the following algebraic equation in Y:

C exp[i t + C.") exp[i r,") t I FV-..",) = 0
51 (13a)

or equivalently

exp[i lrl =0 (13b)C eXP[i'V.'_) t I YM.') + iT IVM,(')
t

(see (4), (3c), (7) and (10)). This is the equation whose roots determine

the quantities in (t) in the generic case considered above. To also cover

the exceptional cases with additional points on some segments of the up-

per curve, the following supplementary rule applies: if the s -th segment

of the upper curve contains E, > 2 points (m(G-) , p , ), c of
M 

co-ftrse with
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H (1) (a) (Zo
=

W
M = M, < Ms < Ms ms 1 c=2,._1s-1 (14)

then the n, dominant values z,(,+) (t), see (3), belonging to the family asso-

ciated with the s -th segment, have parameters p, and q,, still defined by
(10b) with (6) and (8) (except that the minimum in the right hand side of

(8) must now be taken over all values of m different from all the values
(C)

Ms ,
c = Es); but the quantities F, (t), see (3b), instead of being given

by (10a) and (5), or equivalently as the ns roots of (13), are now the ns

roots of the following algebraic equation in F

M() _11-1) =0 (15)exp[i r.(, t ] F

The fact that this equation has indeed ns roots is implied by (14) and (4).
This completes the formulation of Proposition G-1. Since clearly the

shape of the upper curve is largely determined by the value p, of the

largest p.,

p+ = Max [pm (16)
,=1,2,...,Ar

Proposition G-1 entails the following

Corollary G-2. The behavior as t x of the zeros z, (t), see (1) and

(2), is largely determined by the parameter p,, see (16), and, if p, is not

negative, p,  t 0, also by the value m, (or the values m+(-), see below) at

which pm attains its maximal value p,

Indeed, if p, is negative,

P+<0 , (17a)

then as t -> oo all N zeros z. (t) converge exponentially fast to zero,

Z" (t) --> 0
. (17b)

t  .

If instead p., vanishes

P+ =0 , (18a)

then as t -> oo only some (if any) of the zeros z,, (t) converge to zero,

while the remaining ones neither converge to zero nor escape to infinity.
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Specifically, if p,,,, = 0 for m = m
(G-) and p. < 0 for m:;,- m

(0-) with C = Z

and m(O-) < m(y) = m, then, as t --> oo, N -m, of the N zeros z,, (t) converge

(exponentially fast) to zero, and m, of them approach (exponentially fast)

the m, roots of the following algebraic equation in Y:

I

M,-M(a)F'- +Y E.(O-) exp[i rm(,) t ]Y =0 (18b)

Note that, if I = 1, entailing m+(') = m, these m+ roots are given by the

formula

Fj(t)=exp(27rijlm+)(-c,,,+)llm+exp(i,v.,_tlm,), j=l,...,m+ (18c)

Finally, if p+ is positive,

'0+ >0 ,
(19a)

as t -> -o some of the N zeros z,, (t) escape to infinity, while the others

converge to zero. Specifically, if p. =,o+ > 0 for m = m, and p. < p+ for

m # m+ (namely, if the maximal, positive, value p, is attained only at the

single value m+ of the index m = N), then, as t --> -o, m+ of the N ze-

ros z,, (t) escape (exponentially fast) to infinity and N- m, converge (ex-

ponentially fast) to zero. If instead p. = p+ > 0 for m = m,(O-) ,
and p < p+

for m:?-- m(G-), with a 1,.., Z and m(-) = m(1) < M(2) <... M(I) M(+), then, as

t -> oo, m(-) of the N zeros z,, (t) escape (exponentially fast) to iinfinity,

N - m(+) converge (exponentially fast) to zero, and m(+) -MH approach

(exponentially fast) the m+(+) -m+(-) roots of the following algebraic equa-

tion in Y:

Z

Y E =0
. (19b)exp[i r.(,,

This case differs from the previous one iff E  ! 2; if E = 2 (so that

(1)
=

H (2)
M+ m+ , m+ = m-(+) ) the m+(+ - m+(-) roots of this equation are given by

the explicit formula

Y,(t) =exp[27rij1(m(+) -m(-))] [  7 I c-
+ +

M

(') (-))] - (19c)eXP[i(r.+(') -r',(-Otl(M+ -M 
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Proofs. The proof of Corollary G-2 requires no elaboration: it is an immediate

consequence of Proposition G-1, combined with the topology of the upper curve un-

der the various instances considered (except for the specific formulas (18b) and (19b),
which are entailed by the proof of Proposition G-1, see below).

The basic idea to prove Proposition G-I is that, to find the zeros z,, (t) of (1)
with (2), one should focus on two of the N + 1 terms of the polynomial equation

N

I C. (t) [Z (t)JIV-M = 0
, (20)

M=O

identifying the behavior of z = z(t) as t --> oo so that these two terms are of the same

order and dominate over all other terms. Note that, for notational convenience, we
have replaced here (1) with (20); these two equations, (1) and (20), of course coincide

since we also set

CI(t)=l (21a)

which is consistent with the validity of (2) also for m = 0, with

a-0=1' P,=ro=O - (21b)

Hence our proof proceeds through the identification of such pairs, the demonstra-

tion that they indeed dominate, and the derivation, via the requirement that they can-

cel against each other, of the results detailed in the above formulation of Proposition
G-I

-

Let us then assume that the two terms with, say, m = m, and m = m, (with

M2 > m, ) are of the same order and dominate over all others as t oo
,
so that by set-

ting

z = F exp(q t) (22)

with

p. +(N-mj)q=p,n,+(N-m,)q (23)

we can conveniently rewrite (20) as follows:

exp(iy,,, t)V"', +CM, exp(ivm, t)YN-ml

IV

c- exp(i7. t) exp(-pn t) Y
N-m

-O;M#.J'M'

with

pm =jo., +q(m-ml)-pm (25)
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From (23), which corresponds to the requirement that the two selected terms be of the

same order as t -* oo, we get

q = (p., - pm ) / (m, - m,) (26)

hence, via (25),

Pm = I [(m - r, _Pm (27)nl)Pm, + (M2 - M)P
m,

I/ (M2 - MO I

It is now clear that the expression in the left hand side of (24) dominates, as

t -* oo
,
over every term in the right hand side, provided the quantities p., see (27),

are positive,

P" >0
,

(28)

for all values of M : '_ MI 9 M2 .
Since the term inside the curly bracket in the right hand

side of (27) represents, as a function of in
,
the straight line that goes, in the Cartesian

(m,p.) plane, through the two points (m,p.) and it is clear that this(M2 A 2)1
condition is satisfied, in the generic case (as defined in the formulation of Proposition

G-1, see above), iff m, = m(-) and M2 m". With such a choice we clearly get (6)
S S

from (26), as well as, from (24),

H
-

c exp[i r t Yv-1 + c.,(,, exp[i,, t 0 [exp(-p(s) t)] (29)

with (8). Clearly this last formula, via (4), entails, in the asymptotic t --> 00 limit, (13)
hence (3c) with (7), (10) and (5).

Proposition G-1 is thereby proven in the generic case. Extending this proof to the

general case, see above, is, we trust, sufficiently straightforward, to justify leavi g

this as a task for the diligent reader.

Remark G-3. In the formulation of Proposition G-1 and of its Corol-

lary G-2, we have assumed that none of the coefficients c (t) in (1) van-

ish identically (see the first sentence after (2)). It is easy to extend Propo-

sition G-1 and Corollary G-2 so that they also hold if one or more of the

coefficients c.(t) (namely, one or more of the constants F., see (2)) van-

ishes. Then the corresponding points (m, p) must simply be ignored in

the construction leading to the definition of the upper curve, as well as in

the definition of p, see (16), hence of m, and so on.

Remark G-4. Another easy extension of Proposition G-1 and Corol-

lary G-2 deals with the other limit, t -> --o. Then the role of the upper

curve is taken over by the, analogously defined (but with all inequalities
reversed), lower curve and all formulas apply without changes (other than
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the obvious ones). In this case the quantities p(") (defined by (8) with min

replaced by max) are negative (rather than positive), and the zeros asso-

ciated with segments of the lower curve having negative slope go as-

ymptotically to (or rather, in the remote past, come from) infinity, while

those associated with segments of the lower curve having positive slope
converge to (or rather come from) zero. As for the results of Corollary G-
2, the key role to determine the behavior of the N zeros z" (t) as t --> -oo is

played by the quantity

P_ = min (30)
M=1'...'N

and the formulation of the modified version of Corollary G-2 detailing
the behavior of the zeros as t -> --o coincides essentially with that given
above for the t -> +oo case, with p-, replaced by p- and a reversal of some

of the inequalities, as obviously appropriate.

As an example, let us look at the instance illustrated by Figure G-1. In this (ge-
neric) case, as t --> +oo the 7 zeros z,, (t) get separated into 3 families, one

(s = 1, m,(-) = 0
, m,(+) = 2) containing 2 members and spiraling to infinity, a second

one (s = 2, m,(-) = 2, m2(+) = 5) containing 3 members and also spiraling to infinity

(albeit less fast), and a third one (s = 3, m(-) = 5, m(+) = 7) containing 2 members
3

which spiral to the origin; while only 2 families emerge in the t --> -oo limit, one

containing 4 members (s = 1, mf-) = 0, m2(+) = 4) which spiral out to (or rather in
2

from) infinity in the remote past, the other containing 3 members

(s = 2, m" = 4, m (')
= 7) which in the remote past spiral to (or rather from) the ori-2 2

gin.

In conclusion we emphasize that, while these results provide an easy

technique to predict the asymptotic behavior, as t -> oO, of the zeros

z,, (t) of the polynomial (1) with (2), there is instead no easy way to iden-

tify which zero behaves how, and in particular no easy way to connect the

behavior of a particular zero as t -> -oo to its behavior as t -> +oo.

G.N Notes to Appendix G

The treatment in this Appendix G follows closely Appendix A of

<C96b>; in particular Figure G-1 coincides with the Figure 1 given there.
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X-31F
A "pendix H:

Some formulas for Paul! matrices and three-vectors

In this Appendix we display some standard formulas for the a -matrices,

and a useful 3-vector identity.

(01 0 0

[p+i(F-dT'=[p-i(F-d)11(p'+r') , (2)

(F(l) _ DO(F(2). DC = (F(l) . F(7) ) - i(F"' A F'2)). & , (3)

[VO). 30_'(F(2). 30]= -2i(j;(') A j;(2)).& (4)

 t _D = _i(j;(I) A i;(2)). i:(3)(i:(I) OU37(F(2). 0)(i;(3). or

+(1) (i;(2) . i;(3)) _7(2) (j;(I) . i;(3) ) +j; (3) (F
(1)

. i; (2) (5)

C;_(F(l) . (;;(2) (j;(3) . 03 + (j;(3) . DC(F(Z) . DC(F(l) .3Cr

= 2 )+ i;(3) (i;(1) . T(2) )I.d
, (6)

=[2 F(1) (F(l) - j;()) - j;(-) (T(1) - j;('))] - 6 (7)

+ )1/2 + jZ' &  =

1/2 1/2

P r [(p+ir) +(p-ir) 1/2,

1/2 1/2
r = -iF[(p+ir) -(p-ir) ]/(2r), (8a)

(i F. &)1/2
= (r/2)

1/2 (I+ir-'F.!) (8b)

:)r-'sin(r) (9)exp(ii: - _6:7) = cos(r) + _q

Jf(r) + f(-r) + [f(r) - f(-r)] (10)
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The 3-vector formula

aF+FAb +(F - d) j= f (11a)

entails

F=(a' +b)-'[  ], (11b)

r=-[ a'-Y4+a(jA )4+(14)( 4)

-[ a(a' +b2) +a2J-d+a(jA )4+(j4)( 4) (tic)

The subcases  =O
,
J=0 (or  =O), a=O, while easily obtainable from

the above formulas, deserve separate display.
Case 0:

(11d)

Case j=0 (or d=0):

F = (a2+ b2)-'[a 1 +  A j + a-'(! (11e)

Case a= 0 (note that it requiresj0 as well as d # o

F=b-21

+ j)-1 b2 j)( A +  Aj).d (1 it)
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